License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
# SPDX-License-Identifier: GPL-2.0
2015-08-14 15:20:41 +01:00
menu "Certificates for signature checking"
config MODULE_SIG_KEY
string "File name or PKCS#11 URI of module signing key"
default "certs/signing_key.pem"
2021-04-22 21:16:02 -04:00
depends on MODULE_SIG || (IMA_APPRAISE_MODSIG && MODULES)
2015-08-14 15:20:41 +01:00
help
Provide the file name of a private key/certificate in PEM format,
or a PKCS#11 URI according to RFC7512. The file should contain, or
the URI should identify, both the certificate and its corresponding
private key.
If this option is unchanged from its default "certs/signing_key.pem",
then the kernel will automatically generate the private key and
2018-05-08 15:14:57 -03:00
certificate as described in Documentation/admin-guide/module-signing.rst
2015-08-14 15:20:41 +01:00
2021-06-29 17:34:21 -04:00
choice
prompt "Type of module signing key to be generated"
2021-10-01 13:01:26 +09:00
depends on MODULE_SIG || (IMA_APPRAISE_MODSIG && MODULES)
2021-06-29 17:34:21 -04:00
help
The type of module signing key type to generate. This option
does not apply if a #PKCS11 URI is used.
config MODULE_SIG_KEY_TYPE_RSA
bool "RSA"
help
Use an RSA key for module signing.
config MODULE_SIG_KEY_TYPE_ECDSA
bool "ECDSA"
select CRYPTO_ECDSA
2023-10-22 19:22:07 +01:00
depends on !(MODULE_SIG_SHA256 || MODULE_SIG_SHA3_256)
2021-06-29 17:34:21 -04:00
help
2023-10-10 22:27:55 +01:00
Use an elliptic curve key (NIST P384) for module signing. Use
a strong hash of same or higher bit length, i.e. sha384 or
sha512 for hashing modules.
2021-06-29 17:34:21 -04:00
Note: Remove all ECDSA signing keys, e.g. certs/signing_key.pem,
when falling back to building Linux 5.14 and older kernels.
endchoice
2015-08-14 15:20:41 +01:00
config SYSTEM_TRUSTED_KEYRING
bool "Provide system-wide ring of trusted keys"
depends on KEYS
2016-04-06 16:14:26 +01:00
depends on ASYMMETRIC_KEY_TYPE
2022-09-12 15:52:10 +09:00
depends on X509_CERTIFICATE_PARSER = y
2015-08-14 15:20:41 +01:00
help
Provide a system keyring to which trusted keys can be added. Keys in
the keyring are considered to be trusted. Keys may be added at will
by the kernel from compiled-in data and from hardware key stores, but
userspace may only add extra keys if those keys can be verified by
keys already in the keyring.
Keys in this keyring are used by module signature checking.
config SYSTEM_TRUSTED_KEYS
string "Additional X.509 keys for default system keyring"
depends on SYSTEM_TRUSTED_KEYRING
help
If set, this option should be the filename of a PEM-formatted file
containing trusted X.509 certificates to be included in the default
system keyring. Any certificate used for module signing is implicitly
also trusted.
NOTE: If you previously provided keys for the system keyring in the
form of DER-encoded *.x509 files in the top-level build directory,
those are no longer used. You will need to set this option instead.
2015-11-24 16:18:05 -05:00
config SYSTEM_EXTRA_CERTIFICATE
bool "Reserve area for inserting a certificate without recompiling"
depends on SYSTEM_TRUSTED_KEYRING
help
If set, space for an extra certificate will be reserved in the kernel
image. This allows introducing a trusted certificate to the default
system keyring without recompiling the kernel.
config SYSTEM_EXTRA_CERTIFICATE_SIZE
int "Number of bytes to reserve for the extra certificate"
depends on SYSTEM_EXTRA_CERTIFICATE
default 4096
help
This is the number of bytes reserved in the kernel image for a
certificate to be inserted.
2016-04-06 16:14:27 +01:00
config SECONDARY_TRUSTED_KEYRING
bool "Provide a keyring to which extra trustable keys may be added"
depends on SYSTEM_TRUSTED_KEYRING
help
If set, provide a keyring to which extra keys may be added, provided
those keys are not blacklisted and are vouched for by a key built
2023-10-15 20:18:03 -04:00
into the kernel, machine keyring (if configured), or already in the
secondary trusted keyring.
config SECONDARY_TRUSTED_KEYRING_SIGNED_BY_BUILTIN
bool "Only allow additional certs signed by keys on the builtin trusted keyring"
depends on SECONDARY_TRUSTED_KEYRING
help
If set, only certificates signed by keys on the builtin trusted
keyring may be loaded onto the secondary trusted keyring.
Note: The machine keyring, if configured, will be linked to the
secondary keyring. When enabling this option, it is recommended
to also configure INTEGRITY_CA_MACHINE_KEYRING_MAX to prevent
linking code signing keys with imputed trust to the secondary
trusted keyring.
2016-04-06 16:14:27 +01:00
2017-04-03 16:07:24 +01:00
config SYSTEM_BLACKLIST_KEYRING
bool "Provide system-wide ring of blacklisted keys"
depends on KEYS
help
Provide a system keyring to which blacklisted keys can be added.
Keys in the keyring are considered entirely untrusted. Keys in this
keyring are used by the module signature checking to reject loading
of modules signed with a blacklisted key.
config SYSTEM_BLACKLIST_HASH_LIST
string "Hashes to be preloaded into the system blacklist keyring"
depends on SYSTEM_BLACKLIST_KEYRING
help
If set, this option should be the filename of a list of hashes in the
form "<hash>", "<hash>", ... . This will be included into a C
2021-07-12 19:03:10 +02:00
wrapper to incorporate the list into the kernel. Each <hash> must be a
string starting with a prefix ("tbs" or "bin"), then a colon (":"), and
finally an even number of hexadecimal lowercase characters (up to 128).
Certificate hashes can be generated with
tools/certs/print-cert-tbs-hash.sh .
2017-04-03 16:07:24 +01:00
2021-01-22 13:10:51 -05:00
config SYSTEM_REVOCATION_LIST
bool "Provide system-wide ring of revocation certificates"
depends on SYSTEM_BLACKLIST_KEYRING
depends on PKCS7_MESSAGE_PARSER=y
help
If set, this allows revocation certificates to be stored in the
blacklist keyring and implements a hook whereby a PKCS#7 message can
be checked to see if it matches such a certificate.
2021-01-22 13:10:53 -05:00
config SYSTEM_REVOCATION_KEYS
string "X.509 certificates to be preloaded into the system blacklist keyring"
depends on SYSTEM_REVOCATION_LIST
help
If set, this option should be the filename of a PEM-formatted file
containing X.509 certificates to be included in the default blacklist
keyring.
2021-07-12 19:03:13 +02:00
config SYSTEM_BLACKLIST_AUTH_UPDATE
bool "Allow root to add signed blacklist keys"
depends on SYSTEM_BLACKLIST_KEYRING
depends on SYSTEM_DATA_VERIFICATION
help
If set, provide the ability to load new blacklist keys at run time if
they are signed and vouched by a certificate from the builtin trusted
keyring. The PKCS#7 signature of the description is set in the key
payload. Blacklist keys cannot be removed.
2015-08-14 15:20:41 +01:00
endmenu