691 lines
16 KiB
C
Raw Normal View History

/* $Id: gazel.c,v 2.19.2.4 2004/01/14 16:04:48 keil Exp $
*
* low level stuff for Gazel isdn cards
*
* Author BeWan Systems
* based on source code from Karsten Keil
* Copyright by BeWan Systems
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "isac.h"
#include "hscx.h"
#include "isdnl1.h"
#include "ipac.h"
#include <linux/pci.h>
static const char *gazel_revision = "$Revision: 2.19.2.4 $";
#define R647 1
#define R685 2
#define R753 3
#define R742 4
#define PLX_CNTRL 0x50 /* registre de controle PLX */
#define RESET_GAZEL 0x4
#define RESET_9050 0x40000000
#define PLX_INCSR 0x4C /* registre d'IT du 9050 */
#define INT_ISAC_EN 0x8 /* 1 = enable IT isac */
#define INT_ISAC 0x20 /* 1 = IT isac en cours */
#define INT_HSCX_EN 0x1 /* 1 = enable IT hscx */
#define INT_HSCX 0x4 /* 1 = IT hscx en cours */
#define INT_PCI_EN 0x40 /* 1 = enable IT PCI */
#define INT_IPAC_EN 0x3 /* enable IT ipac */
#define byteout(addr,val) outb(val,addr)
#define bytein(addr) inb(addr)
static inline u_char
readreg(unsigned int adr, u_short off)
{
return bytein(adr + off);
}
static inline void
writereg(unsigned int adr, u_short off, u_char data)
{
byteout(adr + off, data);
}
static inline void
read_fifo(unsigned int adr, u_char * data, int size)
{
insb(adr, data, size);
}
static void
write_fifo(unsigned int adr, u_char * data, int size)
{
outsb(adr, data, size);
}
static inline u_char
readreg_ipac(unsigned int adr, u_short off)
{
register u_char ret;
byteout(adr, off);
ret = bytein(adr + 4);
return ret;
}
static inline void
writereg_ipac(unsigned int adr, u_short off, u_char data)
{
byteout(adr, off);
byteout(adr + 4, data);
}
static inline void
read_fifo_ipac(unsigned int adr, u_short off, u_char * data, int size)
{
byteout(adr, off);
insb(adr + 4, data, size);
}
static void
write_fifo_ipac(unsigned int adr, u_short off, u_char * data, int size)
{
byteout(adr, off);
outsb(adr + 4, data, size);
}
/* Interface functions */
static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
u_short off2 = offset;
switch (cs->subtyp) {
case R647:
off2 = ((off2 << 8 & 0xf000) | (off2 & 0xf));
case R685:
return (readreg(cs->hw.gazel.isac, off2));
case R753:
case R742:
return (readreg_ipac(cs->hw.gazel.ipac, 0x80 + off2));
}
return 0;
}
static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
u_short off2 = offset;
switch (cs->subtyp) {
case R647:
off2 = ((off2 << 8 & 0xf000) | (off2 & 0xf));
case R685:
writereg(cs->hw.gazel.isac, off2, value);
break;
case R753:
case R742:
writereg_ipac(cs->hw.gazel.ipac, 0x80 + off2, value);
break;
}
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
switch (cs->subtyp) {
case R647:
case R685:
read_fifo(cs->hw.gazel.isacfifo, data, size);
break;
case R753:
case R742:
read_fifo_ipac(cs->hw.gazel.ipac, 0x80, data, size);
break;
}
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
switch (cs->subtyp) {
case R647:
case R685:
write_fifo(cs->hw.gazel.isacfifo, data, size);
break;
case R753:
case R742:
write_fifo_ipac(cs->hw.gazel.ipac, 0x80, data, size);
break;
}
}
static void
ReadHSCXfifo(struct IsdnCardState *cs, int hscx, u_char * data, int size)
{
switch (cs->subtyp) {
case R647:
case R685:
read_fifo(cs->hw.gazel.hscxfifo[hscx], data, size);
break;
case R753:
case R742:
read_fifo_ipac(cs->hw.gazel.ipac, hscx * 0x40, data, size);
break;
}
}
static void
WriteHSCXfifo(struct IsdnCardState *cs, int hscx, u_char * data, int size)
{
switch (cs->subtyp) {
case R647:
case R685:
write_fifo(cs->hw.gazel.hscxfifo[hscx], data, size);
break;
case R753:
case R742:
write_fifo_ipac(cs->hw.gazel.ipac, hscx * 0x40, data, size);
break;
}
}
static u_char
ReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
u_short off2 = offset;
switch (cs->subtyp) {
case R647:
off2 = ((off2 << 8 & 0xf000) | (off2 & 0xf));
case R685:
return (readreg(cs->hw.gazel.hscx[hscx], off2));
case R753:
case R742:
return (readreg_ipac(cs->hw.gazel.ipac, hscx * 0x40 + off2));
}
return 0;
}
static void
WriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
u_short off2 = offset;
switch (cs->subtyp) {
case R647:
off2 = ((off2 << 8 & 0xf000) | (off2 & 0xf));
case R685:
writereg(cs->hw.gazel.hscx[hscx], off2, value);
break;
case R753:
case R742:
writereg_ipac(cs->hw.gazel.ipac, hscx * 0x40 + off2, value);
break;
}
}
/*
* fast interrupt HSCX stuff goes here
*/
#define READHSCX(cs, nr, reg) ReadHSCX(cs, nr, reg)
#define WRITEHSCX(cs, nr, reg, data) WriteHSCX(cs, nr, reg, data)
#define READHSCXFIFO(cs, nr, ptr, cnt) ReadHSCXfifo(cs, nr, ptr, cnt)
#define WRITEHSCXFIFO(cs, nr, ptr, cnt) WriteHSCXfifo(cs, nr, ptr, cnt)
#include "hscx_irq.c"
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
gazel_interrupt(int intno, void *dev_id)
{
#define MAXCOUNT 5
struct IsdnCardState *cs = dev_id;
u_char valisac, valhscx;
int count = 0;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
do {
valhscx = ReadHSCX(cs, 1, HSCX_ISTA);
if (valhscx)
hscx_int_main(cs, valhscx);
valisac = ReadISAC(cs, ISAC_ISTA);
if (valisac)
isac_interrupt(cs, valisac);
count++;
} while ((valhscx || valisac) && (count < MAXCOUNT));
WriteHSCX(cs, 0, HSCX_MASK, 0xFF);
WriteHSCX(cs, 1, HSCX_MASK, 0xFF);
WriteISAC(cs, ISAC_MASK, 0xFF);
WriteISAC(cs, ISAC_MASK, 0x0);
WriteHSCX(cs, 0, HSCX_MASK, 0x0);
WriteHSCX(cs, 1, HSCX_MASK, 0x0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
gazel_interrupt_ipac(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char ista, val;
int count = 0;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
ista = ReadISAC(cs, IPAC_ISTA - 0x80);
do {
if (ista & 0x0f) {
val = ReadHSCX(cs, 1, HSCX_ISTA);
if (ista & 0x01)
val |= 0x01;
if (ista & 0x04)
val |= 0x02;
if (ista & 0x08)
val |= 0x04;
if (val) {
hscx_int_main(cs, val);
}
}
if (ista & 0x20) {
val = 0xfe & ReadISAC(cs, ISAC_ISTA);
if (val) {
isac_interrupt(cs, val);
}
}
if (ista & 0x10) {
val = 0x01;
isac_interrupt(cs, val);
}
ista = ReadISAC(cs, IPAC_ISTA - 0x80);
count++;
}
while ((ista & 0x3f) && (count < MAXCOUNT));
WriteISAC(cs, IPAC_MASK - 0x80, 0xFF);
WriteISAC(cs, IPAC_MASK - 0x80, 0xC0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static void
release_io_gazel(struct IsdnCardState *cs)
{
unsigned int i;
switch (cs->subtyp) {
case R647:
for (i = 0x0000; i < 0xC000; i += 0x1000)
release_region(i + cs->hw.gazel.hscx[0], 16);
release_region(0xC000 + cs->hw.gazel.hscx[0], 1);
break;
case R685:
release_region(cs->hw.gazel.hscx[0], 0x100);
release_region(cs->hw.gazel.cfg_reg, 0x80);
break;
case R753:
release_region(cs->hw.gazel.ipac, 0x8);
release_region(cs->hw.gazel.cfg_reg, 0x80);
break;
case R742:
release_region(cs->hw.gazel.ipac, 8);
break;
}
}
static int
reset_gazel(struct IsdnCardState *cs)
{
unsigned long plxcntrl, addr = cs->hw.gazel.cfg_reg;
switch (cs->subtyp) {
case R647:
writereg(addr, 0, 0);
HZDELAY(10);
writereg(addr, 0, 1);
HZDELAY(2);
break;
case R685:
plxcntrl = inl(addr + PLX_CNTRL);
plxcntrl |= (RESET_9050 + RESET_GAZEL);
outl(plxcntrl, addr + PLX_CNTRL);
plxcntrl &= ~(RESET_9050 + RESET_GAZEL);
HZDELAY(4);
outl(plxcntrl, addr + PLX_CNTRL);
HZDELAY(10);
outb(INT_ISAC_EN + INT_HSCX_EN + INT_PCI_EN, addr + PLX_INCSR);
break;
case R753:
plxcntrl = inl(addr + PLX_CNTRL);
plxcntrl |= (RESET_9050 + RESET_GAZEL);
outl(plxcntrl, addr + PLX_CNTRL);
plxcntrl &= ~(RESET_9050 + RESET_GAZEL);
WriteISAC(cs, IPAC_POTA2 - 0x80, 0x20);
HZDELAY(4);
outl(plxcntrl, addr + PLX_CNTRL);
HZDELAY(10);
WriteISAC(cs, IPAC_POTA2 - 0x80, 0x00);
WriteISAC(cs, IPAC_ACFG - 0x80, 0xff);
WriteISAC(cs, IPAC_AOE - 0x80, 0x0);
WriteISAC(cs, IPAC_MASK - 0x80, 0xff);
WriteISAC(cs, IPAC_CONF - 0x80, 0x1);
outb(INT_IPAC_EN + INT_PCI_EN, addr + PLX_INCSR);
WriteISAC(cs, IPAC_MASK - 0x80, 0xc0);
break;
case R742:
WriteISAC(cs, IPAC_POTA2 - 0x80, 0x20);
HZDELAY(4);
WriteISAC(cs, IPAC_POTA2 - 0x80, 0x00);
WriteISAC(cs, IPAC_ACFG - 0x80, 0xff);
WriteISAC(cs, IPAC_AOE - 0x80, 0x0);
WriteISAC(cs, IPAC_MASK - 0x80, 0xff);
WriteISAC(cs, IPAC_CONF - 0x80, 0x1);
WriteISAC(cs, IPAC_MASK - 0x80, 0xc0);
break;
}
return (0);
}
static int
Gazel_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_long flags;
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_gazel(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_gazel(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
inithscxisac(cs, 1);
if ((cs->subtyp==R647)||(cs->subtyp==R685)) {
int i;
for (i=0;i<(2+MAX_WAITING_CALLS);i++) {
cs->bcs[i].hw.hscx.tsaxr0 = 0x1f;
cs->bcs[i].hw.hscx.tsaxr1 = 0x23;
}
}
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
return (0);
}
return (0);
}
static int
reserve_regions(struct IsdnCard *card, struct IsdnCardState *cs)
{
unsigned int i, j, base = 0, adr = 0, len = 0;
switch (cs->subtyp) {
case R647:
base = cs->hw.gazel.hscx[0];
if (!request_region(adr = (0xC000 + base), len = 1, "gazel"))
goto error;
for (i = 0x0000; i < 0xC000; i += 0x1000) {
if (!request_region(adr = (i + base), len = 16, "gazel"))
goto error;
}
if (i != 0xC000) {
for (j = 0; j < i; j+= 0x1000)
release_region(j + base, 16);
release_region(0xC000 + base, 1);
goto error;
}
break;
case R685:
if (!request_region(adr = cs->hw.gazel.hscx[0], len = 0x100, "gazel"))
goto error;
if (!request_region(adr = cs->hw.gazel.cfg_reg, len = 0x80, "gazel")) {
release_region(cs->hw.gazel.hscx[0],0x100);
goto error;
}
break;
case R753:
if (!request_region(adr = cs->hw.gazel.ipac, len = 0x8, "gazel"))
goto error;
if (!request_region(adr = cs->hw.gazel.cfg_reg, len = 0x80, "gazel")) {
release_region(cs->hw.gazel.ipac, 8);
goto error;
}
break;
case R742:
if (!request_region(adr = cs->hw.gazel.ipac, len = 0x8, "gazel"))
goto error;
break;
}
return 0;
error:
printk(KERN_WARNING "Gazel: io ports 0x%x-0x%x already in use\n",
adr, adr + len);
return 1;
}
static int __devinit
setup_gazelisa(struct IsdnCard *card, struct IsdnCardState *cs)
{
printk(KERN_INFO "Gazel: ISA PnP card automatic recognition\n");
// we got an irq parameter, assume it is an ISA card
// R742 decodes address even in not started...
// R647 returns FF if not present or not started
// eventually needs improvment
if (readreg_ipac(card->para[1], IPAC_ID) == 1)
cs->subtyp = R742;
else
cs->subtyp = R647;
setup_isac(cs);
cs->hw.gazel.cfg_reg = card->para[1] + 0xC000;
cs->hw.gazel.ipac = card->para[1];
cs->hw.gazel.isac = card->para[1] + 0x8000;
cs->hw.gazel.hscx[0] = card->para[1];
cs->hw.gazel.hscx[1] = card->para[1] + 0x4000;
cs->irq = card->para[0];
cs->hw.gazel.isacfifo = cs->hw.gazel.isac;
cs->hw.gazel.hscxfifo[0] = cs->hw.gazel.hscx[0];
cs->hw.gazel.hscxfifo[1] = cs->hw.gazel.hscx[1];
switch (cs->subtyp) {
case R647:
printk(KERN_INFO "Gazel: Card ISA R647/R648 found\n");
cs->dc.isac.adf2 = 0x87;
printk(KERN_INFO
"Gazel: config irq:%d isac:0x%X cfg:0x%X\n",
cs->irq, cs->hw.gazel.isac, cs->hw.gazel.cfg_reg);
printk(KERN_INFO
"Gazel: hscx A:0x%X hscx B:0x%X\n",
cs->hw.gazel.hscx[0], cs->hw.gazel.hscx[1]);
break;
case R742:
printk(KERN_INFO "Gazel: Card ISA R742 found\n");
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
printk(KERN_INFO
"Gazel: config irq:%d ipac:0x%X\n",
cs->irq, cs->hw.gazel.ipac);
break;
}
return (0);
}
#ifdef CONFIG_PCI_LEGACY
static struct pci_dev *dev_tel __devinitdata = NULL;
static int __devinit
setup_gazelpci(struct IsdnCardState *cs)
{
u_int pci_ioaddr0 = 0, pci_ioaddr1 = 0;
u_char pci_irq = 0, found;
u_int nbseek, seekcard;
printk(KERN_WARNING "Gazel: PCI card automatic recognition\n");
found = 0;
seekcard = PCI_DEVICE_ID_PLX_R685;
for (nbseek = 0; nbseek < 4; nbseek++) {
if ((dev_tel = pci_find_device(PCI_VENDOR_ID_PLX,
seekcard, dev_tel))) {
if (pci_enable_device(dev_tel))
return 1;
pci_irq = dev_tel->irq;
pci_ioaddr0 = pci_resource_start(dev_tel, 1);
pci_ioaddr1 = pci_resource_start(dev_tel, 2);
found = 1;
}
if (found)
break;
else {
switch (seekcard) {
case PCI_DEVICE_ID_PLX_R685:
seekcard = PCI_DEVICE_ID_PLX_R753;
break;
case PCI_DEVICE_ID_PLX_R753:
seekcard = PCI_DEVICE_ID_PLX_DJINN_ITOO;
break;
case PCI_DEVICE_ID_PLX_DJINN_ITOO:
seekcard = PCI_DEVICE_ID_PLX_OLITEC;
break;
}
}
}
if (!found) {
printk(KERN_WARNING "Gazel: No PCI card found\n");
return (1);
}
if (!pci_irq) {
printk(KERN_WARNING "Gazel: No IRQ for PCI card found\n");
return 1;
}
cs->hw.gazel.pciaddr[0] = pci_ioaddr0;
cs->hw.gazel.pciaddr[1] = pci_ioaddr1;
setup_isac(cs);
pci_ioaddr1 &= 0xfffe;
cs->hw.gazel.cfg_reg = pci_ioaddr0 & 0xfffe;
cs->hw.gazel.ipac = pci_ioaddr1;
cs->hw.gazel.isac = pci_ioaddr1 + 0x80;
cs->hw.gazel.hscx[0] = pci_ioaddr1;
cs->hw.gazel.hscx[1] = pci_ioaddr1 + 0x40;
cs->hw.gazel.isacfifo = cs->hw.gazel.isac;
cs->hw.gazel.hscxfifo[0] = cs->hw.gazel.hscx[0];
cs->hw.gazel.hscxfifo[1] = cs->hw.gazel.hscx[1];
cs->irq = pci_irq;
cs->irq_flags |= IRQF_SHARED;
switch (seekcard) {
case PCI_DEVICE_ID_PLX_R685:
printk(KERN_INFO "Gazel: Card PCI R685 found\n");
cs->subtyp = R685;
cs->dc.isac.adf2 = 0x87;
printk(KERN_INFO
"Gazel: config irq:%d isac:0x%X cfg:0x%X\n",
cs->irq, cs->hw.gazel.isac, cs->hw.gazel.cfg_reg);
printk(KERN_INFO
"Gazel: hscx A:0x%X hscx B:0x%X\n",
cs->hw.gazel.hscx[0], cs->hw.gazel.hscx[1]);
break;
case PCI_DEVICE_ID_PLX_R753:
case PCI_DEVICE_ID_PLX_DJINN_ITOO:
case PCI_DEVICE_ID_PLX_OLITEC:
printk(KERN_INFO "Gazel: Card PCI R753 found\n");
cs->subtyp = R753;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
printk(KERN_INFO
"Gazel: config irq:%d ipac:0x%X cfg:0x%X\n",
cs->irq, cs->hw.gazel.ipac, cs->hw.gazel.cfg_reg);
break;
}
return (0);
}
#endif /* CONFIG_PCI_LEGACY */
int __devinit
setup_gazel(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
char tmp[64];
u_char val;
strcpy(tmp, gazel_revision);
printk(KERN_INFO "Gazel: Driver Revision %s\n", HiSax_getrev(tmp));
if (cs->typ != ISDN_CTYPE_GAZEL)
return (0);
if (card->para[0]) {
if (setup_gazelisa(card, cs))
return (0);
} else {
#ifdef CONFIG_PCI_LEGACY
if (setup_gazelpci(cs))
return (0);
#else
printk(KERN_WARNING "Gazel: Card PCI requested and NO_PCI_BIOS, unable to config\n");
return (0);
#endif /* CONFIG_PCI */
}
if (reserve_regions(card, cs)) {
return (0);
}
if (reset_gazel(cs)) {
printk(KERN_WARNING "Gazel: wrong IRQ\n");
release_io_gazel(cs);
return (0);
}
cs->readisac = &ReadISAC;
cs->writeisac = &WriteISAC;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->BC_Read_Reg = &ReadHSCX;
cs->BC_Write_Reg = &WriteHSCX;
cs->BC_Send_Data = &hscx_fill_fifo;
cs->cardmsg = &Gazel_card_msg;
switch (cs->subtyp) {
case R647:
case R685:
cs->irq_func = &gazel_interrupt;
ISACVersion(cs, "Gazel:");
if (HscxVersion(cs, "Gazel:")) {
printk(KERN_WARNING
"Gazel: wrong HSCX versions check IO address\n");
release_io_gazel(cs);
return (0);
}
break;
case R742:
case R753:
cs->irq_func = &gazel_interrupt_ipac;
val = ReadISAC(cs, IPAC_ID - 0x80);
printk(KERN_INFO "Gazel: IPAC version %x\n", val);
break;
}
return (1);
}