2005-04-16 15:20:36 -07:00
/*
* linux / include / asm - arm / pgtable . h
*
* Copyright ( C ) 1995 - 2002 Russell King
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# ifndef _ASMARM_PGTABLE_H
# define _ASMARM_PGTABLE_H
# include <asm-generic/4level-fixup.h>
2006-06-20 20:46:52 +01:00
# include <asm/proc-fns.h>
# ifndef CONFIG_MMU
# include "pgtable-nommu.h"
# else
2005-04-16 15:20:36 -07:00
# include <asm/memory.h>
# include <asm/arch/vmalloc.h>
2005-05-03 12:20:29 +01:00
/*
* Just any arbitrary offset to the start of the vmalloc VM area : the
* current 8 MB value just means that there will be a 8 MB " hole " after the
* physical memory until the kernel virtual memory starts . That means that
* any out - of - bounds memory accesses will hopefully be caught .
* The vmalloc ( ) routines leaves a hole of 4 kB between each vmalloced
* area for the same reason . ; )
*
* Note that platforms may override VMALLOC_START , but they must provide
* VMALLOC_END . VMALLOC_END defines the ( exclusive ) limit of this space ,
* which may not overlap IO space .
*/
# ifndef VMALLOC_START
# define VMALLOC_OFFSET (8*1024*1024)
# define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
# endif
2005-04-16 15:20:36 -07:00
/*
* Hardware - wise , we have a two level page table structure , where the first
* level has 4096 entries , and the second level has 256 entries . Each entry
* is one 32 - bit word . Most of the bits in the second level entry are used
* by hardware , and there aren ' t any " accessed " and " dirty " bits .
*
* Linux on the other hand has a three level page table structure , which can
* be wrapped to fit a two level page table structure easily - using the PGD
* and PTE only . However , Linux also expects one " PTE " table per page , and
* at least a " dirty " bit .
*
* Therefore , we tweak the implementation slightly - we tell Linux that we
* have 2048 entries in the first level , each of which is 8 bytes ( iow , two
* hardware pointers to the second level . ) The second level contains two
* hardware PTE tables arranged contiguously , followed by Linux versions
* which contain the state information Linux needs . We , therefore , end up
* with 512 entries in the " PTE " level .
*
* This leads to the page tables having the following layout :
*
* pgd pte
* | |
* + - - - - - - - - + + 0
* | | - - - - - > + - - - - - - - - - - - - + + 0
* + - - - - + + 4 | h / w pt 0 |
* | | - - - - - > + - - - - - - - - - - - - + + 1024
* + - - - - - - - - + + 8 | h / w pt 1 |
* | | + - - - - - - - - - - - - + + 2048
* + - - - - + | Linux pt 0 |
* | | + - - - - - - - - - - - - + + 3072
* + - - - - - - - - + | Linux pt 1 |
* | | + - - - - - - - - - - - - + + 4096
*
* See L_PTE_xxx below for definitions of bits in the " Linux pt " , and
* PTE_xxx for definitions of bits appearing in the " h/w pt " .
*
* PMD_xxx definitions refer to bits in the first level page table .
*
* The " dirty " bit is emulated by only granting hardware write permission
* iff the page is marked " writable " and " dirty " in the Linux PTE . This
* means that a write to a clean page will cause a permission fault , and
* the Linux MM layer will mark the page dirty via handle_pte_fault ( ) .
* For the hardware to notice the permission change , the TLB entry must
* be flushed , and ptep_establish ( ) does that for us .
*
* The " accessed " or " young " bit is emulated by a similar method ; we only
* allow accesses to the page if the " young " bit is set . Accesses to the
* page will cause a fault , and handle_pte_fault ( ) will set the young bit
* for us as long as the page is marked present in the corresponding Linux
* PTE entry . Again , ptep_establish ( ) will ensure that the TLB is up to
* date .
*
* However , when the " young " bit is cleared , we deny access to the page
* by clearing the hardware PTE . Currently Linux does not flush the TLB
* for us in this case , which means the TLB will retain the transation
* until either the TLB entry is evicted under pressure , or a context
* switch which changes the user space mapping occurs .
*/
# define PTRS_PER_PTE 512
# define PTRS_PER_PMD 1
# define PTRS_PER_PGD 2048
/*
* PMD_SHIFT determines the size of the area a second - level page table can map
* PGDIR_SHIFT determines what a third - level page table entry can map
*/
# define PMD_SHIFT 21
# define PGDIR_SHIFT 21
# define LIBRARY_TEXT_START 0x0c000000
# ifndef __ASSEMBLY__
extern void __pte_error ( const char * file , int line , unsigned long val ) ;
extern void __pmd_error ( const char * file , int line , unsigned long val ) ;
extern void __pgd_error ( const char * file , int line , unsigned long val ) ;
# define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
# define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
# define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
# endif /* !__ASSEMBLY__ */
# define PMD_SIZE (1UL << PMD_SHIFT)
# define PMD_MASK (~(PMD_SIZE-1))
# define PGDIR_SIZE (1UL << PGDIR_SHIFT)
# define PGDIR_MASK (~(PGDIR_SIZE-1))
2005-04-19 13:29:21 -07:00
/*
* This is the lowest virtual address we can permit any user space
* mapping to be mapped at . This is particularly important for
* non - high vector CPUs .
*/
# define FIRST_USER_ADDRESS PAGE_SIZE
2005-04-16 15:20:36 -07:00
# define FIRST_USER_PGD_NR 1
# define USER_PTRS_PER_PGD ((TASK_SIZE / PGDIR_SIZE) - FIRST_USER_PGD_NR)
/*
* ARMv6 supersection address mask and size definitions .
*/
# define SUPERSECTION_SHIFT 24
# define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
# define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
/*
* " Linux " PTE definitions .
*
* We keep two sets of PTEs - the hardware and the linux version .
* This allows greater flexibility in the way we map the Linux bits
* onto the hardware tables , and allows us to have YOUNG and DIRTY
* bits .
*
* The PTE table pointer refers to the hardware entries ; the " Linux "
* entries are stored 1024 bytes below .
*/
# define L_PTE_PRESENT (1 << 0)
# define L_PTE_FILE (1 << 1) /* only when !PRESENT */
# define L_PTE_YOUNG (1 << 1)
# define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
# define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
# define L_PTE_USER (1 << 4)
# define L_PTE_WRITE (1 << 5)
# define L_PTE_EXEC (1 << 6)
# define L_PTE_DIRTY (1 << 7)
2006-04-02 00:07:39 +01:00
# define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */
2005-08-10 16:18:35 +01:00
# define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */
# define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */
2005-04-16 15:20:36 -07:00
# ifndef __ASSEMBLY__
/*
* The following macros handle the cache and bufferable bits . . .
*/
# define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
# define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
extern pgprot_t pgprot_kernel ;
# define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
# define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
# define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
# define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
# define PAGE_KERNEL pgprot_kernel
# endif /* __ASSEMBLY__ */
/*
* The table below defines the page protection levels that we insert into our
* Linux page table version . These get translated into the best that the
* architecture can perform . Note that on most ARM hardware :
* 1 ) We cannot do execute protection
* 2 ) If we could do execute protection , then read is implied
* 3 ) write implies read permissions
*/
# define __P000 PAGE_NONE
# define __P001 PAGE_READONLY
# define __P010 PAGE_COPY
# define __P011 PAGE_COPY
# define __P100 PAGE_READONLY
# define __P101 PAGE_READONLY
# define __P110 PAGE_COPY
# define __P111 PAGE_COPY
# define __S000 PAGE_NONE
# define __S001 PAGE_READONLY
# define __S010 PAGE_SHARED
# define __S011 PAGE_SHARED
# define __S100 PAGE_READONLY
# define __S101 PAGE_READONLY
# define __S110 PAGE_SHARED
# define __S111 PAGE_SHARED
# ifndef __ASSEMBLY__
/*
* ZERO_PAGE is a global shared page that is always zero : used
* for zero - mapped memory areas etc . .
*/
extern struct page * empty_zero_page ;
# define ZERO_PAGE(vaddr) (empty_zero_page)
# define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
# define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
# define pte_none(pte) (!pte_val(pte))
# define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
# define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
# define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
# define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
# define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
# define pte_unmap(pte) do { } while (0)
# define pte_unmap_nested(pte) do { } while (0)
# define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
# define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
/*
* The following only work if pte_present ( ) is true .
* Undefined behaviour if not . .
*/
# define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
# define pte_read(pte) (pte_val(pte) & L_PTE_USER)
# define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
# define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
# define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
# define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
/*
* The following only works if pte_present ( ) is not true .
*/
# define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
# define pte_to_pgoff(x) (pte_val(x) >> 2)
# define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
# define PTE_FILE_MAX_BITS 30
# define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_ # # fn ( pte_t pte ) { pte_val ( pte ) op ; return pte ; }
/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
PTE_BIT_FUNC ( wrprotect , & = ~ L_PTE_WRITE ) ;
PTE_BIT_FUNC ( mkwrite , | = L_PTE_WRITE ) ;
PTE_BIT_FUNC ( exprotect , & = ~ L_PTE_EXEC ) ;
PTE_BIT_FUNC ( mkexec , | = L_PTE_EXEC ) ;
PTE_BIT_FUNC ( mkclean , & = ~ L_PTE_DIRTY ) ;
PTE_BIT_FUNC ( mkdirty , | = L_PTE_DIRTY ) ;
PTE_BIT_FUNC ( mkold , & = ~ L_PTE_YOUNG ) ;
PTE_BIT_FUNC ( mkyoung , | = L_PTE_YOUNG ) ;
/*
* Mark the prot value as uncacheable and unbufferable .
*/
# define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
# define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
# define pmd_none(pmd) (!pmd_val(pmd))
# define pmd_present(pmd) (pmd_val(pmd))
# define pmd_bad(pmd) (pmd_val(pmd) & 2)
# define copy_pmd(pmdpd,pmdps) \
do { \
pmdpd [ 0 ] = pmdps [ 0 ] ; \
pmdpd [ 1 ] = pmdps [ 1 ] ; \
flush_pmd_entry ( pmdpd ) ; \
} while ( 0 )
# define pmd_clear(pmdp) \
do { \
pmdp [ 0 ] = __pmd ( 0 ) ; \
pmdp [ 1 ] = __pmd ( 0 ) ; \
clean_pmd_entry ( pmdp ) ; \
} while ( 0 )
static inline pte_t * pmd_page_kernel ( pmd_t pmd )
{
unsigned long ptr ;
ptr = pmd_val ( pmd ) & ~ ( PTRS_PER_PTE * sizeof ( void * ) - 1 ) ;
ptr + = PTRS_PER_PTE * sizeof ( void * ) ;
return __va ( ptr ) ;
}
# define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
/*
* Permanent address of a page . We never have highmem , so this is trivial .
*/
# define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
/*
* Conversion functions : convert a page and protection to a page entry ,
* and a page entry and page directory to the page they refer to .
*/
# define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
/*
* The " pgd_xxx() " functions here are trivial for a folded two - level
* setup : the pgd is never bad , and a pmd always exists ( as it ' s folded
* into the pgd entry )
*/
# define pgd_none(pgd) (0)
# define pgd_bad(pgd) (0)
# define pgd_present(pgd) (1)
# define pgd_clear(pgdp) do { } while (0)
# define set_pgd(pgd,pgdp) do { } while (0)
/* to find an entry in a page-table-directory */
# define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
# define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
/* to find an entry in a kernel page-table-directory */
# define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
/* Find an entry in the second-level page table.. */
# define pmd_offset(dir, addr) ((pmd_t *)(dir))
/* Find an entry in the third-level page table.. */
# define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
static inline pte_t pte_modify ( pte_t pte , pgprot_t newprot )
{
const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER ;
pte_val ( pte ) = ( pte_val ( pte ) & ~ mask ) | ( pgprot_val ( newprot ) & mask ) ;
return pte ;
}
extern pgd_t swapper_pg_dir [ PTRS_PER_PGD ] ;
/* Encode and decode a swap entry.
*
* We support up to 32 GB of swap on 4 k machines
*/
# define __swp_type(x) (((x).val >> 2) & 0x7f)
# define __swp_offset(x) ((x).val >> 9)
# define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
# define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
# define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
/* FIXME: this is not correct */
# define kern_addr_valid(addr) (1)
# include <asm-generic/pgtable.h>
/*
* We provide our own arch_get_unmapped_area to cope with VIPT caches .
*/
# define HAVE_ARCH_UNMAPPED_AREA
/*
2005-09-13 01:25:50 -07:00
* remap a physical page ` pfn ' of size ` size ' with page protection ` prot '
2005-04-16 15:20:36 -07:00
* into virtual address ` from '
*/
# define io_remap_pfn_range(vma,from,pfn,size,prot) \
remap_pfn_range ( vma , from , pfn , size , prot )
# define MK_IOSPACE_PFN(space, pfn) (pfn)
# define GET_IOSPACE(pfn) 0
# define GET_PFN(pfn) (pfn)
# define pgtable_cache_init() do { } while (0)
# endif /* !__ASSEMBLY__ */
2006-06-20 20:46:52 +01:00
# endif /* CONFIG_MMU */
2005-04-16 15:20:36 -07:00
# endif /* _ASMARM_PGTABLE_H */