linux/drivers/crypto/rockchip/rk3288_crypto_skcipher.c

538 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Crypto acceleration support for Rockchip RK3288
*
* Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
*
* Author: Zain Wang <zain.wang@rock-chips.com>
*
* Some ideas are from marvell-cesa.c and s5p-sss.c driver.
*/
#include <linux/device.h>
#include "rk3288_crypto.h"
#define RK_CRYPTO_DEC BIT(0)
static void rk_crypto_complete(struct crypto_async_request *base, int err)
{
if (base->complete)
base->complete(base, err);
}
static int rk_handle_req(struct rk_crypto_info *dev,
struct skcipher_request *req)
{
if (!IS_ALIGNED(req->cryptlen, dev->align_size))
return -EINVAL;
else
return dev->enqueue(dev, &req->base);
}
static int rk_aes_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
struct rk_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
crypto: remove CRYPTO_TFM_RES_BAD_KEY_LEN The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to make the ->setkey() functions provide more information about errors. However, no one actually checks for this flag, which makes it pointless. Also, many algorithms fail to set this flag when given a bad length key. Reviewing just the generic implementations, this is the case for aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309, rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably many more in arch/*/crypto/ and drivers/crypto/. Some algorithms can even set this flag when the key is the correct length. For example, authenc and authencesn set it when the key payload is malformed in any way (not just a bad length), the atmel-sha and ccree drivers can set it if a memory allocation fails, and the chelsio driver sets it for bad auth tag lengths, not just bad key lengths. So even if someone actually wanted to start checking this flag (which seems unlikely, since it's been unused for a long time), there would be a lot of work needed to get it working correctly. But it would probably be much better to go back to the drawing board and just define different return values, like -EINVAL if the key is invalid for the algorithm vs. -EKEYREJECTED if the key was rejected by a policy like "no weak keys". That would be much simpler, less error-prone, and easier to test. So just remove this flag. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-12-31 06:19:36 +03:00
keylen != AES_KEYSIZE_256)
return -EINVAL;
ctx->keylen = keylen;
memcpy_toio(ctx->dev->reg + RK_CRYPTO_AES_KEY_0, key, keylen);
return 0;
}
static int rk_des_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
int err;
err = verify_skcipher_des_key(cipher, key);
if (err)
return err;
ctx->keylen = keylen;
memcpy_toio(ctx->dev->reg + RK_CRYPTO_TDES_KEY1_0, key, keylen);
return 0;
}
static int rk_tdes_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
int err;
err = verify_skcipher_des3_key(cipher, key);
if (err)
return err;
ctx->keylen = keylen;
memcpy_toio(ctx->dev->reg + RK_CRYPTO_TDES_KEY1_0, key, keylen);
return 0;
}
static int rk_aes_ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_AES_ECB_MODE;
return rk_handle_req(dev, req);
}
static int rk_aes_ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_AES_ECB_MODE | RK_CRYPTO_DEC;
return rk_handle_req(dev, req);
}
static int rk_aes_cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_AES_CBC_MODE;
return rk_handle_req(dev, req);
}
static int rk_aes_cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_AES_CBC_MODE | RK_CRYPTO_DEC;
return rk_handle_req(dev, req);
}
static int rk_des_ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = 0;
return rk_handle_req(dev, req);
}
static int rk_des_ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_DEC;
return rk_handle_req(dev, req);
}
static int rk_des_cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_TDES_CHAINMODE_CBC;
return rk_handle_req(dev, req);
}
static int rk_des_cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_TDES_CHAINMODE_CBC | RK_CRYPTO_DEC;
return rk_handle_req(dev, req);
}
static int rk_des3_ede_ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_TDES_SELECT;
return rk_handle_req(dev, req);
}
static int rk_des3_ede_ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_TDES_SELECT | RK_CRYPTO_DEC;
return rk_handle_req(dev, req);
}
static int rk_des3_ede_cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_TDES_SELECT | RK_CRYPTO_TDES_CHAINMODE_CBC;
return rk_handle_req(dev, req);
}
static int rk_des3_ede_cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct rk_crypto_info *dev = ctx->dev;
ctx->mode = RK_CRYPTO_TDES_SELECT | RK_CRYPTO_TDES_CHAINMODE_CBC |
RK_CRYPTO_DEC;
return rk_handle_req(dev, req);
}
static void rk_ablk_hw_init(struct rk_crypto_info *dev)
{
struct skcipher_request *req =
skcipher_request_cast(dev->async_req);
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
u32 ivsize, block, conf_reg = 0;
block = crypto_tfm_alg_blocksize(tfm);
ivsize = crypto_skcipher_ivsize(cipher);
if (block == DES_BLOCK_SIZE) {
ctx->mode |= RK_CRYPTO_TDES_FIFO_MODE |
RK_CRYPTO_TDES_BYTESWAP_KEY |
RK_CRYPTO_TDES_BYTESWAP_IV;
CRYPTO_WRITE(dev, RK_CRYPTO_TDES_CTRL, ctx->mode);
memcpy_toio(dev->reg + RK_CRYPTO_TDES_IV_0, req->iv, ivsize);
conf_reg = RK_CRYPTO_DESSEL;
} else {
ctx->mode |= RK_CRYPTO_AES_FIFO_MODE |
RK_CRYPTO_AES_KEY_CHANGE |
RK_CRYPTO_AES_BYTESWAP_KEY |
RK_CRYPTO_AES_BYTESWAP_IV;
if (ctx->keylen == AES_KEYSIZE_192)
ctx->mode |= RK_CRYPTO_AES_192BIT_key;
else if (ctx->keylen == AES_KEYSIZE_256)
ctx->mode |= RK_CRYPTO_AES_256BIT_key;
CRYPTO_WRITE(dev, RK_CRYPTO_AES_CTRL, ctx->mode);
memcpy_toio(dev->reg + RK_CRYPTO_AES_IV_0, req->iv, ivsize);
}
conf_reg |= RK_CRYPTO_BYTESWAP_BTFIFO |
RK_CRYPTO_BYTESWAP_BRFIFO;
CRYPTO_WRITE(dev, RK_CRYPTO_CONF, conf_reg);
CRYPTO_WRITE(dev, RK_CRYPTO_INTENA,
RK_CRYPTO_BCDMA_ERR_ENA | RK_CRYPTO_BCDMA_DONE_ENA);
}
static void crypto_dma_start(struct rk_crypto_info *dev)
{
CRYPTO_WRITE(dev, RK_CRYPTO_BRDMAS, dev->addr_in);
CRYPTO_WRITE(dev, RK_CRYPTO_BRDMAL, dev->count / 4);
CRYPTO_WRITE(dev, RK_CRYPTO_BTDMAS, dev->addr_out);
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_BLOCK_START |
_SBF(RK_CRYPTO_BLOCK_START, 16));
}
static int rk_set_data_start(struct rk_crypto_info *dev)
{
int err;
struct skcipher_request *req =
skcipher_request_cast(dev->async_req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
u32 ivsize = crypto_skcipher_ivsize(tfm);
u8 *src_last_blk = page_address(sg_page(dev->sg_src)) +
dev->sg_src->offset + dev->sg_src->length - ivsize;
/* Store the iv that need to be updated in chain mode.
* And update the IV buffer to contain the next IV for decryption mode.
*/
if (ctx->mode & RK_CRYPTO_DEC) {
memcpy(ctx->iv, src_last_blk, ivsize);
sg_pcopy_to_buffer(dev->first, dev->src_nents, req->iv,
ivsize, dev->total - ivsize);
}
err = dev->load_data(dev, dev->sg_src, dev->sg_dst);
if (!err)
crypto_dma_start(dev);
return err;
}
static int rk_ablk_start(struct rk_crypto_info *dev)
{
struct skcipher_request *req =
skcipher_request_cast(dev->async_req);
unsigned long flags;
int err = 0;
dev->left_bytes = req->cryptlen;
dev->total = req->cryptlen;
dev->sg_src = req->src;
dev->first = req->src;
dev->src_nents = sg_nents(req->src);
dev->sg_dst = req->dst;
dev->dst_nents = sg_nents(req->dst);
dev->aligned = 1;
spin_lock_irqsave(&dev->lock, flags);
rk_ablk_hw_init(dev);
err = rk_set_data_start(dev);
spin_unlock_irqrestore(&dev->lock, flags);
return err;
}
static void rk_iv_copyback(struct rk_crypto_info *dev)
{
struct skcipher_request *req =
skcipher_request_cast(dev->async_req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
u32 ivsize = crypto_skcipher_ivsize(tfm);
/* Update the IV buffer to contain the next IV for encryption mode. */
if (!(ctx->mode & RK_CRYPTO_DEC)) {
if (dev->aligned) {
memcpy(req->iv, sg_virt(dev->sg_dst) +
dev->sg_dst->length - ivsize, ivsize);
} else {
memcpy(req->iv, dev->addr_vir +
dev->count - ivsize, ivsize);
}
}
}
static void rk_update_iv(struct rk_crypto_info *dev)
{
struct skcipher_request *req =
skcipher_request_cast(dev->async_req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
u32 ivsize = crypto_skcipher_ivsize(tfm);
u8 *new_iv = NULL;
if (ctx->mode & RK_CRYPTO_DEC) {
new_iv = ctx->iv;
} else {
new_iv = page_address(sg_page(dev->sg_dst)) +
dev->sg_dst->offset + dev->sg_dst->length - ivsize;
}
if (ivsize == DES_BLOCK_SIZE)
memcpy_toio(dev->reg + RK_CRYPTO_TDES_IV_0, new_iv, ivsize);
else if (ivsize == AES_BLOCK_SIZE)
memcpy_toio(dev->reg + RK_CRYPTO_AES_IV_0, new_iv, ivsize);
}
/* return:
* true some err was occurred
* fault no err, continue
*/
static int rk_ablk_rx(struct rk_crypto_info *dev)
{
int err = 0;
struct skcipher_request *req =
skcipher_request_cast(dev->async_req);
dev->unload_data(dev);
if (!dev->aligned) {
if (!sg_pcopy_from_buffer(req->dst, dev->dst_nents,
dev->addr_vir, dev->count,
dev->total - dev->left_bytes -
dev->count)) {
err = -EINVAL;
goto out_rx;
}
}
if (dev->left_bytes) {
rk_update_iv(dev);
if (dev->aligned) {
if (sg_is_last(dev->sg_src)) {
dev_err(dev->dev, "[%s:%d] Lack of data\n",
__func__, __LINE__);
err = -ENOMEM;
goto out_rx;
}
dev->sg_src = sg_next(dev->sg_src);
dev->sg_dst = sg_next(dev->sg_dst);
}
err = rk_set_data_start(dev);
} else {
rk_iv_copyback(dev);
/* here show the calculation is over without any err */
dev->complete(dev->async_req, 0);
tasklet_schedule(&dev->queue_task);
}
out_rx:
return err;
}
static int rk_ablk_init_tfm(struct crypto_skcipher *tfm)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct rk_crypto_tmp *algt;
algt = container_of(alg, struct rk_crypto_tmp, alg.skcipher);
ctx->dev = algt->dev;
ctx->dev->align_size = crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)) + 1;
ctx->dev->start = rk_ablk_start;
ctx->dev->update = rk_ablk_rx;
ctx->dev->complete = rk_crypto_complete;
ctx->dev->addr_vir = (char *)__get_free_page(GFP_KERNEL);
return ctx->dev->addr_vir ? ctx->dev->enable_clk(ctx->dev) : -ENOMEM;
}
static void rk_ablk_exit_tfm(struct crypto_skcipher *tfm)
{
struct rk_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
free_page((unsigned long)ctx->dev->addr_vir);
ctx->dev->disable_clk(ctx->dev);
}
struct rk_crypto_tmp rk_ecb_aes_alg = {
.type = ALG_TYPE_CIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x0f,
.base.cra_module = THIS_MODULE,
.init = rk_ablk_init_tfm,
.exit = rk_ablk_exit_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = rk_aes_setkey,
.encrypt = rk_aes_ecb_encrypt,
.decrypt = rk_aes_ecb_decrypt,
}
};
struct rk_crypto_tmp rk_cbc_aes_alg = {
.type = ALG_TYPE_CIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x0f,
.base.cra_module = THIS_MODULE,
.init = rk_ablk_init_tfm,
.exit = rk_ablk_exit_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = rk_aes_setkey,
.encrypt = rk_aes_cbc_encrypt,
.decrypt = rk_aes_cbc_decrypt,
}
};
struct rk_crypto_tmp rk_ecb_des_alg = {
.type = ALG_TYPE_CIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(des)",
.base.cra_driver_name = "ecb-des-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_ablk_init_tfm,
.exit = rk_ablk_exit_tfm,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = rk_des_setkey,
.encrypt = rk_des_ecb_encrypt,
.decrypt = rk_des_ecb_decrypt,
}
};
struct rk_crypto_tmp rk_cbc_des_alg = {
.type = ALG_TYPE_CIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(des)",
.base.cra_driver_name = "cbc-des-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_ablk_init_tfm,
.exit = rk_ablk_exit_tfm,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = rk_des_setkey,
.encrypt = rk_des_cbc_encrypt,
.decrypt = rk_des_cbc_decrypt,
}
};
struct rk_crypto_tmp rk_ecb_des3_ede_alg = {
.type = ALG_TYPE_CIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "ecb-des3-ede-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_ablk_init_tfm,
.exit = rk_ablk_exit_tfm,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = rk_tdes_setkey,
.encrypt = rk_des3_ede_ecb_encrypt,
.decrypt = rk_des3_ede_ecb_decrypt,
}
};
struct rk_crypto_tmp rk_cbc_des3_ede_alg = {
.type = ALG_TYPE_CIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "cbc-des3-ede-rk",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct rk_cipher_ctx),
.base.cra_alignmask = 0x07,
.base.cra_module = THIS_MODULE,
.init = rk_ablk_init_tfm,
.exit = rk_ablk_exit_tfm,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = rk_tdes_setkey,
.encrypt = rk_des3_ede_cbc_encrypt,
.decrypt = rk_des3_ede_cbc_decrypt,
}
};