874 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Derived from arch/i386/kernel/irq.c
* Copyright (C) 1992 Linus Torvalds
* Adapted from arch/i386 by Gary Thomas
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
* Updated and modified by Cort Dougan <cort@fsmlabs.com>
* Copyright (C) 1996-2001 Cort Dougan
* Adapted for Power Macintosh by Paul Mackerras
* Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
*
* This file contains the code used by various IRQ handling routines:
* asking for different IRQ's should be done through these routines
* instead of just grabbing them. Thus setups with different IRQ numbers
* shouldn't result in any weird surprises, and installing new handlers
* should be easier.
*
* The MPC8xx has an interrupt mask in the SIU. If a bit is set, the
* interrupt is _enabled_. As expected, IRQ0 is bit 0 in the 32-bit
* mask register (of which only 16 are defined), hence the weird shifting
* and complement of the cached_irq_mask. I want to be able to stuff
* this right into the SIU SMASK register.
* Many of the prep/chrp functions are conditional compiled on CONFIG_PPC_8xx
* to reduce code space and undefined function references.
*/
2006-07-03 21:36:01 +10:00
#undef DEBUG
#include <linux/export.h>
#include <linux/threads.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/cpumask.h>
#include <linux/profile.h>
#include <linux/bitops.h>
2006-07-03 21:36:01 +10:00
#include <linux/list.h>
#include <linux/radix-tree.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/debugfs.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/vmalloc.h>
mm: reorder includes after introduction of linux/pgtable.h The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include of the latter in the middle of asm includes. Fix this up with the aid of the below script and manual adjustments here and there. import sys import re if len(sys.argv) is not 3: print "USAGE: %s <file> <header>" % (sys.argv[0]) sys.exit(1) hdr_to_move="#include <linux/%s>" % sys.argv[2] moved = False in_hdrs = False with open(sys.argv[1], "r") as f: lines = f.readlines() for _line in lines: line = _line.rstrip(' ') if line == hdr_to_move: continue if line.startswith("#include <linux/"): in_hdrs = True elif not moved and in_hdrs: moved = True print hdr_to_move print line Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:32:42 -07:00
#include <linux/pgtable.h>
#include <linux/uaccess.h>
#include <asm/interrupt.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/cache.h>
#include <asm/prom.h>
#include <asm/ptrace.h>
#include <asm/machdep.h>
2006-07-03 21:36:01 +10:00
#include <asm/udbg.h>
#include <asm/smp.h>
#include <asm/livepatch.h>
#include <asm/asm-prototypes.h>
#include <asm/hw_irq.h>
#include <asm/softirq_stack.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#include <asm/firmware.h>
#include <asm/lv1call.h>
#include <asm/dbell.h>
#endif
#define CREATE_TRACE_POINTS
#include <asm/trace.h>
#include <asm/cpu_has_feature.h>
DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
EXPORT_PER_CPU_SYMBOL(irq_stat);
#ifdef CONFIG_PPC32
atomic_t ppc_n_lost_interrupts;
#ifdef CONFIG_TAU_INT
extern int tau_initialized;
u32 tau_interrupts(unsigned long cpu);
#endif
#endif /* CONFIG_PPC32 */
#ifdef CONFIG_PPC64
int distribute_irqs = 1;
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
static inline notrace unsigned long get_irq_happened(void)
{
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
unsigned long happened;
__asm__ __volatile__("lbz %0,%1(13)"
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
: "=r" (happened) : "i" (offsetof(struct paca_struct, irq_happened)));
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
return happened;
}
powerpc/64s: Implement interrupt exit logic in C Implement the bulk of interrupt return logic in C. The asm return code must handle a few cases: restoring full GPRs, and emulating stack store. The stack store emulation is significantly simplfied, rather than creating a new return frame and switching to that before performing the store, it uses the PACA to keep a scratch register around to perform the store. The asm return code is moved into 64e for now. The new logic has made allowance for 64e, but I don't have a full environment that works well to test it, and even booting in emulated qemu is not great for stress testing. 64e shouldn't be too far off working with this, given a bit more testing and auditing of the logic. This is slightly faster on a POWER9 (page fault speed increases about 1.1%), probably due to reduced mtmsrd. mpe: Includes fixes from Nick for _TIF_EMULATE_STACK_STORE handling (including the fast_interrupt_return path), to remove trace_hardirqs_on(), and fixes the interrupt-return part of the MSR_VSX restore bug caught by tm-unavailable selftest. mpe: Incorporate fix from Nick: The return-to-kernel path has to replay any soft-pending interrupts if it is returning to a context that had interrupts soft-enabled. It has to do this carefully and avoid plain enabling interrupts if this is an irq context, which can cause multiple nesting of interrupts on the stack, and other unexpected issues. The code which avoided this case got the soft-mask state wrong, and marked interrupts as enabled before going around again to retry. This seems to be mostly harmless except when PREEMPT=y, this calls preempt_schedule_irq with irqs apparently enabled and runs into a BUG in kernel/sched/core.c Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Suchanek <msuchanek@suse.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200225173541.1549955-29-npiggin@gmail.com
2020-02-26 03:35:37 +10:00
void replay_soft_interrupts(void)
{
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
struct pt_regs regs;
/*
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
* Be careful here, calling these interrupt handlers can cause
* softirqs to be raised, which they may run when calling irq_exit,
* which will cause local_irq_enable() to be run, which can then
* recurse into this function. Don't keep any state across
* interrupt handler calls which may change underneath us.
*
* We use local_paca rather than get_paca() to avoid all the
* debug_smp_processor_id() business in this low level function.
*/
ppc_save_regs(&regs);
regs.softe = IRQS_ENABLED;
regs.msr |= MSR_EE;
again:
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
WARN_ON_ONCE(mfmsr() & MSR_EE);
/*
* Force the delivery of pending soft-disabled interrupts on PS3.
* Any HV call will have this side effect.
*/
if (firmware_has_feature(FW_FEATURE_PS3_LV1)) {
u64 tmp, tmp2;
lv1_get_version_info(&tmp, &tmp2);
}
/*
* Check if an hypervisor Maintenance interrupt happened.
* This is a higher priority interrupt than the others, so
* replay it first.
*/
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
if (IS_ENABLED(CONFIG_PPC_BOOK3S) && (local_paca->irq_happened & PACA_IRQ_HMI)) {
local_paca->irq_happened &= ~PACA_IRQ_HMI;
regs.trap = INTERRUPT_HMI;
handle_hmi_exception(&regs);
if (!(local_paca->irq_happened & PACA_IRQ_HARD_DIS))
hard_irq_disable();
}
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
if (local_paca->irq_happened & PACA_IRQ_DEC) {
local_paca->irq_happened &= ~PACA_IRQ_DEC;
regs.trap = INTERRUPT_DECREMENTER;
timer_interrupt(&regs);
if (!(local_paca->irq_happened & PACA_IRQ_HARD_DIS))
hard_irq_disable();
}
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
if (local_paca->irq_happened & PACA_IRQ_EE) {
local_paca->irq_happened &= ~PACA_IRQ_EE;
regs.trap = INTERRUPT_EXTERNAL;
do_IRQ(&regs);
if (!(local_paca->irq_happened & PACA_IRQ_HARD_DIS))
hard_irq_disable();
}
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
if (IS_ENABLED(CONFIG_PPC_DOORBELL) && (local_paca->irq_happened & PACA_IRQ_DBELL)) {
local_paca->irq_happened &= ~PACA_IRQ_DBELL;
regs.trap = INTERRUPT_DOORBELL;
doorbell_exception(&regs);
if (!(local_paca->irq_happened & PACA_IRQ_HARD_DIS))
hard_irq_disable();
}
/* Book3E does not support soft-masking PMI interrupts */
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
if (IS_ENABLED(CONFIG_PPC_BOOK3S) && (local_paca->irq_happened & PACA_IRQ_PMI)) {
local_paca->irq_happened &= ~PACA_IRQ_PMI;
regs.trap = INTERRUPT_PERFMON;
performance_monitor_exception(&regs);
if (!(local_paca->irq_happened & PACA_IRQ_HARD_DIS))
hard_irq_disable();
}
powerpc/64s: prevent recursive replay_soft_interrupts causing superfluous interrupt When an asynchronous interrupt calls irq_exit, it checks for softirqs that may have been created, and runs them. Running softirqs enables local irqs, which can replay pending interrupts causing recursion in replay_soft_interrupts. This abridged trace shows how this can occur: ! NIP replay_soft_interrupts LR interrupt_exit_kernel_prepare Call Trace: interrupt_exit_kernel_prepare (unreliable) interrupt_return --- interrupt: ea0 at __rb_reserve_next NIP __rb_reserve_next LR __rb_reserve_next Call Trace: ring_buffer_lock_reserve trace_function function_trace_call ftrace_call __do_softirq irq_exit timer_interrupt ! replay_soft_interrupts interrupt_exit_kernel_prepare interrupt_return --- interrupt: ea0 at arch_local_irq_restore This can not be prevented easily, because softirqs must not block hard irqs, so it has to be dealt with. The recursion is bounded by design in the softirq code because softirq replay disables softirqs and loops around again to check for new softirqs created while it ran, so that's not a problem. However it does mess up interrupt replay state, causing superfluous interrupts when the second replay_soft_interrupts clears a pending interrupt, leaving it still set in the first call in the 'happened' local variable. Fix this by not caching a copy of irqs_happened across interrupt handler calls. Fixes: 3282a3da25bd ("powerpc/64: Implement soft interrupt replay in C") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
2021-01-23 16:12:44 +10:00
if (local_paca->irq_happened & ~PACA_IRQ_HARD_DIS) {
/*
* We are responding to the next interrupt, so interrupt-off
* latencies should be reset here.
*/
trace_hardirqs_on();
trace_hardirqs_off();
goto again;
}
}
powerpc/kuap: Restore AMR after replaying soft interrupts Since de78a9c42a79 ("powerpc: Add a framework for Kernel Userspace Access Protection"), user access helpers call user_{read|write}_access_{begin|end} when user space access is allowed. Commit 890274c2dc4c ("powerpc/64s: Implement KUAP for Radix MMU") made the mentioned helpers program a AMR special register to allow such access for a short period of time, most of the time AMR is expected to block user memory access by the kernel. Since the code accesses the user space memory, unsafe_get_user() calls might_fault() which calls arch_local_irq_restore() if either CONFIG_PROVE_LOCKING or CONFIG_DEBUG_ATOMIC_SLEEP is enabled. arch_local_irq_restore() then attempts to replay pending soft interrupts as KUAP regions have hardware interrupts enabled. If a pending interrupt happens to do user access (performance interrupts do that), it enables access for a short period of time so after returning from the replay, the user access state remains blocked and if a user page fault happens - "Bug: Read fault blocked by AMR!" appears and SIGSEGV is sent. An example trace: Bug: Read fault blocked by AMR! WARNING: CPU: 0 PID: 1603 at /home/aik/p/kernel/arch/powerpc/include/asm/book3s/64/kup-radix.h:145 CPU: 0 PID: 1603 Comm: amr Not tainted 5.10.0-rc6_v5.10-rc6_a+fstn1 #24 NIP: c00000000009ece8 LR: c00000000009ece4 CTR: 0000000000000000 REGS: c00000000dc63560 TRAP: 0700 Not tainted (5.10.0-rc6_v5.10-rc6_a+fstn1) MSR: 8000000000021033 <SF,ME,IR,DR,RI,LE> CR: 28002888 XER: 20040000 CFAR: c0000000001fa928 IRQMASK: 1 GPR00: c00000000009ece4 c00000000dc637f0 c000000002397600 000000000000001f GPR04: c0000000020eb318 0000000000000000 c00000000dc63494 0000000000000027 GPR08: c00000007fe4de68 c00000000dfe9180 0000000000000000 0000000000000001 GPR12: 0000000000002000 c0000000030a0000 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 bfffffffffffffff GPR20: 0000000000000000 c0000000134a4020 c0000000019c2218 0000000000000fe0 GPR24: 0000000000000000 0000000000000000 c00000000d106200 0000000040000000 GPR28: 0000000000000000 0000000000000300 c00000000dc63910 c000000001946730 NIP __do_page_fault+0xb38/0xde0 LR __do_page_fault+0xb34/0xde0 Call Trace: __do_page_fault+0xb34/0xde0 (unreliable) handle_page_fault+0x10/0x2c --- interrupt: 300 at strncpy_from_user+0x290/0x440 LR = strncpy_from_user+0x284/0x440 strncpy_from_user+0x2f0/0x440 (unreliable) getname_flags+0x88/0x2c0 do_sys_openat2+0x2d4/0x5f0 do_sys_open+0xcc/0x140 system_call_exception+0x160/0x240 system_call_common+0xf0/0x27c To fix it save/restore the AMR when replaying interrupts, and also add a check if AMR was not blocked prior to replaying interrupts. Originally found by syzkaller. Fixes: 890274c2dc4c ("powerpc/64s: Implement KUAP for Radix MMU") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Use normal commit citation format and add full oops log to change log, move kuap_check_amr() into the restore routine to avoid warnings about unreconciled IRQ state] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210202091541.36499-1-aik@ozlabs.ru
2021-02-02 20:15:41 +11:00
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_KUAP)
static inline void replay_soft_interrupts_irqrestore(void)
{
unsigned long kuap_state = get_kuap();
/*
* Check if anything calls local_irq_enable/restore() when KUAP is
* disabled (user access enabled). We handle that case here by saving
* and re-locking AMR but we shouldn't get here in the first place,
* hence the warning.
*/
kuap_assert_locked();
powerpc/kuap: Restore AMR after replaying soft interrupts Since de78a9c42a79 ("powerpc: Add a framework for Kernel Userspace Access Protection"), user access helpers call user_{read|write}_access_{begin|end} when user space access is allowed. Commit 890274c2dc4c ("powerpc/64s: Implement KUAP for Radix MMU") made the mentioned helpers program a AMR special register to allow such access for a short period of time, most of the time AMR is expected to block user memory access by the kernel. Since the code accesses the user space memory, unsafe_get_user() calls might_fault() which calls arch_local_irq_restore() if either CONFIG_PROVE_LOCKING or CONFIG_DEBUG_ATOMIC_SLEEP is enabled. arch_local_irq_restore() then attempts to replay pending soft interrupts as KUAP regions have hardware interrupts enabled. If a pending interrupt happens to do user access (performance interrupts do that), it enables access for a short period of time so after returning from the replay, the user access state remains blocked and if a user page fault happens - "Bug: Read fault blocked by AMR!" appears and SIGSEGV is sent. An example trace: Bug: Read fault blocked by AMR! WARNING: CPU: 0 PID: 1603 at /home/aik/p/kernel/arch/powerpc/include/asm/book3s/64/kup-radix.h:145 CPU: 0 PID: 1603 Comm: amr Not tainted 5.10.0-rc6_v5.10-rc6_a+fstn1 #24 NIP: c00000000009ece8 LR: c00000000009ece4 CTR: 0000000000000000 REGS: c00000000dc63560 TRAP: 0700 Not tainted (5.10.0-rc6_v5.10-rc6_a+fstn1) MSR: 8000000000021033 <SF,ME,IR,DR,RI,LE> CR: 28002888 XER: 20040000 CFAR: c0000000001fa928 IRQMASK: 1 GPR00: c00000000009ece4 c00000000dc637f0 c000000002397600 000000000000001f GPR04: c0000000020eb318 0000000000000000 c00000000dc63494 0000000000000027 GPR08: c00000007fe4de68 c00000000dfe9180 0000000000000000 0000000000000001 GPR12: 0000000000002000 c0000000030a0000 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 bfffffffffffffff GPR20: 0000000000000000 c0000000134a4020 c0000000019c2218 0000000000000fe0 GPR24: 0000000000000000 0000000000000000 c00000000d106200 0000000040000000 GPR28: 0000000000000000 0000000000000300 c00000000dc63910 c000000001946730 NIP __do_page_fault+0xb38/0xde0 LR __do_page_fault+0xb34/0xde0 Call Trace: __do_page_fault+0xb34/0xde0 (unreliable) handle_page_fault+0x10/0x2c --- interrupt: 300 at strncpy_from_user+0x290/0x440 LR = strncpy_from_user+0x284/0x440 strncpy_from_user+0x2f0/0x440 (unreliable) getname_flags+0x88/0x2c0 do_sys_openat2+0x2d4/0x5f0 do_sys_open+0xcc/0x140 system_call_exception+0x160/0x240 system_call_common+0xf0/0x27c To fix it save/restore the AMR when replaying interrupts, and also add a check if AMR was not blocked prior to replaying interrupts. Originally found by syzkaller. Fixes: 890274c2dc4c ("powerpc/64s: Implement KUAP for Radix MMU") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Use normal commit citation format and add full oops log to change log, move kuap_check_amr() into the restore routine to avoid warnings about unreconciled IRQ state] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210202091541.36499-1-aik@ozlabs.ru
2021-02-02 20:15:41 +11:00
if (kuap_state != AMR_KUAP_BLOCKED)
set_kuap(AMR_KUAP_BLOCKED);
replay_soft_interrupts();
if (kuap_state != AMR_KUAP_BLOCKED)
set_kuap(kuap_state);
}
#else
#define replay_soft_interrupts_irqrestore() replay_soft_interrupts()
#endif
#ifdef CONFIG_CC_HAS_ASM_GOTO
notrace void arch_local_irq_restore(unsigned long mask)
{
unsigned char irq_happened;
/* Write the new soft-enabled value if it is a disable */
if (mask) {
irq_soft_mask_set(mask);
return;
}
/*
* After the stb, interrupts are unmasked and there are no interrupts
* pending replay. The restart sequence makes this atomic with
* respect to soft-masked interrupts. If this was just a simple code
* sequence, a soft-masked interrupt could become pending right after
* the comparison and before the stb.
*
* This allows interrupts to be unmasked without hard disabling, and
* also without new hard interrupts coming in ahead of pending ones.
*/
asm_volatile_goto(
"1: \n"
" lbz 9,%0(13) \n"
" cmpwi 9,0 \n"
" bne %l[happened] \n"
" stb 9,%1(13) \n"
"2: \n"
RESTART_TABLE(1b, 2b, 1b)
: : "i" (offsetof(struct paca_struct, irq_happened)),
"i" (offsetof(struct paca_struct, irq_soft_mask))
: "cr0", "r9"
: happened);
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
WARN_ON_ONCE(!(mfmsr() & MSR_EE));
return;
happened:
irq_happened = get_irq_happened();
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
WARN_ON_ONCE(!irq_happened);
if (irq_happened == PACA_IRQ_HARD_DIS) {
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
WARN_ON_ONCE(mfmsr() & MSR_EE);
irq_soft_mask_set(IRQS_ENABLED);
local_paca->irq_happened = 0;
__hard_irq_enable();
return;
}
/* Have interrupts to replay, need to hard disable first */
if (!(irq_happened & PACA_IRQ_HARD_DIS)) {
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG)) {
if (!(mfmsr() & MSR_EE)) {
/*
* An interrupt could have come in and cleared
* MSR[EE] and set IRQ_HARD_DIS, so check
* IRQ_HARD_DIS again and warn if it is still
* clear.
*/
irq_happened = get_irq_happened();
WARN_ON_ONCE(!(irq_happened & PACA_IRQ_HARD_DIS));
}
}
__hard_irq_disable();
local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
} else {
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG)) {
if (WARN_ON_ONCE(mfmsr() & MSR_EE))
__hard_irq_disable();
}
}
/*
* Disable preempt here, so that the below preempt_enable will
* perform resched if required (a replayed interrupt may set
* need_resched).
*/
preempt_disable();
irq_soft_mask_set(IRQS_ALL_DISABLED);
trace_hardirqs_off();
replay_soft_interrupts_irqrestore();
local_paca->irq_happened = 0;
trace_hardirqs_on();
irq_soft_mask_set(IRQS_ENABLED);
__hard_irq_enable();
preempt_enable();
}
#else
powerpc/64: Change soft_enabled from flag to bitmask "paca->soft_enabled" is used as a flag to mask some of interrupts. Currently supported flags values and their details: soft_enabled MSR[EE] 0 0 Disabled (PMI and HMI not masked) 1 1 Enabled "paca->soft_enabled" is initialized to 1 to make the interripts as enabled. arch_local_irq_disable() will toggle the value when interrupts needs to disbled. At this point, the interrupts are not actually disabled, instead, interrupt vector has code to check for the flag and mask it when it occurs. By "mask it", it update interrupt paca->irq_happened and return. arch_local_irq_restore() is called to re-enable interrupts, which checks and replays interrupts if any occured. Now, as mentioned, current logic doesnot mask "performance monitoring interrupts" and PMIs are implemented as NMI. But this patchset depends on local_irq_* for a successful local_* update. Meaning, mask all possible interrupts during local_* update and replay them after the update. So the idea here is to reserve the "paca->soft_enabled" logic. New values and details: soft_enabled MSR[EE] 1 0 Disabled (PMI and HMI not masked) 0 1 Enabled Reason for the this change is to create foundation for a third mask value "0x2" for "soft_enabled" to add support to mask PMIs. When ->soft_enabled is set to a value "3", PMI interrupts are mask and when set to a value of "1", PMI are not mask. With this patch also extends soft_enabled as interrupt disable mask. Current flags are renamed from IRQ_[EN?DIS}ABLED to IRQS_ENABLED and IRQS_DISABLED. Patch also fixes the ptrace call to force the user to see the softe value to be alway 1. Reason being, even though userspace has no business knowing about softe, it is part of pt_regs. Like-wise in signal context. Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 09:25:49 +05:30
notrace void arch_local_irq_restore(unsigned long mask)
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
{
unsigned char irq_happened;
/* Write the new soft-enabled value */
irq_soft_mask_set(mask);
if (mask)
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
return;
powerpc/64: Change soft_enabled from flag to bitmask "paca->soft_enabled" is used as a flag to mask some of interrupts. Currently supported flags values and their details: soft_enabled MSR[EE] 0 0 Disabled (PMI and HMI not masked) 1 1 Enabled "paca->soft_enabled" is initialized to 1 to make the interripts as enabled. arch_local_irq_disable() will toggle the value when interrupts needs to disbled. At this point, the interrupts are not actually disabled, instead, interrupt vector has code to check for the flag and mask it when it occurs. By "mask it", it update interrupt paca->irq_happened and return. arch_local_irq_restore() is called to re-enable interrupts, which checks and replays interrupts if any occured. Now, as mentioned, current logic doesnot mask "performance monitoring interrupts" and PMIs are implemented as NMI. But this patchset depends on local_irq_* for a successful local_* update. Meaning, mask all possible interrupts during local_* update and replay them after the update. So the idea here is to reserve the "paca->soft_enabled" logic. New values and details: soft_enabled MSR[EE] 1 0 Disabled (PMI and HMI not masked) 0 1 Enabled Reason for the this change is to create foundation for a third mask value "0x2" for "soft_enabled" to add support to mask PMIs. When ->soft_enabled is set to a value "3", PMI interrupts are mask and when set to a value of "1", PMI are not mask. With this patch also extends soft_enabled as interrupt disable mask. Current flags are renamed from IRQ_[EN?DIS}ABLED to IRQS_ENABLED and IRQS_DISABLED. Patch also fixes the ptrace call to force the user to see the softe value to be alway 1. Reason being, even though userspace has no business knowing about softe, it is part of pt_regs. Like-wise in signal context. Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-20 09:25:49 +05:30
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
/*
* From this point onward, we can take interrupts, preempt,
* etc... unless we got hard-disabled. We check if an event
* happened. If none happened, we know we can just return.
*
* We may have preempted before the check below, in which case
* we are checking the "new" CPU instead of the old one. This
* is only a problem if an event happened on the "old" CPU.
*
* External interrupt events will have caused interrupts to
* be hard-disabled, so there is no problem, we
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
* cannot have preempted.
*/
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
irq_happened = get_irq_happened();
if (!irq_happened) {
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
WARN_ON_ONCE(!(mfmsr() & MSR_EE));
return;
}
/* We need to hard disable to replay. */
if (!(irq_happened & PACA_IRQ_HARD_DIS)) {
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG))
WARN_ON_ONCE(!(mfmsr() & MSR_EE));
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
__hard_irq_disable();
local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
} else {
/*
* We should already be hard disabled here. We had bugs
* where that wasn't the case so let's dbl check it and
* warn if we are wrong. Only do that when IRQ tracing
* is enabled as mfmsr() can be costly.
*/
if (IS_ENABLED(CONFIG_PPC_IRQ_SOFT_MASK_DEBUG)) {
if (WARN_ON_ONCE(mfmsr() & MSR_EE))
__hard_irq_disable();
}
if (irq_happened == PACA_IRQ_HARD_DIS) {
local_paca->irq_happened = 0;
__hard_irq_enable();
return;
}
}
/*
* Disable preempt here, so that the below preempt_enable will
* perform resched if required (a replayed interrupt may set
* need_resched).
*/
preempt_disable();
irq_soft_mask_set(IRQS_ALL_DISABLED);
trace_hardirqs_off();
powerpc/kuap: Restore AMR after replaying soft interrupts Since de78a9c42a79 ("powerpc: Add a framework for Kernel Userspace Access Protection"), user access helpers call user_{read|write}_access_{begin|end} when user space access is allowed. Commit 890274c2dc4c ("powerpc/64s: Implement KUAP for Radix MMU") made the mentioned helpers program a AMR special register to allow such access for a short period of time, most of the time AMR is expected to block user memory access by the kernel. Since the code accesses the user space memory, unsafe_get_user() calls might_fault() which calls arch_local_irq_restore() if either CONFIG_PROVE_LOCKING or CONFIG_DEBUG_ATOMIC_SLEEP is enabled. arch_local_irq_restore() then attempts to replay pending soft interrupts as KUAP regions have hardware interrupts enabled. If a pending interrupt happens to do user access (performance interrupts do that), it enables access for a short period of time so after returning from the replay, the user access state remains blocked and if a user page fault happens - "Bug: Read fault blocked by AMR!" appears and SIGSEGV is sent. An example trace: Bug: Read fault blocked by AMR! WARNING: CPU: 0 PID: 1603 at /home/aik/p/kernel/arch/powerpc/include/asm/book3s/64/kup-radix.h:145 CPU: 0 PID: 1603 Comm: amr Not tainted 5.10.0-rc6_v5.10-rc6_a+fstn1 #24 NIP: c00000000009ece8 LR: c00000000009ece4 CTR: 0000000000000000 REGS: c00000000dc63560 TRAP: 0700 Not tainted (5.10.0-rc6_v5.10-rc6_a+fstn1) MSR: 8000000000021033 <SF,ME,IR,DR,RI,LE> CR: 28002888 XER: 20040000 CFAR: c0000000001fa928 IRQMASK: 1 GPR00: c00000000009ece4 c00000000dc637f0 c000000002397600 000000000000001f GPR04: c0000000020eb318 0000000000000000 c00000000dc63494 0000000000000027 GPR08: c00000007fe4de68 c00000000dfe9180 0000000000000000 0000000000000001 GPR12: 0000000000002000 c0000000030a0000 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 bfffffffffffffff GPR20: 0000000000000000 c0000000134a4020 c0000000019c2218 0000000000000fe0 GPR24: 0000000000000000 0000000000000000 c00000000d106200 0000000040000000 GPR28: 0000000000000000 0000000000000300 c00000000dc63910 c000000001946730 NIP __do_page_fault+0xb38/0xde0 LR __do_page_fault+0xb34/0xde0 Call Trace: __do_page_fault+0xb34/0xde0 (unreliable) handle_page_fault+0x10/0x2c --- interrupt: 300 at strncpy_from_user+0x290/0x440 LR = strncpy_from_user+0x284/0x440 strncpy_from_user+0x2f0/0x440 (unreliable) getname_flags+0x88/0x2c0 do_sys_openat2+0x2d4/0x5f0 do_sys_open+0xcc/0x140 system_call_exception+0x160/0x240 system_call_common+0xf0/0x27c To fix it save/restore the AMR when replaying interrupts, and also add a check if AMR was not blocked prior to replaying interrupts. Originally found by syzkaller. Fixes: 890274c2dc4c ("powerpc/64s: Implement KUAP for Radix MMU") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Use normal commit citation format and add full oops log to change log, move kuap_check_amr() into the restore routine to avoid warnings about unreconciled IRQ state] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210202091541.36499-1-aik@ozlabs.ru
2021-02-02 20:15:41 +11:00
replay_soft_interrupts_irqrestore();
local_paca->irq_happened = 0;
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
trace_hardirqs_on();
irq_soft_mask_set(IRQS_ENABLED);
__hard_irq_enable();
preempt_enable();
}
#endif
Fix IRQ flag handling naming Fix the IRQ flag handling naming. In linux/irqflags.h under one configuration, it maps: local_irq_enable() -> raw_local_irq_enable() local_irq_disable() -> raw_local_irq_disable() local_irq_save() -> raw_local_irq_save() ... and under the other configuration, it maps: raw_local_irq_enable() -> local_irq_enable() raw_local_irq_disable() -> local_irq_disable() raw_local_irq_save() -> local_irq_save() ... This is quite confusing. There should be one set of names expected of the arch, and this should be wrapped to give another set of names that are expected by users of this facility. Change this to have the arch provide: flags = arch_local_save_flags() flags = arch_local_irq_save() arch_local_irq_restore(flags) arch_local_irq_disable() arch_local_irq_enable() arch_irqs_disabled_flags(flags) arch_irqs_disabled() arch_safe_halt() Then linux/irqflags.h wraps these to provide: raw_local_save_flags(flags) raw_local_irq_save(flags) raw_local_irq_restore(flags) raw_local_irq_disable() raw_local_irq_enable() raw_irqs_disabled_flags(flags) raw_irqs_disabled() raw_safe_halt() with type checking on the flags 'arguments', and then wraps those to provide: local_save_flags(flags) local_irq_save(flags) local_irq_restore(flags) local_irq_disable() local_irq_enable() irqs_disabled_flags(flags) irqs_disabled() safe_halt() with tracing included if enabled. The arch functions can now all be inline functions rather than some of them having to be macros. Signed-off-by: David Howells <dhowells@redhat.com> [X86, FRV, MN10300] Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> [Tile] Signed-off-by: Michal Simek <monstr@monstr.eu> [Microblaze] Tested-by: Catalin Marinas <catalin.marinas@arm.com> [ARM] Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> [AVR] Acked-by: Tony Luck <tony.luck@intel.com> [IA-64] Acked-by: Hirokazu Takata <takata@linux-m32r.org> [M32R] Acked-by: Greg Ungerer <gerg@uclinux.org> [M68K/M68KNOMMU] Acked-by: Ralf Baechle <ralf@linux-mips.org> [MIPS] Acked-by: Kyle McMartin <kyle@mcmartin.ca> [PA-RISC] Acked-by: Paul Mackerras <paulus@samba.org> [PowerPC] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [S390] Acked-by: Chen Liqin <liqin.chen@sunplusct.com> [Score] Acked-by: Matt Fleming <matt@console-pimps.org> [SH] Acked-by: David S. Miller <davem@davemloft.net> [Sparc] Acked-by: Chris Zankel <chris@zankel.net> [Xtensa] Reviewed-by: Richard Henderson <rth@twiddle.net> [Alpha] Reviewed-by: Yoshinori Sato <ysato@users.sourceforge.jp> [H8300] Cc: starvik@axis.com [CRIS] Cc: jesper.nilsson@axis.com [CRIS] Cc: linux-cris-kernel@axis.com
2010-10-07 14:08:55 +01:00
EXPORT_SYMBOL(arch_local_irq_restore);
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
/*
* This is a helper to use when about to go into idle low-power
* when the latter has the side effect of re-enabling interrupts
* (such as calling H_CEDE under pHyp).
*
* You call this function with interrupts soft-disabled (this is
* already the case when ppc_md.power_save is called). The function
* will return whether to enter power save or just return.
*
* In the former case, it will have notified lockdep of interrupts
* being re-enabled and generally sanitized the lazy irq state,
* and in the latter case it will leave with interrupts hard
* disabled and marked as such, so the local_irq_enable() call
* in arch_cpu_idle() will properly re-enable everything.
*/
bool prep_irq_for_idle(void)
{
/*
* First we need to hard disable to ensure no interrupt
* occurs before we effectively enter the low power state
*/
__hard_irq_disable();
local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
/*
* If anything happened while we were soft-disabled,
* we return now and do not enter the low power state.
*/
if (lazy_irq_pending())
return false;
/* Tell lockdep we are about to re-enable */
trace_hardirqs_on();
/*
* Mark interrupts as soft-enabled and clear the
* PACA_IRQ_HARD_DIS from the pending mask since we
* are about to hard enable as well as a side effect
* of entering the low power state.
*/
local_paca->irq_happened &= ~PACA_IRQ_HARD_DIS;
irq_soft_mask_set(IRQS_ENABLED);
/* Tell the caller to enter the low power state */
return true;
}
#ifdef CONFIG_PPC_BOOK3S
/*
* This is for idle sequences that return with IRQs off, but the
* idle state itself wakes on interrupt. Tell the irq tracer that
* IRQs are enabled for the duration of idle so it does not get long
* off times. Must be paired with fini_irq_for_idle_irqsoff.
*/
bool prep_irq_for_idle_irqsoff(void)
{
WARN_ON(!irqs_disabled());
/*
* First we need to hard disable to ensure no interrupt
* occurs before we effectively enter the low power state
*/
__hard_irq_disable();
local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
/*
* If anything happened while we were soft-disabled,
* we return now and do not enter the low power state.
*/
if (lazy_irq_pending())
return false;
/* Tell lockdep we are about to re-enable */
trace_hardirqs_on();
return true;
}
/*
* Take the SRR1 wakeup reason, index into this table to find the
* appropriate irq_happened bit.
*
* Sytem reset exceptions taken in idle state also come through here,
* but they are NMI interrupts so do not need to wait for IRQs to be
* restored, and should be taken as early as practical. These are marked
* with 0xff in the table. The Power ISA specifies 0100b as the system
* reset interrupt reason.
*/
#define IRQ_SYSTEM_RESET 0xff
static const u8 srr1_to_lazyirq[0x10] = {
0, 0, 0,
PACA_IRQ_DBELL,
IRQ_SYSTEM_RESET,
PACA_IRQ_DBELL,
PACA_IRQ_DEC,
0,
PACA_IRQ_EE,
PACA_IRQ_EE,
PACA_IRQ_HMI,
0, 0, 0, 0, 0 };
void replay_system_reset(void)
{
struct pt_regs regs;
ppc_save_regs(&regs);
regs.trap = 0x100;
get_paca()->in_nmi = 1;
system_reset_exception(&regs);
get_paca()->in_nmi = 0;
}
EXPORT_SYMBOL_GPL(replay_system_reset);
void irq_set_pending_from_srr1(unsigned long srr1)
{
unsigned int idx = (srr1 & SRR1_WAKEMASK_P8) >> 18;
u8 reason = srr1_to_lazyirq[idx];
/*
* Take the system reset now, which is immediately after registers
* are restored from idle. It's an NMI, so interrupts need not be
* re-enabled before it is taken.
*/
if (unlikely(reason == IRQ_SYSTEM_RESET)) {
replay_system_reset();
return;
}
if (reason == PACA_IRQ_DBELL) {
/*
* When doorbell triggers a system reset wakeup, the message
* is not cleared, so if the doorbell interrupt is replayed
* and the IPI handled, the doorbell interrupt would still
* fire when EE is enabled.
*
* To avoid taking the superfluous doorbell interrupt,
* execute a msgclr here before the interrupt is replayed.
*/
ppc_msgclr(PPC_DBELL_MSGTYPE);
}
/*
* The 0 index (SRR1[42:45]=b0000) must always evaluate to 0,
* so this can be called unconditionally with the SRR1 wake
* reason as returned by the idle code, which uses 0 to mean no
* interrupt.
*
* If a future CPU was to designate this as an interrupt reason,
* then a new index for no interrupt must be assigned.
*/
local_paca->irq_happened |= reason;
}
#endif /* CONFIG_PPC_BOOK3S */
/*
* Force a replay of the external interrupt handler on this CPU.
*/
void force_external_irq_replay(void)
{
/*
* This must only be called with interrupts soft-disabled,
* the replay will happen when re-enabling.
*/
WARN_ON(!arch_irqs_disabled());
/*
* Interrupts must always be hard disabled before irq_happened is
* modified (to prevent lost update in case of interrupt between
* load and store).
*/
__hard_irq_disable();
local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
/* Indicate in the PACA that we have an interrupt to replay */
local_paca->irq_happened |= PACA_IRQ_EE;
}
#endif /* CONFIG_PPC64 */
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
#if defined(CONFIG_PPC32) && defined(CONFIG_TAU_INT)
if (tau_initialized) {
seq_printf(p, "%*s: ", prec, "TAU");
for_each_online_cpu(j)
seq_printf(p, "%10u ", tau_interrupts(j));
seq_puts(p, " PowerPC Thermal Assist (cpu temp)\n");
}
#endif /* CONFIG_PPC32 && CONFIG_TAU_INT */
seq_printf(p, "%*s: ", prec, "LOC");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).timer_irqs_event);
seq_printf(p, " Local timer interrupts for timer event device\n");
seq_printf(p, "%*s: ", prec, "BCT");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).broadcast_irqs_event);
seq_printf(p, " Broadcast timer interrupts for timer event device\n");
seq_printf(p, "%*s: ", prec, "LOC");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).timer_irqs_others);
seq_printf(p, " Local timer interrupts for others\n");
seq_printf(p, "%*s: ", prec, "SPU");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).spurious_irqs);
seq_printf(p, " Spurious interrupts\n");
seq_printf(p, "%*s: ", prec, "PMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).pmu_irqs);
seq_printf(p, " Performance monitoring interrupts\n");
seq_printf(p, "%*s: ", prec, "MCE");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).mce_exceptions);
seq_printf(p, " Machine check exceptions\n");
#ifdef CONFIG_PPC_BOOK3S_64
if (cpu_has_feature(CPU_FTR_HVMODE)) {
seq_printf(p, "%*s: ", prec, "HMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", paca_ptrs[j]->hmi_irqs);
seq_printf(p, " Hypervisor Maintenance Interrupts\n");
}
#endif
seq_printf(p, "%*s: ", prec, "NMI");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).sreset_irqs);
seq_printf(p, " System Reset interrupts\n");
#ifdef CONFIG_PPC_WATCHDOG
seq_printf(p, "%*s: ", prec, "WDG");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).soft_nmi_irqs);
seq_printf(p, " Watchdog soft-NMI interrupts\n");
#endif
#ifdef CONFIG_PPC_DOORBELL
if (cpu_has_feature(CPU_FTR_DBELL)) {
seq_printf(p, "%*s: ", prec, "DBL");
for_each_online_cpu(j)
seq_printf(p, "%10u ", per_cpu(irq_stat, j).doorbell_irqs);
seq_printf(p, " Doorbell interrupts\n");
}
#endif
return 0;
}
/*
* /proc/stat helpers
*/
u64 arch_irq_stat_cpu(unsigned int cpu)
{
u64 sum = per_cpu(irq_stat, cpu).timer_irqs_event;
sum += per_cpu(irq_stat, cpu).broadcast_irqs_event;
sum += per_cpu(irq_stat, cpu).pmu_irqs;
sum += per_cpu(irq_stat, cpu).mce_exceptions;
sum += per_cpu(irq_stat, cpu).spurious_irqs;
sum += per_cpu(irq_stat, cpu).timer_irqs_others;
#ifdef CONFIG_PPC_BOOK3S_64
sum += paca_ptrs[cpu]->hmi_irqs;
#endif
sum += per_cpu(irq_stat, cpu).sreset_irqs;
#ifdef CONFIG_PPC_WATCHDOG
sum += per_cpu(irq_stat, cpu).soft_nmi_irqs;
#endif
#ifdef CONFIG_PPC_DOORBELL
sum += per_cpu(irq_stat, cpu).doorbell_irqs;
#endif
return sum;
}
static inline void check_stack_overflow(void)
{
long sp;
if (!IS_ENABLED(CONFIG_DEBUG_STACKOVERFLOW))
return;
sp = current_stack_pointer & (THREAD_SIZE - 1);
/* check for stack overflow: is there less than 2KB free? */
if (unlikely(sp < 2048)) {
pr_err("do_IRQ: stack overflow: %ld\n", sp);
dump_stack();
}
}
static __always_inline void call_do_softirq(const void *sp)
{
/* Temporarily switch r1 to sp, call __do_softirq() then restore r1. */
asm volatile (
PPC_STLU " %%r1, %[offset](%[sp]) ;"
"mr %%r1, %[sp] ;"
"bl %[callee] ;"
PPC_LL " %%r1, 0(%%r1) ;"
: // Outputs
: // Inputs
[sp] "b" (sp), [offset] "i" (THREAD_SIZE - STACK_FRAME_OVERHEAD),
[callee] "i" (__do_softirq)
: // Clobbers
"lr", "xer", "ctr", "memory", "cr0", "cr1", "cr5", "cr6",
"cr7", "r0", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10",
"r11", "r12"
);
}
static __always_inline void call_do_irq(struct pt_regs *regs, void *sp)
{
register unsigned long r3 asm("r3") = (unsigned long)regs;
/* Temporarily switch r1 to sp, call __do_irq() then restore r1. */
asm volatile (
PPC_STLU " %%r1, %[offset](%[sp]) ;"
"mr %%r1, %[sp] ;"
"bl %[callee] ;"
PPC_LL " %%r1, 0(%%r1) ;"
: // Outputs
"+r" (r3)
: // Inputs
[sp] "b" (sp), [offset] "i" (THREAD_SIZE - STACK_FRAME_OVERHEAD),
[callee] "i" (__do_irq)
: // Clobbers
"lr", "xer", "ctr", "memory", "cr0", "cr1", "cr5", "cr6",
"cr7", "r0", "r4", "r5", "r6", "r7", "r8", "r9", "r10",
"r11", "r12"
);
}
void __do_irq(struct pt_regs *regs)
{
2006-07-03 21:36:01 +10:00
unsigned int irq;
powerpc/trace: Fix interrupt tracepoints vs. RCU There are a few tracepoints in the interrupt code path, which is before irq_enter(), or after irq_exit(), like trace_irq_entry()/trace_irq_exit() in do_IRQ(), trace_timer_interrupt_entry()/trace_timer_interrupt_exit() in timer_interrupt(). If the interrupt is from idle(), and because tracepoint contains RCU read-side critical section, we could see following suspicious RCU usage reported: [ 145.127743] =============================== [ 145.127747] [ INFO: suspicious RCU usage. ] [ 145.127752] 3.6.0-rc3+ #1 Not tainted [ 145.127755] ------------------------------- [ 145.127759] /root/.workdir/linux/arch/powerpc/include/asm/trace.h:33 suspicious rcu_dereference_check() usage! [ 145.127765] [ 145.127765] other info that might help us debug this: [ 145.127765] [ 145.127771] [ 145.127771] RCU used illegally from idle CPU! [ 145.127771] rcu_scheduler_active = 1, debug_locks = 0 [ 145.127777] RCU used illegally from extended quiescent state! [ 145.127781] no locks held by swapper/0/0. [ 145.127785] [ 145.127785] stack backtrace: [ 145.127789] Call Trace: [ 145.127796] [c00000000108b530] [c000000000013c40] .show_stack +0x70/0x1c0 (unreliable) [ 145.127806] [c00000000108b5e0] [c0000000000f59d8] .lockdep_rcu_suspicious+0x118/0x150 [ 145.127813] [c00000000108b680] [c00000000000fc58] .do_IRQ+0x498/0x500 [ 145.127820] [c00000000108b750] [c000000000003950] hardware_interrupt_common+0x150/0x180 [ 145.127828] --- Exception: 501 at .plpar_hcall_norets+0x84/0xd4 [ 145.127828] LR = .check_and_cede_processor+0x38/0x70 [ 145.127836] [c00000000108bab0] [c0000000000665dc] .shared_cede_loop +0x5c/0x100 [ 145.127844] [c00000000108bb70] [c000000000588ab0] .cpuidle_enter +0x30/0x50 [ 145.127850] [c00000000108bbe0] [c000000000588b0c] .cpuidle_enter_state+0x3c/0xb0 [ 145.127857] [c00000000108bc60] [c000000000589730] .cpuidle_idle_call +0x150/0x6c0 [ 145.127863] [c00000000108bd30] [c000000000058440] .pSeries_idle +0x10/0x40 [ 145.127870] [c00000000108bda0] [c00000000001683c] .cpu_idle +0x18c/0x2d0 [ 145.127876] [c00000000108be60] [c00000000000b434] .rest_init +0x124/0x1b0 [ 145.127884] [c00000000108bef0] [c0000000009d0d28] .start_kernel +0x568/0x588 [ 145.127890] [c00000000108bf90] [c000000000009660] .start_here_common +0x20/0x40 This is because the RCU usage in interrupt context should be used in area marked by rcu_irq_enter()/rcu_irq_exit(), called in irq_enter()/irq_exit() respectively. Move them into the irq_enter()/irq_exit() area to avoid the reporting. Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-10 15:37:43 +00:00
trace_irq_entry(regs);
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
/*
* Query the platform PIC for the interrupt & ack it.
*
* This will typically lower the interrupt line to the CPU
*/
irq = ppc_md.get_irq();
/* We can hard enable interrupts now to allow perf interrupts */
powerpc: Rework lazy-interrupt handling The current implementation of lazy interrupts handling has some issues that this tries to address. We don't do the various workarounds we need to do when re-enabling interrupts in some cases such as when returning from an interrupt and thus we may still lose or get delayed decrementer or doorbell interrupts. The current scheme also makes it much harder to handle the external "edge" interrupts provided by some BookE processors when using the EPR facility (External Proxy) and the Freescale Hypervisor. Additionally, we tend to keep interrupts hard disabled in a number of cases, such as decrementer interrupts, external interrupts, or when a masked decrementer interrupt is pending. This is sub-optimal. This is an attempt at fixing it all in one go by reworking the way we do the lazy interrupt disabling from the ground up. The base idea is to replace the "hard_enabled" field with a "irq_happened" field in which we store a bit mask of what interrupt occurred while soft-disabled. When re-enabling, either via arch_local_irq_restore() or when returning from an interrupt, we can now decide what to do by testing bits in that field. We then implement replaying of the missed interrupts either by re-using the existing exception frame (in exception exit case) or via the creation of a new one from an assembly trampoline (in the arch_local_irq_enable case). This removes the need to play with the decrementer to try to create fake interrupts, among others. In addition, this adds a few refinements: - We no longer hard disable decrementer interrupts that occur while soft-disabled. We now simply bump the decrementer back to max (on BookS) or leave it stopped (on BookE) and continue with hard interrupts enabled, which means that we'll potentially get better sample quality from performance monitor interrupts. - Timer, decrementer and doorbell interrupts now hard-enable shortly after removing the source of the interrupt, which means they no longer run entirely hard disabled. Again, this will improve perf sample quality. - On Book3E 64-bit, we now make the performance monitor interrupt act as an NMI like Book3S (the necessary C code for that to work appear to already be present in the FSL perf code, notably calling nmi_enter instead of irq_enter). (This also fixes a bug where BookE perfmon interrupts could clobber r14 ... oops) - We could make "masked" decrementer interrupts act as NMIs when doing timer-based perf sampling to improve the sample quality. Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org> --- v2: - Add hard-enable to decrementer, timer and doorbells - Fix CR clobber in masked irq handling on BookE - Make embedded perf interrupt act as an NMI - Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want to retrigger an interrupt without preventing hard-enable v3: - Fix or vs. ori bug on Book3E - Fix enabling of interrupts for some exceptions on Book3E v4: - Fix resend of doorbells on return from interrupt on Book3E v5: - Rebased on top of my latest series, which involves some significant rework of some aspects of the patch. v6: - 32-bit compile fix - more compile fixes with various .config combos - factor out the asm code to soft-disable interrupts - remove the C wrapper around preempt_schedule_irq v7: - Fix a bug with hard irq state tracking on native power7
2012-03-06 18:27:59 +11:00
may_hard_irq_enable();
/* And finally process it */
if (unlikely(!irq))
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-21 15:23:25 -05:00
__this_cpu_inc(irq_stat.spurious_irqs);
else
Revert "powerpc: Handle simultaneous interrupts at once" This reverts commit 45cb08f4791ce6a15c54598b4cb73db4b4b8294f. For some reason this is causing IRQ problems on Freescale Book3E machines, eg on my p5020ds: irq 25: nobody cared (try booting with the "irqpoll" option) CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc3-gcc-6.3.1-00037-g45cb08f4791c #624 Call Trace: [c0000000fffdbb10] [c00000000049962c] .dump_stack+0xa8/0xe8 (unreliable) [c0000000fffdbba0] [c0000000000babf4] .__report_bad_irq+0x54/0x140 [c0000000fffdbc40] [c0000000000bb11c] .note_interrupt+0x324/0x380 [c0000000fffdbd00] [c0000000000b7110] .handle_irq_event_percpu+0x68/0x88 [c0000000fffdbd90] [c0000000000b718c] .handle_irq_event+0x5c/0xa8 [c0000000fffdbe10] [c0000000000bc01c] .handle_fasteoi_irq+0xe4/0x298 [c0000000fffdbe90] [c0000000000b59c4] .generic_handle_irq+0x50/0x74 [c0000000fffdbf10] [c0000000000075d8] .__do_irq+0x74/0x1f0 [c0000000fffdbf90] [c0000000000189f8] .call_do_irq+0x14/0x24 [c0000000f7173060] [c0000000000077e4] .do_IRQ+0x90/0x120 [c0000000f7173100] [c00000000001d93c] exc_0x500_common+0xfc/0x100 --- interrupt: 501 at .prepare_to_wait_event+0xc/0x14c LR = .fsl_elbc_run_command+0xc8/0x23c [c0000000f71734d0] [c00000000065f418] .nand_reset+0xb8/0x168 [c0000000f7173560] [c00000000065fec4] .nand_scan_ident+0x2b0/0x1638 [c0000000f7173650] [c000000000666cd8] .fsl_elbc_nand_probe+0x34c/0x5f0 ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 300) [c0000000f7173750] [c0000000005a3c60] .platform_drv_probe+0x64/0xb0 [c0000000f71737d0] [c0000000005a12e0] .really_probe+0x290/0x334 [c0000000f7173870] [c0000000005a14a0] .__driver_attach+0x11c/0x120 [c0000000f7173900] [c00000000059e6a0] .bus_for_each_dev+0x98/0xfc [c0000000f71739a0] [c0000000005a0b3c] .driver_attach+0x34/0x4c [c0000000f7173a20] [c0000000005a04b0] .bus_add_driver+0x1ac/0x2e0 [c0000000f7173ac0] [c0000000005a2170] .driver_register+0x94/0x160 [c0000000f7173b40] [c0000000005a3be0] .__platform_driver_register+0x60/0x7c [c0000000f7173bc0] [c000000000d6aab4] .fsl_elbc_nand_driver_init+0x24/0x38 [c0000000f7173c30] [c000000000001934] .do_one_initcall+0x68/0x1b8 [c0000000f7173d00] [c000000000d210f8] .kernel_init_freeable+0x260/0x338 [c0000000f7173db0] [c0000000000021b0] .kernel_init+0x20/0xe70 [c0000000f7173e30] [c0000000000009bc] .ret_from_kernel_thread+0x58/0x9c handlers: [<c000000000ed85c8>] .fsl_lbc_ctrl_irq Disabling IRQ #25 Ben also had concerns with the implementation being potentially slow on some PICs, so revert it for now. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-06-15 16:20:46 +10:00
generic_handle_irq(irq);
powerpc/trace: Fix interrupt tracepoints vs. RCU There are a few tracepoints in the interrupt code path, which is before irq_enter(), or after irq_exit(), like trace_irq_entry()/trace_irq_exit() in do_IRQ(), trace_timer_interrupt_entry()/trace_timer_interrupt_exit() in timer_interrupt(). If the interrupt is from idle(), and because tracepoint contains RCU read-side critical section, we could see following suspicious RCU usage reported: [ 145.127743] =============================== [ 145.127747] [ INFO: suspicious RCU usage. ] [ 145.127752] 3.6.0-rc3+ #1 Not tainted [ 145.127755] ------------------------------- [ 145.127759] /root/.workdir/linux/arch/powerpc/include/asm/trace.h:33 suspicious rcu_dereference_check() usage! [ 145.127765] [ 145.127765] other info that might help us debug this: [ 145.127765] [ 145.127771] [ 145.127771] RCU used illegally from idle CPU! [ 145.127771] rcu_scheduler_active = 1, debug_locks = 0 [ 145.127777] RCU used illegally from extended quiescent state! [ 145.127781] no locks held by swapper/0/0. [ 145.127785] [ 145.127785] stack backtrace: [ 145.127789] Call Trace: [ 145.127796] [c00000000108b530] [c000000000013c40] .show_stack +0x70/0x1c0 (unreliable) [ 145.127806] [c00000000108b5e0] [c0000000000f59d8] .lockdep_rcu_suspicious+0x118/0x150 [ 145.127813] [c00000000108b680] [c00000000000fc58] .do_IRQ+0x498/0x500 [ 145.127820] [c00000000108b750] [c000000000003950] hardware_interrupt_common+0x150/0x180 [ 145.127828] --- Exception: 501 at .plpar_hcall_norets+0x84/0xd4 [ 145.127828] LR = .check_and_cede_processor+0x38/0x70 [ 145.127836] [c00000000108bab0] [c0000000000665dc] .shared_cede_loop +0x5c/0x100 [ 145.127844] [c00000000108bb70] [c000000000588ab0] .cpuidle_enter +0x30/0x50 [ 145.127850] [c00000000108bbe0] [c000000000588b0c] .cpuidle_enter_state+0x3c/0xb0 [ 145.127857] [c00000000108bc60] [c000000000589730] .cpuidle_idle_call +0x150/0x6c0 [ 145.127863] [c00000000108bd30] [c000000000058440] .pSeries_idle +0x10/0x40 [ 145.127870] [c00000000108bda0] [c00000000001683c] .cpu_idle +0x18c/0x2d0 [ 145.127876] [c00000000108be60] [c00000000000b434] .rest_init +0x124/0x1b0 [ 145.127884] [c00000000108bef0] [c0000000009d0d28] .start_kernel +0x568/0x588 [ 145.127890] [c00000000108bf90] [c000000000009660] .start_here_common +0x20/0x40 This is because the RCU usage in interrupt context should be used in area marked by rcu_irq_enter()/rcu_irq_exit(), called in irq_enter()/irq_exit() respectively. Move them into the irq_enter()/irq_exit() area to avoid the reporting. Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-10 15:37:43 +00:00
trace_irq_exit(regs);
}
powerpc/interrupt: Fix OOPS by not calling do_IRQ() from timer_interrupt() An interrupt handler shall not be called from another interrupt handler otherwise this leads to problems like the following: Kernel attempted to write user page (afd4fa84) - exploit attempt? (uid: 1000) ------------[ cut here ]------------ Bug: Write fault blocked by KUAP! WARNING: CPU: 0 PID: 1617 at arch/powerpc/mm/fault.c:230 do_page_fault+0x484/0x720 Modules linked in: CPU: 0 PID: 1617 Comm: sshd Tainted: G W 5.13.0-pmac-00010-g8393422eb77 #7 NIP: c001b77c LR: c001b77c CTR: 00000000 REGS: cb9e5bc0 TRAP: 0700 Tainted: G W (5.13.0-pmac-00010-g8393422eb77) MSR: 00021032 <ME,IR,DR,RI> CR: 24942424 XER: 00000000 GPR00: c001b77c cb9e5c80 c1582c00 00000021 3ffffbff 085b0000 00000027 c8eb644c GPR08: 00000023 00000000 00000000 00000000 24942424 0063f8c8 00000000 000186a0 GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 c07640c4 cb9e5e98 cb9e5e90 GPR24: 00000040 afd4fa96 00000040 02000000 c1fda6c0 afd4fa84 00000300 cb9e5cc0 NIP [c001b77c] do_page_fault+0x484/0x720 LR [c001b77c] do_page_fault+0x484/0x720 Call Trace: [cb9e5c80] [c001b77c] do_page_fault+0x484/0x720 (unreliable) [cb9e5cb0] [c000424c] DataAccess_virt+0xd4/0xe4 --- interrupt: 300 at __copy_tofrom_user+0x110/0x20c NIP: c001f9b4 LR: c03250a0 CTR: 00000004 REGS: cb9e5cc0 TRAP: 0300 Tainted: G W (5.13.0-pmac-00010-g8393422eb77) MSR: 00009032 <EE,ME,IR,DR,RI> CR: 48028468 XER: 20000000 DAR: afd4fa84 DSISR: 0a000000 GPR00: 20726f6f cb9e5d80 c1582c00 00000004 cb9e5e3a 00000016 afd4fa80 00000000 GPR08: 3835202d 72777872 2d78722d 00000004 28028464 0063f8c8 00000000 000186a0 GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 c07640c4 cb9e5e98 cb9e5e90 GPR24: 00000040 afd4fa96 00000040 cb9e5e0c 00000daa a0000000 cb9e5e98 afd4fa56 NIP [c001f9b4] __copy_tofrom_user+0x110/0x20c LR [c03250a0] _copy_to_iter+0x144/0x990 --- interrupt: 300 [cb9e5d80] [c03e89c0] n_tty_read+0xa4/0x598 (unreliable) [cb9e5df0] [c03e2a0c] tty_read+0xdc/0x2b4 [cb9e5e80] [c0156bf8] vfs_read+0x274/0x340 [cb9e5f00] [c01571ac] ksys_read+0x70/0x118 [cb9e5f30] [c0016048] ret_from_syscall+0x0/0x28 --- interrupt: c00 at 0xa7855c88 NIP: a7855c88 LR: a7855c5c CTR: 00000000 REGS: cb9e5f40 TRAP: 0c00 Tainted: G W (5.13.0-pmac-00010-g8393422eb77) MSR: 0000d032 <EE,PR,ME,IR,DR,RI> CR: 2402446c XER: 00000000 GPR00: 00000003 afd4ec70 a72137d0 0000000b afd4ecac 00004000 0065a990 00000800 GPR08: 00000000 a7947930 00000000 00000004 c15831b0 0063f8c8 00000000 000186a0 GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 0065a9e0 00000001 0065fac0 GPR24: 00000000 00000089 00664050 00000000 00668e30 a720c8dc a7943ff4 0065f9b0 NIP [a7855c88] 0xa7855c88 LR [a7855c5c] 0xa7855c5c --- interrupt: c00 Instruction dump: 3884aa88 38630178 48076861 807f0080 48042e45 2f830000 419e0148 3c80c079 3c60c076 38841be4 386301c0 4801f705 <0fe00000> 3860000b 4bfffe30 3c80c06b ---[ end trace fd69b91a8046c2e5 ]--- Here the problem is that by re-enterring an exception handler, kuap_save_and_lock() is called a second time with this time KUAP access locked, leading to regs->kuap being overwritten hence KUAP not being unlocked at exception exit as expected. Do not call do_IRQ() from timer_interrupt() directly. Instead, redefine do_IRQ() as a standard function named __do_IRQ(), and call it from both do_IRQ() and time_interrupt() handlers. Fixes: 3a96570ffceb ("powerpc: convert interrupt handlers to use wrappers") Cc: stable@vger.kernel.org # v5.12+ Reported-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/c17d234f4927d39a1d7100864a8e1145323d33a0.1628611927.git.christophe.leroy@csgroup.eu
2021-08-10 16:13:16 +00:00
void __do_IRQ(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
void *cursp, *irqsp, *sirqsp;
/* Switch to the irq stack to handle this */
cursp = (void *)(current_stack_pointer & ~(THREAD_SIZE - 1));
irqsp = hardirq_ctx[raw_smp_processor_id()];
sirqsp = softirq_ctx[raw_smp_processor_id()];
check_stack_overflow();
/* Already there ? */
if (unlikely(cursp == irqsp || cursp == sirqsp)) {
__do_irq(regs);
set_irq_regs(old_regs);
return;
}
/* Switch stack and call */
call_do_irq(regs, irqsp);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
set_irq_regs(old_regs);
}
powerpc/interrupt: Fix OOPS by not calling do_IRQ() from timer_interrupt() An interrupt handler shall not be called from another interrupt handler otherwise this leads to problems like the following: Kernel attempted to write user page (afd4fa84) - exploit attempt? (uid: 1000) ------------[ cut here ]------------ Bug: Write fault blocked by KUAP! WARNING: CPU: 0 PID: 1617 at arch/powerpc/mm/fault.c:230 do_page_fault+0x484/0x720 Modules linked in: CPU: 0 PID: 1617 Comm: sshd Tainted: G W 5.13.0-pmac-00010-g8393422eb77 #7 NIP: c001b77c LR: c001b77c CTR: 00000000 REGS: cb9e5bc0 TRAP: 0700 Tainted: G W (5.13.0-pmac-00010-g8393422eb77) MSR: 00021032 <ME,IR,DR,RI> CR: 24942424 XER: 00000000 GPR00: c001b77c cb9e5c80 c1582c00 00000021 3ffffbff 085b0000 00000027 c8eb644c GPR08: 00000023 00000000 00000000 00000000 24942424 0063f8c8 00000000 000186a0 GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 c07640c4 cb9e5e98 cb9e5e90 GPR24: 00000040 afd4fa96 00000040 02000000 c1fda6c0 afd4fa84 00000300 cb9e5cc0 NIP [c001b77c] do_page_fault+0x484/0x720 LR [c001b77c] do_page_fault+0x484/0x720 Call Trace: [cb9e5c80] [c001b77c] do_page_fault+0x484/0x720 (unreliable) [cb9e5cb0] [c000424c] DataAccess_virt+0xd4/0xe4 --- interrupt: 300 at __copy_tofrom_user+0x110/0x20c NIP: c001f9b4 LR: c03250a0 CTR: 00000004 REGS: cb9e5cc0 TRAP: 0300 Tainted: G W (5.13.0-pmac-00010-g8393422eb77) MSR: 00009032 <EE,ME,IR,DR,RI> CR: 48028468 XER: 20000000 DAR: afd4fa84 DSISR: 0a000000 GPR00: 20726f6f cb9e5d80 c1582c00 00000004 cb9e5e3a 00000016 afd4fa80 00000000 GPR08: 3835202d 72777872 2d78722d 00000004 28028464 0063f8c8 00000000 000186a0 GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 c07640c4 cb9e5e98 cb9e5e90 GPR24: 00000040 afd4fa96 00000040 cb9e5e0c 00000daa a0000000 cb9e5e98 afd4fa56 NIP [c001f9b4] __copy_tofrom_user+0x110/0x20c LR [c03250a0] _copy_to_iter+0x144/0x990 --- interrupt: 300 [cb9e5d80] [c03e89c0] n_tty_read+0xa4/0x598 (unreliable) [cb9e5df0] [c03e2a0c] tty_read+0xdc/0x2b4 [cb9e5e80] [c0156bf8] vfs_read+0x274/0x340 [cb9e5f00] [c01571ac] ksys_read+0x70/0x118 [cb9e5f30] [c0016048] ret_from_syscall+0x0/0x28 --- interrupt: c00 at 0xa7855c88 NIP: a7855c88 LR: a7855c5c CTR: 00000000 REGS: cb9e5f40 TRAP: 0c00 Tainted: G W (5.13.0-pmac-00010-g8393422eb77) MSR: 0000d032 <EE,PR,ME,IR,DR,RI> CR: 2402446c XER: 00000000 GPR00: 00000003 afd4ec70 a72137d0 0000000b afd4ecac 00004000 0065a990 00000800 GPR08: 00000000 a7947930 00000000 00000004 c15831b0 0063f8c8 00000000 000186a0 GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 0065a9e0 00000001 0065fac0 GPR24: 00000000 00000089 00664050 00000000 00668e30 a720c8dc a7943ff4 0065f9b0 NIP [a7855c88] 0xa7855c88 LR [a7855c5c] 0xa7855c5c --- interrupt: c00 Instruction dump: 3884aa88 38630178 48076861 807f0080 48042e45 2f830000 419e0148 3c80c079 3c60c076 38841be4 386301c0 4801f705 <0fe00000> 3860000b 4bfffe30 3c80c06b ---[ end trace fd69b91a8046c2e5 ]--- Here the problem is that by re-enterring an exception handler, kuap_save_and_lock() is called a second time with this time KUAP access locked, leading to regs->kuap being overwritten hence KUAP not being unlocked at exception exit as expected. Do not call do_IRQ() from timer_interrupt() directly. Instead, redefine do_IRQ() as a standard function named __do_IRQ(), and call it from both do_IRQ() and time_interrupt() handlers. Fixes: 3a96570ffceb ("powerpc: convert interrupt handlers to use wrappers") Cc: stable@vger.kernel.org # v5.12+ Reported-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/c17d234f4927d39a1d7100864a8e1145323d33a0.1628611927.git.christophe.leroy@csgroup.eu
2021-08-10 16:13:16 +00:00
DEFINE_INTERRUPT_HANDLER_ASYNC(do_IRQ)
{
__do_IRQ(regs);
}
static void *__init alloc_vm_stack(void)
{
return __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, THREADINFO_GFP,
NUMA_NO_NODE, (void *)_RET_IP_);
}
static void __init vmap_irqstack_init(void)
{
int i;
for_each_possible_cpu(i) {
softirq_ctx[i] = alloc_vm_stack();
hardirq_ctx[i] = alloc_vm_stack();
}
}
void __init init_IRQ(void)
{
if (IS_ENABLED(CONFIG_VMAP_STACK))
vmap_irqstack_init();
if (ppc_md.init_IRQ)
ppc_md.init_IRQ();
}
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
void *critirq_ctx[NR_CPUS] __read_mostly;
void *dbgirq_ctx[NR_CPUS] __read_mostly;
void *mcheckirq_ctx[NR_CPUS] __read_mostly;
#endif
void *softirq_ctx[NR_CPUS] __read_mostly;
void *hardirq_ctx[NR_CPUS] __read_mostly;
void do_softirq_own_stack(void)
powerpc: Implement accurate task and CPU time accounting This implements accurate task and cpu time accounting for 64-bit powerpc kernels. Instead of accounting a whole jiffy of time to a task on a timer interrupt because that task happened to be running at the time, we now account time in units of timebase ticks according to the actual time spent by the task in user mode and kernel mode. We also count the time spent processing hardware and software interrupts accurately. This is conditional on CONFIG_VIRT_CPU_ACCOUNTING. If that is not set, we do tick-based approximate accounting as before. To get this accurate information, we read either the PURR (processor utilization of resources register) on POWER5 machines, or the timebase on other machines on * each entry to the kernel from usermode * each exit to usermode * transitions between process context, hard irq context and soft irq context in kernel mode * context switches. On POWER5 systems with shared-processor logical partitioning we also read both the PURR and the timebase at each timer interrupt and context switch in order to determine how much time has been taken by the hypervisor to run other partitions ("steal" time). Unfortunately, since we need values of the PURR on both threads at the same time to accurately calculate the steal time, and since we can only calculate steal time on a per-core basis, the apportioning of the steal time between idle time (time which we ceded to the hypervisor in the idle loop) and actual stolen time is somewhat approximate at the moment. This is all based quite heavily on what s390 does, and it uses the generic interfaces that were added by the s390 developers, i.e. account_system_time(), account_user_time(), etc. This patch doesn't add any new interfaces between the kernel and userspace, and doesn't change the units in which time is reported to userspace by things such as /proc/stat, /proc/<pid>/stat, getrusage(), times(), etc. Internally the various task and cpu times are stored in timebase units, but they are converted to USER_HZ units (1/100th of a second) when reported to userspace. Some precision is therefore lost but there should not be any accumulating error, since the internal accumulation is at full precision. Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-02-24 10:06:59 +11:00
{
call_do_softirq(softirq_ctx[smp_processor_id()]);
powerpc: Implement accurate task and CPU time accounting This implements accurate task and cpu time accounting for 64-bit powerpc kernels. Instead of accounting a whole jiffy of time to a task on a timer interrupt because that task happened to be running at the time, we now account time in units of timebase ticks according to the actual time spent by the task in user mode and kernel mode. We also count the time spent processing hardware and software interrupts accurately. This is conditional on CONFIG_VIRT_CPU_ACCOUNTING. If that is not set, we do tick-based approximate accounting as before. To get this accurate information, we read either the PURR (processor utilization of resources register) on POWER5 machines, or the timebase on other machines on * each entry to the kernel from usermode * each exit to usermode * transitions between process context, hard irq context and soft irq context in kernel mode * context switches. On POWER5 systems with shared-processor logical partitioning we also read both the PURR and the timebase at each timer interrupt and context switch in order to determine how much time has been taken by the hypervisor to run other partitions ("steal" time). Unfortunately, since we need values of the PURR on both threads at the same time to accurately calculate the steal time, and since we can only calculate steal time on a per-core basis, the apportioning of the steal time between idle time (time which we ceded to the hypervisor in the idle loop) and actual stolen time is somewhat approximate at the moment. This is all based quite heavily on what s390 does, and it uses the generic interfaces that were added by the s390 developers, i.e. account_system_time(), account_user_time(), etc. This patch doesn't add any new interfaces between the kernel and userspace, and doesn't change the units in which time is reported to userspace by things such as /proc/stat, /proc/<pid>/stat, getrusage(), times(), etc. Internally the various task and cpu times are stored in timebase units, but they are converted to USER_HZ units (1/100th of a second) when reported to userspace. Some precision is therefore lost but there should not be any accumulating error, since the internal accumulation is at full precision. Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-02-24 10:06:59 +11:00
}
irq_hw_number_t virq_to_hw(unsigned int virq)
{
irq_domain/powerpc: eliminate irq_map; use irq_alloc_desc() instead This patch drops the powerpc-specific irq_map table and replaces it with directly using the irq_alloc_desc()/irq_free_desc() interfaces for allocating and freeing irq_desc structures. This patch is a preparation step for generalizing the powerpc-specific virq infrastructure to become irq_domains. As part of this change, the irq_big_lock is changed to a mutex from a raw spinlock. There is no longer any need to use a spin lock since the irq_desc allocation code is now responsible for the critical section of finding an unused range of irq numbers. The radix lookup table is also changed to store the irq_data pointer instead of the irq_map entry since the irq_map is removed. This should end up being functionally equivalent since only allocated irq_descs are ever added to the radix tree. v5: - Really don't ever allocate virq 0. The previous version could still do it if hint == 0 - Respect irq_virq_count setting for NOMAP. Some NOMAP domains cannot use virq values above irq_virq_count. - Use numa_node_id() when allocating irq_descs. Ideally the API should obtain that value from the caller, but that touches a lot of call sites so will be deferred to a follow-on patch. - Fix irq_find_mapping() to include irq numbers lower than NUM_ISA_INTERRUPTS. With the switch to irq_alloc_desc*(), the lowest possible allocated irq is now returned by arch_probe_nr_irqs(). v4: - Fix incorrect access to irq_data structure in debugfs code - Don't ever allocate virq 0 Signed-off-by: Grant Likely <grant.likely@secretlab.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Milton Miller <miltonm@bga.com> Tested-by: Olof Johansson <olof@lixom.net>
2012-02-14 14:06:51 -07:00
struct irq_data *irq_data = irq_get_irq_data(virq);
return WARN_ON(!irq_data) ? 0 : irq_data->hwirq;
}
EXPORT_SYMBOL_GPL(virq_to_hw);
#ifdef CONFIG_SMP
int irq_choose_cpu(const struct cpumask *mask)
{
int cpuid;
if (cpumask_equal(mask, cpu_online_mask)) {
static int irq_rover;
static DEFINE_RAW_SPINLOCK(irq_rover_lock);
unsigned long flags;
/* Round-robin distribution... */
do_round_robin:
raw_spin_lock_irqsave(&irq_rover_lock, flags);
irq_rover = cpumask_next(irq_rover, cpu_online_mask);
if (irq_rover >= nr_cpu_ids)
irq_rover = cpumask_first(cpu_online_mask);
cpuid = irq_rover;
raw_spin_unlock_irqrestore(&irq_rover_lock, flags);
} else {
cpuid = cpumask_first_and(mask, cpu_online_mask);
if (cpuid >= nr_cpu_ids)
goto do_round_robin;
}
return get_hard_smp_processor_id(cpuid);
}
#else
int irq_choose_cpu(const struct cpumask *mask)
{
return hard_smp_processor_id();
}
#endif
2006-07-03 21:36:01 +10:00
powerpc: Implement accurate task and CPU time accounting This implements accurate task and cpu time accounting for 64-bit powerpc kernels. Instead of accounting a whole jiffy of time to a task on a timer interrupt because that task happened to be running at the time, we now account time in units of timebase ticks according to the actual time spent by the task in user mode and kernel mode. We also count the time spent processing hardware and software interrupts accurately. This is conditional on CONFIG_VIRT_CPU_ACCOUNTING. If that is not set, we do tick-based approximate accounting as before. To get this accurate information, we read either the PURR (processor utilization of resources register) on POWER5 machines, or the timebase on other machines on * each entry to the kernel from usermode * each exit to usermode * transitions between process context, hard irq context and soft irq context in kernel mode * context switches. On POWER5 systems with shared-processor logical partitioning we also read both the PURR and the timebase at each timer interrupt and context switch in order to determine how much time has been taken by the hypervisor to run other partitions ("steal" time). Unfortunately, since we need values of the PURR on both threads at the same time to accurately calculate the steal time, and since we can only calculate steal time on a per-core basis, the apportioning of the steal time between idle time (time which we ceded to the hypervisor in the idle loop) and actual stolen time is somewhat approximate at the moment. This is all based quite heavily on what s390 does, and it uses the generic interfaces that were added by the s390 developers, i.e. account_system_time(), account_user_time(), etc. This patch doesn't add any new interfaces between the kernel and userspace, and doesn't change the units in which time is reported to userspace by things such as /proc/stat, /proc/<pid>/stat, getrusage(), times(), etc. Internally the various task and cpu times are stored in timebase units, but they are converted to USER_HZ units (1/100th of a second) when reported to userspace. Some precision is therefore lost but there should not be any accumulating error, since the internal accumulation is at full precision. Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-02-24 10:06:59 +11:00
#ifdef CONFIG_PPC64
static int __init setup_noirqdistrib(char *str)
{
distribute_irqs = 0;
return 1;
}
__setup("noirqdistrib", setup_noirqdistrib);
#endif /* CONFIG_PPC64 */