2019-05-27 09:55:01 +03:00
/* SPDX-License-Identifier: GPL-2.0-or-later */
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:06 +03:00
/ *
* Poly1 3 0 5 a u t h e n t i c a t o r a l g o r i t h m , R F C 7 5 3 9 , x64 S S E 2 f u n c t i o n s
*
* Copyright ( C ) 2 0 1 5 M a r t i n W i l l i
* /
# include < l i n u x / l i n k a g e . h >
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 00:33:04 +03:00
.section .rodata .cst16 .ANMASK , " aM" , @progbits, 16
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:06 +03:00
.align 16
ANMASK : .octa 0x00000000 0 3 ffffff0 0 0 0 0 0 0 0 0 3 f f f f f f
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 00:33:04 +03:00
.section .rodata .cst16 .ORMASK , " aM" , @progbits, 16
.align 16
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:07 +03:00
ORMASK : .octa 0x00000000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:06 +03:00
.text
# define h0 0 x00 ( % r d i )
# define h1 0 x04 ( % r d i )
# define h2 0 x08 ( % r d i )
# define h3 0 x0 c ( % r d i )
# define h4 0 x10 ( % r d i )
# define r0 0 x00 ( % r d x )
# define r1 0 x04 ( % r d x )
# define r2 0 x08 ( % r d x )
# define r3 0 x0 c ( % r d x )
# define r4 0 x10 ( % r d x )
# define s1 0 x00 ( % r s p )
# define s2 0 x04 ( % r s p )
# define s3 0 x08 ( % r s p )
# define s4 0 x0 c ( % r s p )
# define m % r s i
# define h01 % x m m 0
# define h23 % x m m 1
# define h44 % x m m 2
# define t 1 % x m m 3
# define t 2 % x m m 4
# define t 3 % x m m 5
# define t 4 % x m m 6
# define m a s k % x m m 7
# define d0 % r8
# define d1 % r9
# define d2 % r10
# define d3 % r11
# define d4 % r12
ENTRY( p o l y 1 3 0 5 _ b l o c k _ s s e 2 )
# % rdi : Accumulator h [ 5 ]
# % rsi : 1 6 byte i n p u t b l o c k m
# % rdx : Poly1 3 0 5 k e y r [ 5 ]
# % rcx : Block c o u n t
# This s i n g l e b l o c k v a r i a n t t r i e s t o i m p r o v e p e r f o r m a n c e b y d o i n g t w o
# multiplications i n p a r a l l e l u s i n g S S E i n s t r u c t i o n s . T h e r e i s q u i t e
# some q u a r d w o r d p a c k i n g i n v o l v e d , h e n c e t h e s p e e d u p i s m a r g i n a l .
push % r b x
push % r12
sub $ 0 x10 ,% r s p
# s1 . . s4 = r1 . . r4 * 5
mov r1 ,% e a x
lea ( % e a x ,% e a x ,4 ) ,% e a x
mov % e a x ,s1
mov r2 ,% e a x
lea ( % e a x ,% e a x ,4 ) ,% e a x
mov % e a x ,s2
mov r3 ,% e a x
lea ( % e a x ,% e a x ,4 ) ,% e a x
mov % e a x ,s3
mov r4 ,% e a x
lea ( % e a x ,% e a x ,4 ) ,% e a x
mov % e a x ,s4
movdqa A N M A S K ( % r i p ) ,m a s k
.Ldoblock :
# h0 1 = [ 0 , h1 , 0 , h0 ]
# h2 3 = [ 0 , h3 , 0 , h2 ]
# h4 4 = [ 0 , h4 , 0 , h4 ]
movd h0 ,h01
movd h1 ,t 1
movd h2 ,h23
movd h3 ,t 2
movd h4 ,h44
punpcklqdq t 1 ,h01
punpcklqdq t 2 ,h23
punpcklqdq h44 ,h44
# h0 1 + = [ ( m [ 3 - 6 ] > > 2 ) & 0 x3 f f f f f f , m [ 0 - 3 ] & 0 x3 f f f f f f ]
movd 0 x00 ( m ) ,t 1
movd 0 x03 ( m ) ,t 2
psrld $ 2 ,t 2
punpcklqdq t 2 ,t 1
pand m a s k ,t 1
paddd t 1 ,h01
# h2 3 + = [ ( m [ 9 - 1 2 ] > > 6 ) & 0 x3 f f f f f f , ( m [ 6 - 9 ] > > 4 ) & 0 x3 f f f f f f ]
movd 0 x06 ( m ) ,t 1
movd 0 x09 ( m ) ,t 2
psrld $ 4 ,t 1
psrld $ 6 ,t 2
punpcklqdq t 2 ,t 1
pand m a s k ,t 1
paddd t 1 ,h23
# h4 4 + = [ ( m [ 1 2 - 1 5 ] > > 8 ) | ( 1 < < 2 4 ) , ( m [ 1 2 - 1 5 ] > > 8 ) | ( 1 < < 2 4 ) ]
mov 0 x0 c ( m ) ,% e a x
shr $ 8 ,% e a x
or $ 0 x01 0 0 0 0 0 0 ,% e a x
movd % e a x ,t 1
pshufd $ 0 x c4 ,t 1 ,t 1
paddd t 1 ,h44
# t1 [ 0 ] = h0 * r0 + h2 * s3
# t1 [ 1 ] = h1 * s4 + h3 * s2
movd r0 ,t 1
movd s4 ,t 2
punpcklqdq t 2 ,t 1
pmuludq h01 ,t 1
movd s3 ,t 2
movd s2 ,t 3
punpcklqdq t 3 ,t 2
pmuludq h23 ,t 2
paddq t 2 ,t 1
# t2 [ 0 ] = h0 * r1 + h2 * s4
# t2 [ 1 ] = h1 * r0 + h3 * s3
movd r1 ,t 2
movd r0 ,t 3
punpcklqdq t 3 ,t 2
pmuludq h01 ,t 2
movd s4 ,t 3
movd s3 ,t 4
punpcklqdq t 4 ,t 3
pmuludq h23 ,t 3
paddq t 3 ,t 2
# t3 [ 0 ] = h4 * s1
# t3 [ 1 ] = h4 * s2
movd s1 ,t 3
movd s2 ,t 4
punpcklqdq t 4 ,t 3
pmuludq h44 ,t 3
# d0 = t 1 [ 0 ] + t 1 [ 1 ] + t 3 [ 0 ]
# d1 = t 2 [ 0 ] + t 2 [ 1 ] + t 3 [ 1 ]
movdqa t 1 ,t 4
punpcklqdq t 2 ,t 4
punpckhqdq t 2 ,t 1
paddq t 4 ,t 1
paddq t 3 ,t 1
movq t 1 ,d0
psrldq $ 8 ,t 1
movq t 1 ,d1
# t1 [ 0 ] = h0 * r2 + h2 * r0
# t1 [ 1 ] = h1 * r1 + h3 * s4
movd r2 ,t 1
movd r1 ,t 2
punpcklqdq t 2 ,t 1
pmuludq h01 ,t 1
movd r0 ,t 2
movd s4 ,t 3
punpcklqdq t 3 ,t 2
pmuludq h23 ,t 2
paddq t 2 ,t 1
# t2 [ 0 ] = h0 * r3 + h2 * r1
# t2 [ 1 ] = h1 * r2 + h3 * r0
movd r3 ,t 2
movd r2 ,t 3
punpcklqdq t 3 ,t 2
pmuludq h01 ,t 2
movd r1 ,t 3
movd r0 ,t 4
punpcklqdq t 4 ,t 3
pmuludq h23 ,t 3
paddq t 3 ,t 2
# t3 [ 0 ] = h4 * s3
# t3 [ 1 ] = h4 * s4
movd s3 ,t 3
movd s4 ,t 4
punpcklqdq t 4 ,t 3
pmuludq h44 ,t 3
# d2 = t 1 [ 0 ] + t 1 [ 1 ] + t 3 [ 0 ]
# d3 = t 2 [ 0 ] + t 2 [ 1 ] + t 3 [ 1 ]
movdqa t 1 ,t 4
punpcklqdq t 2 ,t 4
punpckhqdq t 2 ,t 1
paddq t 4 ,t 1
paddq t 3 ,t 1
movq t 1 ,d2
psrldq $ 8 ,t 1
movq t 1 ,d3
# t1 [ 0 ] = h0 * r4 + h2 * r2
# t1 [ 1 ] = h1 * r3 + h3 * r1
movd r4 ,t 1
movd r3 ,t 2
punpcklqdq t 2 ,t 1
pmuludq h01 ,t 1
movd r2 ,t 2
movd r1 ,t 3
punpcklqdq t 3 ,t 2
pmuludq h23 ,t 2
paddq t 2 ,t 1
# t3 [ 0 ] = h4 * r0
movd r0 ,t 3
pmuludq h44 ,t 3
# d4 = t 1 [ 0 ] + t 1 [ 1 ] + t 3 [ 0 ]
movdqa t 1 ,t 4
psrldq $ 8 ,t 4
paddq t 4 ,t 1
paddq t 3 ,t 1
movq t 1 ,d4
# d1 + = d0 > > 2 6
mov d0 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d1
# h0 = d0 & 0 x3 f f f f f f
mov d0 ,% r b x
and $ 0 x3 f f f f f f ,% e b x
# d2 + = d1 > > 2 6
mov d1 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d2
# h1 = d1 & 0 x3 f f f f f f
mov d1 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h1
# d3 + = d2 > > 2 6
mov d2 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d3
# h2 = d2 & 0 x3 f f f f f f
mov d2 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h2
# d4 + = d3 > > 2 6
mov d3 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d4
# h3 = d3 & 0 x3 f f f f f f
mov d3 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h3
# h0 + = ( d4 > > 2 6 ) * 5
mov d4 ,% r a x
shr $ 2 6 ,% r a x
2019-03-31 23:04:11 +03:00
lea ( % r a x ,% r a x ,4 ) ,% r a x
add % r a x ,% r b x
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:06 +03:00
# h4 = d4 & 0 x3 f f f f f f
mov d4 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h4
# h1 + = h0 > > 2 6
2019-03-31 23:04:11 +03:00
mov % r b x ,% r a x
shr $ 2 6 ,% r a x
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:06 +03:00
add % e a x ,h1
# h0 = h0 & 0 x3 f f f f f f
andl $ 0 x3 f f f f f f ,% e b x
mov % e b x ,h0
add $ 0 x10 ,m
dec % r c x
jnz . L d o b l o c k
2019-02-19 18:45:54 +03:00
# Zeroing o f k e y m a t e r i a l
mov % r c x ,0 x00 ( % r s p )
mov % r c x ,0 x08 ( % r s p )
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:06 +03:00
add $ 0 x10 ,% r s p
pop % r12
pop % r b x
ret
ENDPROC( p o l y 1 3 0 5 _ b l o c k _ s s e 2 )
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:07 +03:00
# define u 0 0 x00 ( % r8 )
# define u 1 0 x04 ( % r8 )
# define u 2 0 x08 ( % r8 )
# define u 3 0 x0 c ( % r8 )
# define u 4 0 x10 ( % r8 )
# define h c0 % x m m 0
# define h c1 % x m m 1
# define h c2 % x m m 2
# define h c3 % x m m 5
# define h c4 % x m m 6
# define r u 0 % x m m 7
# define r u 1 % x m m 8
# define r u 2 % x m m 9
# define r u 3 % x m m 1 0
# define r u 4 % x m m 1 1
# define s v1 % x m m 1 2
# define s v2 % x m m 1 3
# define s v3 % x m m 1 4
# define s v4 % x m m 1 5
# undef d0
# define d0 % r13
ENTRY( p o l y 1 3 0 5 _ 2 b l o c k _ s s e 2 )
# % rdi : Accumulator h [ 5 ]
# % rsi : 1 6 byte i n p u t b l o c k m
# % rdx : Poly1 3 0 5 k e y r [ 5 ]
# % rcx : Doubleblock c o u n t
# % r8 : Poly1 3 0 5 d e r i v e d k e y r ^ 2 u [ 5 ]
# This t w o - b l o c k v a r i a n t f u r t h e r i m p r o v e s p e r f o r m a n c e b y u s i n g l o o p
# unrolled b l o c k p r o c e s s i n g . T h i s i s m o r e s t r a i g h t f o r w a r d a n d d o e s
# less b y t e s h u f f l i n g , b u t r e q u i r e s a s e c o n d P o l y 1 3 0 5 k e y r ^ 2 :
# h = ( h + m ) * r = > h = ( h + m 1 ) * r ^ 2 + m 2 * r
push % r b x
push % r12
push % r13
# combine r0 ,u 0
movd u 0 ,r u 0
movd r0 ,t 1
punpcklqdq t 1 ,r u 0
# combine r1 ,u 1 a n d s1 =r1 * 5 ,v1 =u1 * 5
movd u 1 ,r u 1
movd r1 ,t 1
punpcklqdq t 1 ,r u 1
movdqa r u 1 ,s v1
pslld $ 2 ,s v1
paddd r u 1 ,s v1
# combine r2 ,u 2 a n d s2 =r2 * 5 ,v2 =u2 * 5
movd u 2 ,r u 2
movd r2 ,t 1
punpcklqdq t 1 ,r u 2
movdqa r u 2 ,s v2
pslld $ 2 ,s v2
paddd r u 2 ,s v2
# combine r3 ,u 3 a n d s3 =r3 * 5 ,v3 =u3 * 5
movd u 3 ,r u 3
movd r3 ,t 1
punpcklqdq t 1 ,r u 3
movdqa r u 3 ,s v3
pslld $ 2 ,s v3
paddd r u 3 ,s v3
# combine r4 ,u 4 a n d s4 =r4 * 5 ,v4 =u4 * 5
movd u 4 ,r u 4
movd r4 ,t 1
punpcklqdq t 1 ,r u 4
movdqa r u 4 ,s v4
pslld $ 2 ,s v4
paddd r u 4 ,s v4
.Ldoblock2 :
# hc0 = [ m [ 1 6 - 1 9 ] & 0 x3 f f f f f f , h0 + m [ 0 - 3 ] & 0 x3 f f f f f f ]
movd 0 x00 ( m ) ,h c0
movd 0 x10 ( m ) ,t 1
punpcklqdq t 1 ,h c0
pand A N M A S K ( % r i p ) ,h c0
movd h0 ,t 1
paddd t 1 ,h c0
# hc1 = [ ( m [ 1 9 - 2 2 ] > > 2 ) & 0 x3 f f f f f f , h1 + ( m [ 3 - 6 ] > > 2 ) & 0 x3 f f f f f f ]
movd 0 x03 ( m ) ,h c1
movd 0 x13 ( m ) ,t 1
punpcklqdq t 1 ,h c1
psrld $ 2 ,h c1
pand A N M A S K ( % r i p ) ,h c1
movd h1 ,t 1
paddd t 1 ,h c1
# hc2 = [ ( m [ 2 2 - 2 5 ] > > 4 ) & 0 x3 f f f f f f , h2 + ( m [ 6 - 9 ] > > 4 ) & 0 x3 f f f f f f ]
movd 0 x06 ( m ) ,h c2
movd 0 x16 ( m ) ,t 1
punpcklqdq t 1 ,h c2
psrld $ 4 ,h c2
pand A N M A S K ( % r i p ) ,h c2
movd h2 ,t 1
paddd t 1 ,h c2
# hc3 = [ ( m [ 2 5 - 2 8 ] > > 6 ) & 0 x3 f f f f f f , h3 + ( m [ 9 - 1 2 ] > > 6 ) & 0 x3 f f f f f f ]
movd 0 x09 ( m ) ,h c3
movd 0 x19 ( m ) ,t 1
punpcklqdq t 1 ,h c3
psrld $ 6 ,h c3
pand A N M A S K ( % r i p ) ,h c3
movd h3 ,t 1
paddd t 1 ,h c3
# hc4 = [ ( m [ 2 8 - 3 1 ] > > 8 ) | ( 1 < < 2 4 ) , h4 + ( m [ 1 2 - 1 5 ] > > 8 ) | ( 1 < < 2 4 ) ]
movd 0 x0 c ( m ) ,h c4
movd 0 x1 c ( m ) ,t 1
punpcklqdq t 1 ,h c4
psrld $ 8 ,h c4
por O R M A S K ( % r i p ) ,h c4
movd h4 ,t 1
paddd t 1 ,h c4
# t1 = [ h c0 [ 1 ] * r0 , h c0 [ 0 ] * u 0 ]
movdqa r u 0 ,t 1
pmuludq h c0 ,t 1
# t1 + = [ h c1 [ 1 ] * s4 , h c1 [ 0 ] * v4 ]
movdqa s v4 ,t 2
pmuludq h c1 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c2 [ 1 ] * s3 , h c2 [ 0 ] * v3 ]
movdqa s v3 ,t 2
pmuludq h c2 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c3 [ 1 ] * s2 , h c3 [ 0 ] * v2 ]
movdqa s v2 ,t 2
pmuludq h c3 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c4 [ 1 ] * s1 , h c4 [ 0 ] * v1 ]
movdqa s v1 ,t 2
pmuludq h c4 ,t 2
paddq t 2 ,t 1
# d0 = t 1 [ 0 ] + t 1 [ 1 ]
movdqa t 1 ,t 2
psrldq $ 8 ,t 2
paddq t 2 ,t 1
movq t 1 ,d0
# t1 = [ h c0 [ 1 ] * r1 , h c0 [ 0 ] * u 1 ]
movdqa r u 1 ,t 1
pmuludq h c0 ,t 1
# t1 + = [ h c1 [ 1 ] * r0 , h c1 [ 0 ] * u 0 ]
movdqa r u 0 ,t 2
pmuludq h c1 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c2 [ 1 ] * s4 , h c2 [ 0 ] * v4 ]
movdqa s v4 ,t 2
pmuludq h c2 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c3 [ 1 ] * s3 , h c3 [ 0 ] * v3 ]
movdqa s v3 ,t 2
pmuludq h c3 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c4 [ 1 ] * s2 , h c4 [ 0 ] * v2 ]
movdqa s v2 ,t 2
pmuludq h c4 ,t 2
paddq t 2 ,t 1
# d1 = t 1 [ 0 ] + t 1 [ 1 ]
movdqa t 1 ,t 2
psrldq $ 8 ,t 2
paddq t 2 ,t 1
movq t 1 ,d1
# t1 = [ h c0 [ 1 ] * r2 , h c0 [ 0 ] * u 2 ]
movdqa r u 2 ,t 1
pmuludq h c0 ,t 1
# t1 + = [ h c1 [ 1 ] * r1 , h c1 [ 0 ] * u 1 ]
movdqa r u 1 ,t 2
pmuludq h c1 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c2 [ 1 ] * r0 , h c2 [ 0 ] * u 0 ]
movdqa r u 0 ,t 2
pmuludq h c2 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c3 [ 1 ] * s4 , h c3 [ 0 ] * v4 ]
movdqa s v4 ,t 2
pmuludq h c3 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c4 [ 1 ] * s3 , h c4 [ 0 ] * v3 ]
movdqa s v3 ,t 2
pmuludq h c4 ,t 2
paddq t 2 ,t 1
# d2 = t 1 [ 0 ] + t 1 [ 1 ]
movdqa t 1 ,t 2
psrldq $ 8 ,t 2
paddq t 2 ,t 1
movq t 1 ,d2
# t1 = [ h c0 [ 1 ] * r3 , h c0 [ 0 ] * u 3 ]
movdqa r u 3 ,t 1
pmuludq h c0 ,t 1
# t1 + = [ h c1 [ 1 ] * r2 , h c1 [ 0 ] * u 2 ]
movdqa r u 2 ,t 2
pmuludq h c1 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c2 [ 1 ] * r1 , h c2 [ 0 ] * u 1 ]
movdqa r u 1 ,t 2
pmuludq h c2 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c3 [ 1 ] * r0 , h c3 [ 0 ] * u 0 ]
movdqa r u 0 ,t 2
pmuludq h c3 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c4 [ 1 ] * s4 , h c4 [ 0 ] * v4 ]
movdqa s v4 ,t 2
pmuludq h c4 ,t 2
paddq t 2 ,t 1
# d3 = t 1 [ 0 ] + t 1 [ 1 ]
movdqa t 1 ,t 2
psrldq $ 8 ,t 2
paddq t 2 ,t 1
movq t 1 ,d3
# t1 = [ h c0 [ 1 ] * r4 , h c0 [ 0 ] * u 4 ]
movdqa r u 4 ,t 1
pmuludq h c0 ,t 1
# t1 + = [ h c1 [ 1 ] * r3 , h c1 [ 0 ] * u 3 ]
movdqa r u 3 ,t 2
pmuludq h c1 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c2 [ 1 ] * r2 , h c2 [ 0 ] * u 2 ]
movdqa r u 2 ,t 2
pmuludq h c2 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c3 [ 1 ] * r1 , h c3 [ 0 ] * u 1 ]
movdqa r u 1 ,t 2
pmuludq h c3 ,t 2
paddq t 2 ,t 1
# t1 + = [ h c4 [ 1 ] * r0 , h c4 [ 0 ] * u 0 ]
movdqa r u 0 ,t 2
pmuludq h c4 ,t 2
paddq t 2 ,t 1
# d4 = t 1 [ 0 ] + t 1 [ 1 ]
movdqa t 1 ,t 2
psrldq $ 8 ,t 2
paddq t 2 ,t 1
movq t 1 ,d4
2019-03-31 23:04:11 +03:00
# Now d o a p a r t i a l r e d u c t i o n m o d ( 2 ^ 1 3 0 ) - 5 , c a r r y i n g h0 - > h1 - > h2 - >
# h3 - > h4 - > h0 - > h1 t o g e t h0 ,h2 ,h3 ,h4 < 2 ^ 2 6 a n d h1 < 2 ^ 2 6 + a s m a l l
# amount. C a r e f u l : w e m u s t n o t a s s u m e t h e c a r r y b i t s ' d0 > > 2 6 ' ,
# ' d1 > > 2 6 ' , ' d2 > > 2 6 ' , ' d3 > > 2 6 ' , a n d ' ( d4 > > 2 6 ) * 5 ' f i t i n 3 2 - b i t
# integers. I t ' s t r u e i n a s i n g l e - b l o c k i m p l e m e n t a t i o n , b u t n o t h e r e .
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:07 +03:00
# d1 + = d0 > > 2 6
mov d0 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d1
# h0 = d0 & 0 x3 f f f f f f
mov d0 ,% r b x
and $ 0 x3 f f f f f f ,% e b x
# d2 + = d1 > > 2 6
mov d1 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d2
# h1 = d1 & 0 x3 f f f f f f
mov d1 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h1
# d3 + = d2 > > 2 6
mov d2 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d3
# h2 = d2 & 0 x3 f f f f f f
mov d2 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h2
# d4 + = d3 > > 2 6
mov d3 ,% r a x
shr $ 2 6 ,% r a x
add % r a x ,d4
# h3 = d3 & 0 x3 f f f f f f
mov d3 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h3
# h0 + = ( d4 > > 2 6 ) * 5
mov d4 ,% r a x
shr $ 2 6 ,% r a x
2019-03-31 23:04:11 +03:00
lea ( % r a x ,% r a x ,4 ) ,% r a x
add % r a x ,% r b x
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:07 +03:00
# h4 = d4 & 0 x3 f f f f f f
mov d4 ,% r a x
and $ 0 x3 f f f f f f ,% e a x
mov % e a x ,h4
# h1 + = h0 > > 2 6
2019-03-31 23:04:11 +03:00
mov % r b x ,% r a x
shr $ 2 6 ,% r a x
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:07 +03:00
add % e a x ,h1
# h0 = h0 & 0 x3 f f f f f f
andl $ 0 x3 f f f f f f ,% e b x
mov % e b x ,h0
add $ 0 x20 ,m
dec % r c x
jnz . L d o b l o c k 2
pop % r13
pop % r12
pop % r b x
ret
ENDPROC( p o l y 1 3 0 5 _ 2 b l o c k _ s s e 2 )