2007-07-09 20:51:58 +04:00
/*
* Completely Fair Scheduling ( CFS ) Class ( SCHED_NORMAL / SCHED_BATCH )
*
* Copyright ( C ) 2007 Red Hat , Inc . , Ingo Molnar < mingo @ redhat . com >
*
* Interactivity improvements by Mike Galbraith
* ( C ) 2007 Mike Galbraith < efault @ gmx . de >
*
* Various enhancements by Dmitry Adamushko .
* ( C ) 2007 Dmitry Adamushko < dmitry . adamushko @ gmail . com >
*
* Group scheduling enhancements by Srivatsa Vaddagiri
* Copyright IBM Corporation , 2007
* Author : Srivatsa Vaddagiri < vatsa @ linux . vnet . ibm . com >
*
* Scaled math optimizations by Thomas Gleixner
* Copyright ( C ) 2007 , Thomas Gleixner < tglx @ linutronix . de >
2007-08-25 20:41:53 +04:00
*
* Adaptive scheduling granularity , math enhancements by Peter Zijlstra
* Copyright ( C ) 2007 Red Hat , Inc . , Peter Zijlstra < pzijlstr @ redhat . com >
2007-07-09 20:51:58 +04:00
*/
2008-01-25 23:08:34 +03:00
# include <linux/latencytop.h>
2009-11-30 14:16:47 +03:00
# include <linux/sched.h>
2011-03-26 15:52:55 +03:00
# include <linux/cpumask.h>
2011-10-25 12:00:11 +04:00
# include <linux/slab.h>
# include <linux/profile.h>
# include <linux/interrupt.h>
# include <trace/events/sched.h>
# include "sched.h"
2008-01-25 23:08:34 +03:00
2007-07-09 20:51:58 +04:00
/*
2007-08-25 20:41:53 +04:00
* Targeted preemption latency for CPU - bound tasks :
2010-10-14 11:09:13 +04:00
* ( default : 6 ms * ( 1 + ilog ( ncpus ) ) , units : nanoseconds )
2007-07-09 20:51:58 +04:00
*
2007-08-25 20:41:53 +04:00
* NOTE : this latency value is not the same as the concept of
2007-10-15 19:00:14 +04:00
* ' timeslice length ' - timeslices in CFS are of variable length
* and have no persistent notion like in traditional , time - slice
* based scheduling concepts .
2007-07-09 20:51:58 +04:00
*
2007-10-15 19:00:14 +04:00
* ( to see the precise effective timeslice length of your workload ,
* run vmstat and monitor the context - switches ( cs ) field )
2007-07-09 20:51:58 +04:00
*/
2010-03-11 19:17:15 +03:00
unsigned int sysctl_sched_latency = 6000000ULL ;
unsigned int normalized_sysctl_sched_latency = 6000000ULL ;
2007-10-15 19:00:02 +04:00
2009-11-30 14:16:47 +03:00
/*
* The initial - and re - scaling of tunables is configurable
* ( default SCHED_TUNABLESCALING_LOG = * ( 1 + ilog ( ncpus ) )
*
* Options are :
* SCHED_TUNABLESCALING_NONE - unscaled , always * 1
* SCHED_TUNABLESCALING_LOG - scaled logarithmical , * 1 + ilog ( ncpus )
* SCHED_TUNABLESCALING_LINEAR - scaled linear , * ncpus
*/
enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG ;
2007-10-15 19:00:02 +04:00
/*
2007-11-10 00:39:37 +03:00
* Minimal preemption granularity for CPU - bound tasks :
2010-10-14 11:09:13 +04:00
* ( default : 0.75 msec * ( 1 + ilog ( ncpus ) ) , units : nanoseconds )
2007-10-15 19:00:02 +04:00
*/
2010-09-12 10:14:52 +04:00
unsigned int sysctl_sched_min_granularity = 750000ULL ;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL ;
2007-08-25 20:41:53 +04:00
/*
2007-11-10 00:39:37 +03:00
* is kept at sysctl_sched_latency / sysctl_sched_min_granularity
*/
2010-09-12 10:14:52 +04:00
static unsigned int sched_nr_latency = 8 ;
2007-11-10 00:39:37 +03:00
/*
2009-09-09 17:41:37 +04:00
* After fork , child runs first . If set to 0 ( default ) then
2007-11-10 00:39:37 +03:00
* parent will ( try to ) run first .
2007-08-25 20:41:53 +04:00
*/
2009-09-09 17:41:37 +04:00
unsigned int sysctl_sched_child_runs_first __read_mostly ;
2007-07-09 20:51:58 +04:00
/*
* SCHED_OTHER wake - up granularity .
2009-09-09 17:41:37 +04:00
* ( default : 1 msec * ( 1 + ilog ( ncpus ) ) , units : nanoseconds )
2007-07-09 20:51:58 +04:00
*
* This option delays the preemption effects of decoupled workloads
* and reduces their over - scheduling . Synchronous workloads will still
* have immediate wakeup / sleep latencies .
*/
2009-09-09 17:41:37 +04:00
unsigned int sysctl_sched_wakeup_granularity = 1000000UL ;
2009-11-30 14:16:46 +03:00
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL ;
2007-07-09 20:51:58 +04:00
2007-10-15 19:00:18 +04:00
const_debug unsigned int sysctl_sched_migration_cost = 500000UL ;
2010-11-16 02:47:06 +03:00
/*
* The exponential sliding window over which load is averaged for shares
* distribution .
* ( default : 10 msec )
*/
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL ;
2011-07-21 20:43:30 +04:00
# ifdef CONFIG_CFS_BANDWIDTH
/*
* Amount of runtime to allocate from global ( tg ) to local ( per - cfs_rq ) pool
* each time a cfs_rq requests quota .
*
* Note : in the case that the slice exceeds the runtime remaining ( either due
* to consumption or the quota being specified to be smaller than the slice )
* we will always only issue the remaining available time .
*
* default : 5 msec , units : microseconds
*/
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL ;
# endif
2011-10-25 12:00:11 +04:00
/*
* Increase the granularity value when there are more CPUs ,
* because with more CPUs the ' effective latency ' as visible
* to users decreases . But the relationship is not linear ,
* so pick a second - best guess by going with the log2 of the
* number of CPUs .
*
* This idea comes from the SD scheduler of Con Kolivas :
*/
static int get_update_sysctl_factor ( void )
{
unsigned int cpus = min_t ( int , num_online_cpus ( ) , 8 ) ;
unsigned int factor ;
switch ( sysctl_sched_tunable_scaling ) {
case SCHED_TUNABLESCALING_NONE :
factor = 1 ;
break ;
case SCHED_TUNABLESCALING_LINEAR :
factor = cpus ;
break ;
case SCHED_TUNABLESCALING_LOG :
default :
factor = 1 + ilog2 ( cpus ) ;
break ;
}
return factor ;
}
static void update_sysctl ( void )
{
unsigned int factor = get_update_sysctl_factor ( ) ;
# define SET_SYSCTL(name) \
( sysctl_ # # name = ( factor ) * normalized_sysctl_ # # name )
SET_SYSCTL ( sched_min_granularity ) ;
SET_SYSCTL ( sched_latency ) ;
SET_SYSCTL ( sched_wakeup_granularity ) ;
# undef SET_SYSCTL
}
void sched_init_granularity ( void )
{
update_sysctl ( ) ;
}
# if BITS_PER_LONG == 32
# define WMULT_CONST (~0UL)
# else
# define WMULT_CONST (1UL << 32)
# endif
# define WMULT_SHIFT 32
/*
* Shift right and round :
*/
# define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
/*
* delta * = weight / lw
*/
static unsigned long
calc_delta_mine ( unsigned long delta_exec , unsigned long weight ,
struct load_weight * lw )
{
u64 tmp ;
/*
* weight can be less than 2 ^ SCHED_LOAD_RESOLUTION for task group sched
* entities since MIN_SHARES = 2. Treat weight as 1 if less than
* 2 ^ SCHED_LOAD_RESOLUTION .
*/
if ( likely ( weight > ( 1UL < < SCHED_LOAD_RESOLUTION ) ) )
tmp = ( u64 ) delta_exec * scale_load_down ( weight ) ;
else
tmp = ( u64 ) delta_exec ;
if ( ! lw - > inv_weight ) {
unsigned long w = scale_load_down ( lw - > weight ) ;
if ( BITS_PER_LONG > 32 & & unlikely ( w > = WMULT_CONST ) )
lw - > inv_weight = 1 ;
else if ( unlikely ( ! w ) )
lw - > inv_weight = WMULT_CONST ;
else
lw - > inv_weight = WMULT_CONST / w ;
}
/*
* Check whether we ' d overflow the 64 - bit multiplication :
*/
if ( unlikely ( tmp > WMULT_CONST ) )
tmp = SRR ( SRR ( tmp , WMULT_SHIFT / 2 ) * lw - > inv_weight ,
WMULT_SHIFT / 2 ) ;
else
tmp = SRR ( tmp * lw - > inv_weight , WMULT_SHIFT ) ;
return ( unsigned long ) min ( tmp , ( u64 ) ( unsigned long ) LONG_MAX ) ;
}
const struct sched_class fair_sched_class ;
2008-10-17 21:27:03 +04:00
2007-07-09 20:51:58 +04:00
/**************************************************************
* CFS operations on generic schedulable entities :
*/
2007-10-15 19:00:03 +04:00
# ifdef CONFIG_FAIR_GROUP_SCHED
2007-07-09 20:51:58 +04:00
2007-10-15 19:00:03 +04:00
/* cpu runqueue to which this cfs_rq is attached */
2007-07-09 20:51:58 +04:00
static inline struct rq * rq_of ( struct cfs_rq * cfs_rq )
{
2007-10-15 19:00:03 +04:00
return cfs_rq - > rq ;
2007-07-09 20:51:58 +04:00
}
2007-10-15 19:00:03 +04:00
/* An entity is a task if it doesn't "own" a runqueue */
# define entity_is_task(se) (!se->my_q)
2007-07-09 20:51:58 +04:00
2009-07-24 14:25:30 +04:00
static inline struct task_struct * task_of ( struct sched_entity * se )
{
# ifdef CONFIG_SCHED_DEBUG
WARN_ON_ONCE ( ! entity_is_task ( se ) ) ;
# endif
return container_of ( se , struct task_struct , se ) ;
}
2008-04-19 21:45:00 +04:00
/* Walk up scheduling entities hierarchy */
# define for_each_sched_entity(se) \
for ( ; se ; se = se - > parent )
static inline struct cfs_rq * task_cfs_rq ( struct task_struct * p )
{
return p - > se . cfs_rq ;
}
/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq * cfs_rq_of ( struct sched_entity * se )
{
return se - > cfs_rq ;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq * group_cfs_rq ( struct sched_entity * grp )
{
return grp - > my_q ;
}
2012-10-04 15:18:30 +04:00
static void update_cfs_rq_blocked_load ( struct cfs_rq * cfs_rq ,
int force_update ) ;
2012-10-04 15:18:30 +04:00
2010-11-16 02:47:01 +03:00
static inline void list_add_leaf_cfs_rq ( struct cfs_rq * cfs_rq )
{
if ( ! cfs_rq - > on_list ) {
2010-11-16 02:47:05 +03:00
/*
* Ensure we either appear before our parent ( if already
* enqueued ) or force our parent to appear after us when it is
* enqueued . The fact that we always enqueue bottom - up
* reduces this to two cases .
*/
if ( cfs_rq - > tg - > parent & &
cfs_rq - > tg - > parent - > cfs_rq [ cpu_of ( rq_of ( cfs_rq ) ) ] - > on_list ) {
list_add_rcu ( & cfs_rq - > leaf_cfs_rq_list ,
& rq_of ( cfs_rq ) - > leaf_cfs_rq_list ) ;
} else {
list_add_tail_rcu ( & cfs_rq - > leaf_cfs_rq_list ,
2010-11-16 02:47:01 +03:00
& rq_of ( cfs_rq ) - > leaf_cfs_rq_list ) ;
2010-11-16 02:47:05 +03:00
}
2010-11-16 02:47:01 +03:00
cfs_rq - > on_list = 1 ;
2012-10-04 15:18:30 +04:00
/* We should have no load, but we need to update last_decay. */
2012-10-04 15:18:30 +04:00
update_cfs_rq_blocked_load ( cfs_rq , 0 ) ;
2010-11-16 02:47:01 +03:00
}
}
static inline void list_del_leaf_cfs_rq ( struct cfs_rq * cfs_rq )
{
if ( cfs_rq - > on_list ) {
list_del_rcu ( & cfs_rq - > leaf_cfs_rq_list ) ;
cfs_rq - > on_list = 0 ;
}
}
2008-04-19 21:45:00 +04:00
/* Iterate thr' all leaf cfs_rq's on a runqueue */
# define for_each_leaf_cfs_rq(rq, cfs_rq) \
list_for_each_entry_rcu ( cfs_rq , & rq - > leaf_cfs_rq_list , leaf_cfs_rq_list )
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group ( struct sched_entity * se , struct sched_entity * pse )
{
if ( se - > cfs_rq = = pse - > cfs_rq )
return 1 ;
return 0 ;
}
static inline struct sched_entity * parent_entity ( struct sched_entity * se )
{
return se - > parent ;
}
2008-10-24 13:06:15 +04:00
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se ( struct sched_entity * se )
{
int depth = 0 ;
for_each_sched_entity ( se )
depth + + ;
return depth ;
}
static void
find_matching_se ( struct sched_entity * * se , struct sched_entity * * pse )
{
int se_depth , pse_depth ;
/*
* preemption test can be made between sibling entities who are in the
* same cfs_rq i . e who have a common parent . Walk up the hierarchy of
* both tasks until we find their ancestors who are siblings of common
* parent .
*/
/* First walk up until both entities are at same depth */
se_depth = depth_se ( * se ) ;
pse_depth = depth_se ( * pse ) ;
while ( se_depth > pse_depth ) {
se_depth - - ;
* se = parent_entity ( * se ) ;
}
while ( pse_depth > se_depth ) {
pse_depth - - ;
* pse = parent_entity ( * pse ) ;
}
while ( ! is_same_group ( * se , * pse ) ) {
* se = parent_entity ( * se ) ;
* pse = parent_entity ( * pse ) ;
}
}
2009-07-24 14:25:30 +04:00
# else /* !CONFIG_FAIR_GROUP_SCHED */
static inline struct task_struct * task_of ( struct sched_entity * se )
{
return container_of ( se , struct task_struct , se ) ;
}
2007-07-09 20:51:58 +04:00
2007-10-15 19:00:03 +04:00
static inline struct rq * rq_of ( struct cfs_rq * cfs_rq )
{
return container_of ( cfs_rq , struct rq , cfs ) ;
2007-07-09 20:51:58 +04:00
}
# define entity_is_task(se) 1
2008-04-19 21:45:00 +04:00
# define for_each_sched_entity(se) \
for ( ; se ; se = NULL )
2007-07-09 20:51:58 +04:00
2008-04-19 21:45:00 +04:00
static inline struct cfs_rq * task_cfs_rq ( struct task_struct * p )
2007-07-09 20:51:58 +04:00
{
2008-04-19 21:45:00 +04:00
return & task_rq ( p ) - > cfs ;
2007-07-09 20:51:58 +04:00
}
2008-04-19 21:45:00 +04:00
static inline struct cfs_rq * cfs_rq_of ( struct sched_entity * se )
{
struct task_struct * p = task_of ( se ) ;
struct rq * rq = task_rq ( p ) ;
return & rq - > cfs ;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq * group_cfs_rq ( struct sched_entity * grp )
{
return NULL ;
}
2010-11-16 02:47:01 +03:00
static inline void list_add_leaf_cfs_rq ( struct cfs_rq * cfs_rq )
{
}
static inline void list_del_leaf_cfs_rq ( struct cfs_rq * cfs_rq )
{
}
2008-04-19 21:45:00 +04:00
# define for_each_leaf_cfs_rq(rq, cfs_rq) \
for ( cfs_rq = & rq - > cfs ; cfs_rq ; cfs_rq = NULL )
static inline int
is_same_group ( struct sched_entity * se , struct sched_entity * pse )
{
return 1 ;
}
static inline struct sched_entity * parent_entity ( struct sched_entity * se )
{
return NULL ;
}
2008-10-24 13:06:15 +04:00
static inline void
find_matching_se ( struct sched_entity * * se , struct sched_entity * * pse )
{
}
2008-04-19 21:45:00 +04:00
# endif /* CONFIG_FAIR_GROUP_SCHED */
2012-03-22 00:07:16 +04:00
static __always_inline
void account_cfs_rq_runtime ( struct cfs_rq * cfs_rq , unsigned long delta_exec ) ;
2007-07-09 20:51:58 +04:00
/**************************************************************
* Scheduling class tree data structure manipulation methods :
*/
2007-10-15 19:00:14 +04:00
static inline u64 max_vruntime ( u64 min_vruntime , u64 vruntime )
2007-10-15 19:00:07 +04:00
{
2007-10-15 19:00:11 +04:00
s64 delta = ( s64 ) ( vruntime - min_vruntime ) ;
if ( delta > 0 )
2007-10-15 19:00:07 +04:00
min_vruntime = vruntime ;
return min_vruntime ;
}
2007-10-15 19:00:14 +04:00
static inline u64 min_vruntime ( u64 min_vruntime , u64 vruntime )
2007-10-15 19:00:12 +04:00
{
s64 delta = ( s64 ) ( vruntime - min_vruntime ) ;
if ( delta < 0 )
min_vruntime = vruntime ;
return min_vruntime ;
}
2009-07-16 14:32:27 +04:00
static inline int entity_before ( struct sched_entity * a ,
struct sched_entity * b )
{
return ( s64 ) ( a - > vruntime - b - > vruntime ) < 0 ;
}
2008-10-24 13:06:13 +04:00
static void update_min_vruntime ( struct cfs_rq * cfs_rq )
{
u64 vruntime = cfs_rq - > min_vruntime ;
if ( cfs_rq - > curr )
vruntime = cfs_rq - > curr - > vruntime ;
if ( cfs_rq - > rb_leftmost ) {
struct sched_entity * se = rb_entry ( cfs_rq - > rb_leftmost ,
struct sched_entity ,
run_node ) ;
sched: fix update_min_vruntime
Impact: fix SCHED_IDLE latency problems
OK, so we have 1 running task A (which is obviously curr and the tree is
equally obviously empty).
'A' nicely chugs along, doing its thing, carrying min_vruntime along as it
goes.
Then some whacko speed freak SCHED_IDLE task gets inserted due to SMP
balancing, which is very likely far right, in that case
update_curr
update_min_vruntime
cfs_rq->rb_leftmost := true (the crazy task sitting in a tree)
vruntime = se->vruntime
and voila, min_vruntime is waaay right of where it ought to be.
OK, so why did I write it like that to begin with...
Aah, yes.
Say we've just dequeued current
schedule
deactivate_task(prev)
dequeue_entity
update_min_vruntime
Then we'll set
vruntime = cfs_rq->min_vruntime;
we find !cfs_rq->curr, but do find someone in the tree. Then we _must_
do vruntime = se->vruntime, because
vruntime = min_vruntime(vruntime := cfs_rq->min_vruntime, se->vruntime)
will not advance vruntime, and cause lags the other way around (which we
fixed with that initial patch: 1af5f730fc1bf7c62ec9fb2d307206e18bf40a69
(sched: more accurate min_vruntime accounting).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Mike Galbraith <efault@gmx.de>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-15 16:53:39 +03:00
if ( ! cfs_rq - > curr )
2008-10-24 13:06:13 +04:00
vruntime = se - > vruntime ;
else
vruntime = min_vruntime ( vruntime , se - > vruntime ) ;
}
cfs_rq - > min_vruntime = max_vruntime ( cfs_rq - > min_vruntime , vruntime ) ;
2011-04-05 19:23:48 +04:00
# ifndef CONFIG_64BIT
smp_wmb ( ) ;
cfs_rq - > min_vruntime_copy = cfs_rq - > min_vruntime ;
# endif
2008-10-24 13:06:13 +04:00
}
2007-07-09 20:51:58 +04:00
/*
* Enqueue an entity into the rb - tree :
*/
2007-10-15 19:00:14 +04:00
static void __enqueue_entity ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
struct rb_node * * link = & cfs_rq - > tasks_timeline . rb_node ;
struct rb_node * parent = NULL ;
struct sched_entity * entry ;
int leftmost = 1 ;
/*
* Find the right place in the rbtree :
*/
while ( * link ) {
parent = * link ;
entry = rb_entry ( parent , struct sched_entity , run_node ) ;
/*
* We dont care about collisions . Nodes with
* the same key stay together .
*/
2011-07-20 16:46:59 +04:00
if ( entity_before ( se , entry ) ) {
2007-07-09 20:51:58 +04:00
link = & parent - > rb_left ;
} else {
link = & parent - > rb_right ;
leftmost = 0 ;
}
}
/*
* Maintain a cache of leftmost tree entries ( it is frequently
* used ) :
*/
2008-10-24 13:06:13 +04:00
if ( leftmost )
2007-10-15 19:00:11 +04:00
cfs_rq - > rb_leftmost = & se - > run_node ;
2007-07-09 20:51:58 +04:00
rb_link_node ( & se - > run_node , parent , link ) ;
rb_insert_color ( & se - > run_node , & cfs_rq - > tasks_timeline ) ;
}
2007-10-15 19:00:14 +04:00
static void __dequeue_entity ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
2008-03-14 22:55:51 +03:00
if ( cfs_rq - > rb_leftmost = = & se - > run_node ) {
struct rb_node * next_node ;
next_node = rb_next ( & se - > run_node ) ;
cfs_rq - > rb_leftmost = next_node ;
}
2007-10-15 19:00:04 +04:00
2007-07-09 20:51:58 +04:00
rb_erase ( & se - > run_node , & cfs_rq - > tasks_timeline ) ;
}
2011-10-25 12:00:11 +04:00
struct sched_entity * __pick_first_entity ( struct cfs_rq * cfs_rq )
2007-07-09 20:51:58 +04:00
{
2008-11-04 23:25:07 +03:00
struct rb_node * left = cfs_rq - > rb_leftmost ;
if ( ! left )
return NULL ;
return rb_entry ( left , struct sched_entity , run_node ) ;
2007-07-09 20:51:58 +04:00
}
2011-02-01 17:51:03 +03:00
static struct sched_entity * __pick_next_entity ( struct sched_entity * se )
{
struct rb_node * next = rb_next ( & se - > run_node ) ;
if ( ! next )
return NULL ;
return rb_entry ( next , struct sched_entity , run_node ) ;
}
# ifdef CONFIG_SCHED_DEBUG
2011-10-25 12:00:11 +04:00
struct sched_entity * __pick_last_entity ( struct cfs_rq * cfs_rq )
2007-10-15 19:00:05 +04:00
{
2008-02-22 12:32:21 +03:00
struct rb_node * last = rb_last ( & cfs_rq - > tasks_timeline ) ;
2007-10-15 19:00:05 +04:00
2008-02-22 10:55:53 +03:00
if ( ! last )
return NULL ;
2008-02-22 12:32:21 +03:00
return rb_entry ( last , struct sched_entity , run_node ) ;
2007-10-15 19:00:05 +04:00
}
2007-07-09 20:51:58 +04:00
/**************************************************************
* Scheduling class statistics methods :
*/
2009-11-30 14:16:48 +03:00
int sched_proc_update_handler ( struct ctl_table * table , int write ,
2009-09-24 02:57:19 +04:00
void __user * buffer , size_t * lenp ,
2007-11-10 00:39:37 +03:00
loff_t * ppos )
{
2009-09-24 02:57:19 +04:00
int ret = proc_dointvec_minmax ( table , write , buffer , lenp , ppos ) ;
2009-11-30 14:16:48 +03:00
int factor = get_update_sysctl_factor ( ) ;
2007-11-10 00:39:37 +03:00
if ( ret | | ! write )
return ret ;
sched_nr_latency = DIV_ROUND_UP ( sysctl_sched_latency ,
sysctl_sched_min_granularity ) ;
2009-11-30 14:16:48 +03:00
# define WRT_SYSCTL(name) \
( normalized_sysctl_ # # name = sysctl_ # # name / ( factor ) )
WRT_SYSCTL ( sched_min_granularity ) ;
WRT_SYSCTL ( sched_latency ) ;
WRT_SYSCTL ( sched_wakeup_granularity ) ;
# undef WRT_SYSCTL
2007-11-10 00:39:37 +03:00
return 0 ;
}
# endif
2007-10-15 19:00:13 +04:00
2008-06-27 15:41:11 +04:00
/*
2008-10-17 21:27:04 +04:00
* delta / = w
2008-06-27 15:41:11 +04:00
*/
static inline unsigned long
calc_delta_fair ( unsigned long delta , struct sched_entity * se )
{
2008-10-17 21:27:04 +04:00
if ( unlikely ( se - > load . weight ! = NICE_0_LOAD ) )
delta = calc_delta_mine ( delta , NICE_0_LOAD , & se - > load ) ;
2008-06-27 15:41:11 +04:00
return delta ;
}
2007-10-15 19:00:13 +04:00
/*
* The idea is to set a period in which each task runs once .
*
2012-08-08 18:16:04 +04:00
* When there are too many tasks ( sched_nr_latency ) we have to stretch
2007-10-15 19:00:13 +04:00
* this period because otherwise the slices get too small .
*
* p = ( nr < = nl ) ? l : l * nr / nl
*/
2007-10-15 19:00:04 +04:00
static u64 __sched_period ( unsigned long nr_running )
{
u64 period = sysctl_sched_latency ;
2007-11-10 00:39:37 +03:00
unsigned long nr_latency = sched_nr_latency ;
2007-10-15 19:00:04 +04:00
if ( unlikely ( nr_running > nr_latency ) ) {
2008-01-25 23:08:21 +03:00
period = sysctl_sched_min_granularity ;
2007-10-15 19:00:04 +04:00
period * = nr_running ;
}
return period ;
}
2007-10-15 19:00:13 +04:00
/*
* We calculate the wall - time slice from the period by taking a part
* proportional to the weight .
*
2008-10-17 21:27:04 +04:00
* s = p * P [ w / rw ]
2007-10-15 19:00:13 +04:00
*/
2007-10-15 19:00:05 +04:00
static u64 sched_slice ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-08-25 20:41:53 +04:00
{
2009-01-02 14:16:42 +03:00
u64 slice = __sched_period ( cfs_rq - > nr_running + ! se - > on_rq ) ;
2008-10-17 21:27:04 +04:00
2009-01-02 14:16:42 +03:00
for_each_sched_entity ( se ) {
2009-01-15 19:17:15 +03:00
struct load_weight * load ;
2009-06-16 12:35:12 +04:00
struct load_weight lw ;
2009-01-15 19:17:15 +03:00
cfs_rq = cfs_rq_of ( se ) ;
load = & cfs_rq - > load ;
2008-10-17 21:27:04 +04:00
2009-01-02 14:16:42 +03:00
if ( unlikely ( ! se - > on_rq ) ) {
2009-06-16 12:35:12 +04:00
lw = cfs_rq - > load ;
2009-01-02 14:16:42 +03:00
update_load_add ( & lw , se - > load . weight ) ;
load = & lw ;
}
slice = calc_delta_mine ( slice , se - > load . weight , load ) ;
}
return slice ;
2007-07-09 20:51:58 +04:00
}
2007-10-15 19:00:13 +04:00
/*
2008-04-19 21:45:00 +04:00
* We calculate the vruntime slice of a to be inserted task
2007-10-15 19:00:13 +04:00
*
2008-10-17 21:27:04 +04:00
* vs = s / w
2007-10-15 19:00:13 +04:00
*/
2008-10-17 21:27:04 +04:00
static u64 sched_vslice ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-10-15 19:00:10 +04:00
{
2008-10-17 21:27:04 +04:00
return calc_delta_fair ( sched_slice ( cfs_rq , se ) , se ) ;
2008-06-27 15:41:11 +04:00
}
2007-07-09 20:51:58 +04:00
/*
* Update the current task ' s runtime statistics . Skip current tasks that
* are not in our scheduling class .
*/
static inline void
2007-10-15 19:00:03 +04:00
__update_curr ( struct cfs_rq * cfs_rq , struct sched_entity * curr ,
unsigned long delta_exec )
2007-07-09 20:51:58 +04:00
{
2007-10-15 19:00:06 +04:00
unsigned long delta_exec_weighted ;
2007-07-09 20:51:58 +04:00
2010-03-11 05:37:45 +03:00
schedstat_set ( curr - > statistics . exec_max ,
max ( ( u64 ) delta_exec , curr - > statistics . exec_max ) ) ;
2007-07-09 20:51:58 +04:00
curr - > sum_exec_runtime + = delta_exec ;
2007-10-15 19:00:06 +04:00
schedstat_add ( cfs_rq , exec_clock , delta_exec ) ;
2008-06-27 15:41:11 +04:00
delta_exec_weighted = calc_delta_fair ( delta_exec , curr ) ;
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
2007-10-15 19:00:04 +04:00
curr - > vruntime + = delta_exec_weighted ;
2008-10-24 13:06:13 +04:00
update_min_vruntime ( cfs_rq ) ;
2007-07-09 20:51:58 +04:00
}
2007-08-09 13:16:47 +04:00
static void update_curr ( struct cfs_rq * cfs_rq )
2007-07-09 20:51:58 +04:00
{
2007-10-15 19:00:03 +04:00
struct sched_entity * curr = cfs_rq - > curr ;
2010-10-05 04:03:21 +04:00
u64 now = rq_of ( cfs_rq ) - > clock_task ;
2007-07-09 20:51:58 +04:00
unsigned long delta_exec ;
if ( unlikely ( ! curr ) )
return ;
/*
* Get the amount of time the current task was running
* since the last time we changed load ( this cannot
* overflow on 32 bits ) :
*/
2007-10-15 19:00:03 +04:00
delta_exec = ( unsigned long ) ( now - curr - > exec_start ) ;
2008-12-16 10:45:31 +03:00
if ( ! delta_exec )
return ;
2007-07-09 20:51:58 +04:00
2007-10-15 19:00:03 +04:00
__update_curr ( cfs_rq , curr , delta_exec ) ;
curr - > exec_start = now ;
2007-12-02 22:04:49 +03:00
if ( entity_is_task ( curr ) ) {
struct task_struct * curtask = task_of ( curr ) ;
2009-09-13 20:15:54 +04:00
trace_sched_stat_runtime ( curtask , delta_exec , curr - > vruntime ) ;
2007-12-02 22:04:49 +03:00
cpuacct_charge ( curtask , delta_exec ) ;
timers: fix itimer/many thread hang
Overview
This patch reworks the handling of POSIX CPU timers, including the
ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together
with the help of Roland McGrath, the owner and original writer of this code.
The problem we ran into, and the reason for this rework, has to do with using
a profiling timer in a process with a large number of threads. It appears
that the performance of the old implementation of run_posix_cpu_timers() was
at least O(n*3) (where "n" is the number of threads in a process) or worse.
Everything is fine with an increasing number of threads until the time taken
for that routine to run becomes the same as or greater than the tick time, at
which point things degrade rather quickly.
This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF."
Code Changes
This rework corrects the implementation of run_posix_cpu_timers() to make it
run in constant time for a particular machine. (Performance may vary between
one machine and another depending upon whether the kernel is built as single-
or multiprocessor and, in the latter case, depending upon the number of
running processors.) To do this, at each tick we now update fields in
signal_struct as well as task_struct. The run_posix_cpu_timers() function
uses those fields to make its decisions.
We define a new structure, "task_cputime," to contain user, system and
scheduler times and use these in appropriate places:
struct task_cputime {
cputime_t utime;
cputime_t stime;
unsigned long long sum_exec_runtime;
};
This is included in the structure "thread_group_cputime," which is a new
substructure of signal_struct and which varies for uniprocessor versus
multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as
a simple substructure, while for multiprocessor kernels it is a pointer:
struct thread_group_cputime {
struct task_cputime totals;
};
struct thread_group_cputime {
struct task_cputime *totals;
};
We also add a new task_cputime substructure directly to signal_struct, to
cache the earliest expiration of process-wide timers, and task_cputime also
replaces the it_*_expires fields of task_struct (used for earliest expiration
of thread timers). The "thread_group_cputime" structure contains process-wide
timers that are updated via account_user_time() and friends. In the non-SMP
case the structure is a simple aggregator; unfortunately in the SMP case that
simplicity was not achievable due to cache-line contention between CPUs (in
one measured case performance was actually _worse_ on a 16-cpu system than
the same test on a 4-cpu system, due to this contention). For SMP, the
thread_group_cputime counters are maintained as a per-cpu structure allocated
using alloc_percpu(). The timer functions update only the timer field in
the structure corresponding to the running CPU, obtained using per_cpu_ptr().
We define a set of inline functions in sched.h that we use to maintain the
thread_group_cputime structure and hide the differences between UP and SMP
implementations from the rest of the kernel. The thread_group_cputime_init()
function initializes the thread_group_cputime structure for the given task.
The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the
out-of-line function thread_group_cputime_alloc_smp() to allocate and fill
in the per-cpu structures and fields. The thread_group_cputime_free()
function, also a no-op for UP, in SMP frees the per-cpu structures. The
thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls
thread_group_cputime_alloc() if the per-cpu structures haven't yet been
allocated. The thread_group_cputime() function fills the task_cputime
structure it is passed with the contents of the thread_group_cputime fields;
in UP it's that simple but in SMP it must also safely check that tsk->signal
is non-NULL (if it is it just uses the appropriate fields of task_struct) and,
if so, sums the per-cpu values for each online CPU. Finally, the three
functions account_group_user_time(), account_group_system_time() and
account_group_exec_runtime() are used by timer functions to update the
respective fields of the thread_group_cputime structure.
Non-SMP operation is trivial and will not be mentioned further.
The per-cpu structure is always allocated when a task creates its first new
thread, via a call to thread_group_cputime_clone_thread() from copy_signal().
It is freed at process exit via a call to thread_group_cputime_free() from
cleanup_signal().
All functions that formerly summed utime/stime/sum_sched_runtime values from
from all threads in the thread group now use thread_group_cputime() to
snapshot the values in the thread_group_cputime structure or the values in
the task structure itself if the per-cpu structure hasn't been allocated.
Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit.
The run_posix_cpu_timers() function has been split into a fast path and a
slow path; the former safely checks whether there are any expired thread
timers and, if not, just returns, while the slow path does the heavy lifting.
With the dedicated thread group fields, timers are no longer "rebalanced" and
the process_timer_rebalance() function and related code has gone away. All
summing loops are gone and all code that used them now uses the
thread_group_cputime() inline. When process-wide timers are set, the new
task_cputime structure in signal_struct is used to cache the earliest
expiration; this is checked in the fast path.
Performance
The fix appears not to add significant overhead to existing operations. It
generally performs the same as the current code except in two cases, one in
which it performs slightly worse (Case 5 below) and one in which it performs
very significantly better (Case 2 below). Overall it's a wash except in those
two cases.
I've since done somewhat more involved testing on a dual-core Opteron system.
Case 1: With no itimer running, for a test with 100,000 threads, the fixed
kernel took 1428.5 seconds, 513 seconds more than the unfixed system,
all of which was spent in the system. There were twice as many
voluntary context switches with the fix as without it.
Case 2: With an itimer running at .01 second ticks and 4000 threads (the most
an unmodified kernel can handle), the fixed kernel ran the test in
eight percent of the time (5.8 seconds as opposed to 70 seconds) and
had better tick accuracy (.012 seconds per tick as opposed to .023
seconds per tick).
Case 3: A 4000-thread test with an initial timer tick of .01 second and an
interval of 10,000 seconds (i.e. a timer that ticks only once) had
very nearly the same performance in both cases: 6.3 seconds elapsed
for the fixed kernel versus 5.5 seconds for the unfixed kernel.
With fewer threads (eight in these tests), the Case 1 test ran in essentially
the same time on both the modified and unmodified kernels (5.2 seconds versus
5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds
versus 5.4 seconds but again with much better tick accuracy, .013 seconds per
tick versus .025 seconds per tick for the unmodified kernel.
Since the fix affected the rlimit code, I also tested soft and hard CPU limits.
Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer
running), the modified kernel was very slightly favored in that while
it killed the process in 19.997 seconds of CPU time (5.002 seconds of
wall time), only .003 seconds of that was system time, the rest was
user time. The unmodified kernel killed the process in 20.001 seconds
of CPU (5.014 seconds of wall time) of which .016 seconds was system
time. Really, though, the results were too close to call. The results
were essentially the same with no itimer running.
Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds
(where the hard limit would never be reached) and an itimer running,
the modified kernel exhibited worse tick accuracy than the unmodified
kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise,
performance was almost indistinguishable. With no itimer running this
test exhibited virtually identical behavior and times in both cases.
In times past I did some limited performance testing. those results are below.
On a four-cpu Opteron system without this fix, a sixteen-thread test executed
in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On
the same system with the fix, user and elapsed time were about the same, but
system time dropped to 0.007 seconds. Performance with eight, four and one
thread were comparable. Interestingly, the timer ticks with the fix seemed
more accurate: The sixteen-thread test with the fix received 149543 ticks
for 0.024 seconds per tick, while the same test without the fix received 58720
for 0.061 seconds per tick. Both cases were configured for an interval of
0.01 seconds. Again, the other tests were comparable. Each thread in this
test computed the primes up to 25,000,000.
I also did a test with a large number of threads, 100,000 threads, which is
impossible without the fix. In this case each thread computed the primes only
up to 10,000 (to make the runtime manageable). System time dominated, at
1546.968 seconds out of a total 2176.906 seconds (giving a user time of
629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite
accurate. There is obviously no comparable test without the fix.
Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-12 20:54:39 +04:00
account_group_exec_runtime ( curtask , delta_exec ) ;
2007-12-02 22:04:49 +03:00
}
2011-07-21 20:43:30 +04:00
account_cfs_rq_runtime ( cfs_rq , delta_exec ) ;
2007-07-09 20:51:58 +04:00
}
static inline void
2007-08-09 13:16:47 +04:00
update_stats_wait_start ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
2010-03-11 05:37:45 +03:00
schedstat_set ( se - > statistics . wait_start , rq_of ( cfs_rq ) - > clock ) ;
2007-07-09 20:51:58 +04:00
}
/*
* Task is being enqueued - update stats :
*/
2007-08-09 13:16:47 +04:00
static void update_stats_enqueue ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
/*
* Are we enqueueing a waiting task ? ( for current tasks
* a dequeue / enqueue event is a NOP )
*/
2007-10-15 19:00:03 +04:00
if ( se ! = cfs_rq - > curr )
2007-08-09 13:16:47 +04:00
update_stats_wait_start ( cfs_rq , se ) ;
2007-07-09 20:51:58 +04:00
}
static void
2007-08-09 13:16:47 +04:00
update_stats_wait_end ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
2010-03-11 05:37:45 +03:00
schedstat_set ( se - > statistics . wait_max , max ( se - > statistics . wait_max ,
rq_of ( cfs_rq ) - > clock - se - > statistics . wait_start ) ) ;
schedstat_set ( se - > statistics . wait_count , se - > statistics . wait_count + 1 ) ;
schedstat_set ( se - > statistics . wait_sum , se - > statistics . wait_sum +
rq_of ( cfs_rq ) - > clock - se - > statistics . wait_start ) ;
2009-07-23 22:13:26 +04:00
# ifdef CONFIG_SCHEDSTATS
if ( entity_is_task ( se ) ) {
trace_sched_stat_wait ( task_of ( se ) ,
2010-03-11 05:37:45 +03:00
rq_of ( cfs_rq ) - > clock - se - > statistics . wait_start ) ;
2009-07-23 22:13:26 +04:00
}
# endif
2010-03-11 05:37:45 +03:00
schedstat_set ( se - > statistics . wait_start , 0 ) ;
2007-07-09 20:51:58 +04:00
}
static inline void
2007-08-09 13:16:48 +04:00
update_stats_dequeue ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
/*
* Mark the end of the wait period if dequeueing a
* waiting task :
*/
2007-10-15 19:00:03 +04:00
if ( se ! = cfs_rq - > curr )
2007-08-09 13:16:47 +04:00
update_stats_wait_end ( cfs_rq , se ) ;
2007-07-09 20:51:58 +04:00
}
/*
* We are picking a new current task - update its stats :
*/
static inline void
2007-08-09 13:16:47 +04:00
update_stats_curr_start ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
/*
* We are starting a new run period :
*/
2010-10-05 04:03:21 +04:00
se - > exec_start = rq_of ( cfs_rq ) - > clock_task ;
2007-07-09 20:51:58 +04:00
}
/**************************************************
* Scheduling class queueing methods :
*/
2007-10-15 19:00:07 +04:00
static void
account_entity_enqueue ( struct cfs_rq * cfs_rq , struct sched_entity * se )
{
update_load_add ( & cfs_rq - > load , se - > load . weight ) ;
2008-06-27 15:41:14 +04:00
if ( ! parent_entity ( se ) )
2011-10-25 12:00:11 +04:00
update_load_add ( & rq_of ( cfs_rq ) - > load , se - > load . weight ) ;
2012-02-21 00:49:09 +04:00
# ifdef CONFIG_SMP
if ( entity_is_task ( se ) )
2012-04-17 15:38:40 +04:00
list_add ( & se - > group_node , & rq_of ( cfs_rq ) - > cfs_tasks ) ;
2012-02-21 00:49:09 +04:00
# endif
2007-10-15 19:00:07 +04:00
cfs_rq - > nr_running + + ;
}
static void
account_entity_dequeue ( struct cfs_rq * cfs_rq , struct sched_entity * se )
{
update_load_sub ( & cfs_rq - > load , se - > load . weight ) ;
2008-06-27 15:41:14 +04:00
if ( ! parent_entity ( se ) )
2011-10-25 12:00:11 +04:00
update_load_sub ( & rq_of ( cfs_rq ) - > load , se - > load . weight ) ;
2012-02-21 00:49:09 +04:00
if ( entity_is_task ( se ) )
2008-09-25 08:23:54 +04:00
list_del_init ( & se - > group_node ) ;
2007-10-15 19:00:07 +04:00
cfs_rq - > nr_running - - ;
}
2011-01-24 10:33:52 +03:00
# ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2011-10-13 18:52:28 +04:00
static inline long calc_tg_weight ( struct task_group * tg , struct cfs_rq * cfs_rq )
{
long tg_weight ;
/*
* Use this CPU ' s actual weight instead of the last load_contribution
* to gain a more accurate current total weight . See
* update_cfs_rq_load_contribution ( ) .
*/
2012-10-04 15:18:31 +04:00
tg_weight = atomic64_read ( & tg - > load_avg ) ;
tg_weight - = cfs_rq - > tg_load_contrib ;
2011-10-13 18:52:28 +04:00
tg_weight + = cfs_rq - > load . weight ;
return tg_weight ;
}
2011-01-22 07:45:01 +03:00
static long calc_cfs_shares ( struct cfs_rq * cfs_rq , struct task_group * tg )
2011-01-24 10:33:52 +03:00
{
2011-10-13 18:52:28 +04:00
long tg_weight , load , shares ;
2011-01-24 10:33:52 +03:00
2011-10-13 18:52:28 +04:00
tg_weight = calc_tg_weight ( tg , cfs_rq ) ;
2011-01-22 07:45:01 +03:00
load = cfs_rq - > load . weight ;
2011-01-24 10:33:52 +03:00
shares = ( tg - > shares * load ) ;
2011-10-13 18:52:28 +04:00
if ( tg_weight )
shares / = tg_weight ;
2011-01-24 10:33:52 +03:00
if ( shares < MIN_SHARES )
shares = MIN_SHARES ;
if ( shares > tg - > shares )
shares = tg - > shares ;
return shares ;
}
# else /* CONFIG_SMP */
2011-01-22 07:45:01 +03:00
static inline long calc_cfs_shares ( struct cfs_rq * cfs_rq , struct task_group * tg )
2011-01-24 10:33:52 +03:00
{
return tg - > shares ;
}
# endif /* CONFIG_SMP */
2010-11-16 02:47:00 +03:00
static void reweight_entity ( struct cfs_rq * cfs_rq , struct sched_entity * se ,
unsigned long weight )
{
2010-12-16 06:10:18 +03:00
if ( se - > on_rq ) {
/* commit outstanding execution time */
if ( cfs_rq - > curr = = se )
update_curr ( cfs_rq ) ;
2010-11-16 02:47:00 +03:00
account_entity_dequeue ( cfs_rq , se ) ;
2010-12-16 06:10:18 +03:00
}
2010-11-16 02:47:00 +03:00
update_load_set ( & se - > load , weight ) ;
if ( se - > on_rq )
account_entity_enqueue ( cfs_rq , se ) ;
}
2012-10-04 15:18:31 +04:00
static inline int throttled_hierarchy ( struct cfs_rq * cfs_rq ) ;
2011-01-22 07:45:01 +03:00
static void update_cfs_shares ( struct cfs_rq * cfs_rq )
2010-11-16 02:47:00 +03:00
{
struct task_group * tg ;
struct sched_entity * se ;
2011-01-24 10:33:52 +03:00
long shares ;
2010-11-16 02:47:00 +03:00
tg = cfs_rq - > tg ;
se = tg - > se [ cpu_of ( rq_of ( cfs_rq ) ) ] ;
2011-07-21 20:43:36 +04:00
if ( ! se | | throttled_hierarchy ( cfs_rq ) )
2010-11-16 02:47:00 +03:00
return ;
2011-01-24 10:33:52 +03:00
# ifndef CONFIG_SMP
if ( likely ( se - > load . weight = = tg - > shares ) )
return ;
# endif
2011-01-22 07:45:01 +03:00
shares = calc_cfs_shares ( cfs_rq , tg ) ;
2010-11-16 02:47:00 +03:00
reweight_entity ( cfs_rq_of ( se ) , se , shares ) ;
}
# else /* CONFIG_FAIR_GROUP_SCHED */
2011-01-22 07:45:01 +03:00
static inline void update_cfs_shares ( struct cfs_rq * cfs_rq )
2010-11-16 02:47:00 +03:00
{
}
# endif /* CONFIG_FAIR_GROUP_SCHED */
2012-10-04 15:18:29 +04:00
# ifdef CONFIG_SMP
/*
* Approximate :
* val * y ^ n , where y ^ 32 ~ = 0.5 ( ~ 1 scheduling period )
*/
static __always_inline u64 decay_load ( u64 val , u64 n )
{
for ( ; n & & val ; n - - ) {
val * = 4008 ;
val > > = 12 ;
}
return val ;
}
/*
* We can represent the historical contribution to runnable average as the
* coefficients of a geometric series . To do this we sub - divide our runnable
* history into segments of approximately 1 ms ( 1024u s ) ; label the segment that
* occurred N - ms ago p_N , with p_0 corresponding to the current period , e . g .
*
* [ < - 1024u s - > | < - 1024u s - > | < - 1024u s - > | . . .
* p0 p1 p2
* ( now ) ( ~ 1 ms ago ) ( ~ 2 ms ago )
*
* Let u_i denote the fraction of p_i that the entity was runnable .
*
* We then designate the fractions u_i as our co - efficients , yielding the
* following representation of historical load :
* u_0 + u_1 * y + u_2 * y ^ 2 + u_3 * y ^ 3 + . . .
*
* We choose y based on the with of a reasonably scheduling period , fixing :
* y ^ 32 = 0.5
*
* This means that the contribution to load ~ 32 ms ago ( u_32 ) will be weighted
* approximately half as much as the contribution to load within the last ms
* ( u_0 ) .
*
* When a period " rolls over " and we have new u_0 ` , multiplying the previous
* sum again by y is sufficient to update :
* load_avg = u_0 ` + y * ( u_0 + u_1 * y + u_2 * y ^ 2 + . . . )
* = u_0 + u_1 * y + u_2 * y ^ 2 + . . . [ re - labeling u_i - - > u_ { i + 1 } ]
*/
static __always_inline int __update_entity_runnable_avg ( u64 now ,
struct sched_avg * sa ,
int runnable )
{
u64 delta ;
int delta_w , decayed = 0 ;
delta = now - sa - > last_runnable_update ;
/*
* This should only happen when time goes backwards , which it
* unfortunately does during sched clock init when we swap over to TSC .
*/
if ( ( s64 ) delta < 0 ) {
sa - > last_runnable_update = now ;
return 0 ;
}
/*
* Use 1024 ns as the unit of measurement since it ' s a reasonable
* approximation of 1u s and fast to compute .
*/
delta > > = 10 ;
if ( ! delta )
return 0 ;
sa - > last_runnable_update = now ;
/* delta_w is the amount already accumulated against our next period */
delta_w = sa - > runnable_avg_period % 1024 ;
if ( delta + delta_w > = 1024 ) {
/* period roll-over */
decayed = 1 ;
/*
* Now that we know we ' re crossing a period boundary , figure
* out how much from delta we need to complete the current
* period and accrue it .
*/
delta_w = 1024 - delta_w ;
BUG_ON ( delta_w > delta ) ;
do {
if ( runnable )
sa - > runnable_avg_sum + = delta_w ;
sa - > runnable_avg_period + = delta_w ;
/*
* Remainder of delta initiates a new period , roll over
* the previous .
*/
sa - > runnable_avg_sum =
decay_load ( sa - > runnable_avg_sum , 1 ) ;
sa - > runnable_avg_period =
decay_load ( sa - > runnable_avg_period , 1 ) ;
delta - = delta_w ;
/* New period is empty */
delta_w = 1024 ;
} while ( delta > = 1024 ) ;
}
/* Remainder of delta accrued against u_0` */
if ( runnable )
sa - > runnable_avg_sum + = delta ;
sa - > runnable_avg_period + = delta ;
return decayed ;
}
2012-10-04 15:18:30 +04:00
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2012-10-04 15:18:30 +04:00
static inline u64 __synchronize_entity_decay ( struct sched_entity * se )
2012-10-04 15:18:30 +04:00
{
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
u64 decays = atomic64_read ( & cfs_rq - > decay_counter ) ;
decays - = se - > avg . decay_count ;
if ( ! decays )
2012-10-04 15:18:30 +04:00
return 0 ;
2012-10-04 15:18:30 +04:00
se - > avg . load_avg_contrib = decay_load ( se - > avg . load_avg_contrib , decays ) ;
se - > avg . decay_count = 0 ;
2012-10-04 15:18:30 +04:00
return decays ;
2012-10-04 15:18:30 +04:00
}
2012-10-04 15:18:30 +04:00
# ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib ( struct cfs_rq * cfs_rq ,
int force_update )
{
struct task_group * tg = cfs_rq - > tg ;
s64 tg_contrib ;
tg_contrib = cfs_rq - > runnable_load_avg + cfs_rq - > blocked_load_avg ;
tg_contrib - = cfs_rq - > tg_load_contrib ;
if ( force_update | | abs64 ( tg_contrib ) > cfs_rq - > tg_load_contrib / 8 ) {
atomic64_add ( tg_contrib , & tg - > load_avg ) ;
cfs_rq - > tg_load_contrib + = tg_contrib ;
}
}
2012-10-04 15:18:31 +04:00
2012-10-04 15:18:31 +04:00
/*
* Aggregate cfs_rq runnable averages into an equivalent task_group
* representation for computing load contributions .
*/
static inline void __update_tg_runnable_avg ( struct sched_avg * sa ,
struct cfs_rq * cfs_rq )
{
struct task_group * tg = cfs_rq - > tg ;
long contrib ;
/* The fraction of a cpu used by this cfs_rq */
contrib = div_u64 ( sa - > runnable_avg_sum < < NICE_0_SHIFT ,
sa - > runnable_avg_period + 1 ) ;
contrib - = cfs_rq - > tg_runnable_contrib ;
if ( abs ( contrib ) > cfs_rq - > tg_runnable_contrib / 64 ) {
atomic_add ( contrib , & tg - > runnable_avg ) ;
cfs_rq - > tg_runnable_contrib + = contrib ;
}
}
2012-10-04 15:18:31 +04:00
static inline void __update_group_entity_contrib ( struct sched_entity * se )
{
struct cfs_rq * cfs_rq = group_cfs_rq ( se ) ;
struct task_group * tg = cfs_rq - > tg ;
2012-10-04 15:18:31 +04:00
int runnable_avg ;
2012-10-04 15:18:31 +04:00
u64 contrib ;
contrib = cfs_rq - > tg_load_contrib * tg - > shares ;
se - > avg . load_avg_contrib = div64_u64 ( contrib ,
atomic64_read ( & tg - > load_avg ) + 1 ) ;
2012-10-04 15:18:31 +04:00
/*
* For group entities we need to compute a correction term in the case
* that they are consuming < 1 cpu so that we would contribute the same
* load as a task of equal weight .
*
* Explicitly co - ordinating this measurement would be expensive , but
* fortunately the sum of each cpus contribution forms a usable
* lower - bound on the true value .
*
* Consider the aggregate of 2 contributions . Either they are disjoint
* ( and the sum represents true value ) or they are disjoint and we are
* understating by the aggregate of their overlap .
*
* Extending this to N cpus , for a given overlap , the maximum amount we
* understand is then n_i ( n_i + 1 ) / 2 * w_i where n_i is the number of
* cpus that overlap for this interval and w_i is the interval width .
*
* On a small machine ; the first term is well - bounded which bounds the
* total error since w_i is a subset of the period . Whereas on a
* larger machine , while this first term can be larger , if w_i is the
* of consequential size guaranteed to see n_i * w_i quickly converge to
* our upper bound of 1 - cpu .
*/
runnable_avg = atomic_read ( & tg - > runnable_avg ) ;
if ( runnable_avg < NICE_0_LOAD ) {
se - > avg . load_avg_contrib * = runnable_avg ;
se - > avg . load_avg_contrib > > = NICE_0_SHIFT ;
}
2012-10-04 15:18:31 +04:00
}
2012-10-04 15:18:30 +04:00
# else
static inline void __update_cfs_rq_tg_load_contrib ( struct cfs_rq * cfs_rq ,
int force_update ) { }
2012-10-04 15:18:31 +04:00
static inline void __update_tg_runnable_avg ( struct sched_avg * sa ,
struct cfs_rq * cfs_rq ) { }
2012-10-04 15:18:31 +04:00
static inline void __update_group_entity_contrib ( struct sched_entity * se ) { }
2012-10-04 15:18:30 +04:00
# endif
2012-10-04 15:18:31 +04:00
static inline void __update_task_entity_contrib ( struct sched_entity * se )
{
u32 contrib ;
/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
contrib = se - > avg . runnable_avg_sum * scale_load_down ( se - > load . weight ) ;
contrib / = ( se - > avg . runnable_avg_period + 1 ) ;
se - > avg . load_avg_contrib = scale_load ( contrib ) ;
}
2012-10-04 15:18:30 +04:00
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib ( struct sched_entity * se )
{
long old_contrib = se - > avg . load_avg_contrib ;
2012-10-04 15:18:31 +04:00
if ( entity_is_task ( se ) ) {
__update_task_entity_contrib ( se ) ;
} else {
2012-10-04 15:18:31 +04:00
__update_tg_runnable_avg ( & se - > avg , group_cfs_rq ( se ) ) ;
2012-10-04 15:18:31 +04:00
__update_group_entity_contrib ( se ) ;
}
2012-10-04 15:18:30 +04:00
return se - > avg . load_avg_contrib - old_contrib ;
}
2012-10-04 15:18:30 +04:00
static inline void subtract_blocked_load_contrib ( struct cfs_rq * cfs_rq ,
long load_contrib )
{
if ( likely ( load_contrib < cfs_rq - > blocked_load_avg ) )
cfs_rq - > blocked_load_avg - = load_contrib ;
else
cfs_rq - > blocked_load_avg = 0 ;
}
2012-10-04 15:18:31 +04:00
static inline u64 cfs_rq_clock_task ( struct cfs_rq * cfs_rq ) ;
2012-10-04 15:18:29 +04:00
/* Update a sched_entity's runnable average */
2012-10-04 15:18:30 +04:00
static inline void update_entity_load_avg ( struct sched_entity * se ,
int update_cfs_rq )
2012-10-04 15:18:29 +04:00
{
2012-10-04 15:18:30 +04:00
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
long contrib_delta ;
2012-10-04 15:18:31 +04:00
u64 now ;
2012-10-04 15:18:30 +04:00
2012-10-04 15:18:31 +04:00
/*
* For a group entity we need to use their owned cfs_rq_clock_task ( ) in
* case they are the parent of a throttled hierarchy .
*/
if ( entity_is_task ( se ) )
now = cfs_rq_clock_task ( cfs_rq ) ;
else
now = cfs_rq_clock_task ( group_cfs_rq ( se ) ) ;
if ( ! __update_entity_runnable_avg ( now , & se - > avg , se - > on_rq ) )
2012-10-04 15:18:30 +04:00
return ;
contrib_delta = __update_entity_load_avg_contrib ( se ) ;
2012-10-04 15:18:30 +04:00
if ( ! update_cfs_rq )
return ;
2012-10-04 15:18:30 +04:00
if ( se - > on_rq )
cfs_rq - > runnable_load_avg + = contrib_delta ;
2012-10-04 15:18:30 +04:00
else
subtract_blocked_load_contrib ( cfs_rq , - contrib_delta ) ;
}
/*
* Decay the load contributed by all blocked children and account this so that
* their contribution may appropriately discounted when they wake up .
*/
2012-10-04 15:18:30 +04:00
static void update_cfs_rq_blocked_load ( struct cfs_rq * cfs_rq , int force_update )
2012-10-04 15:18:30 +04:00
{
2012-10-04 15:18:31 +04:00
u64 now = cfs_rq_clock_task ( cfs_rq ) > > 20 ;
2012-10-04 15:18:30 +04:00
u64 decays ;
decays = now - cfs_rq - > last_decay ;
2012-10-04 15:18:30 +04:00
if ( ! decays & & ! force_update )
2012-10-04 15:18:30 +04:00
return ;
2012-10-04 15:18:30 +04:00
if ( atomic64_read ( & cfs_rq - > removed_load ) ) {
u64 removed_load = atomic64_xchg ( & cfs_rq - > removed_load , 0 ) ;
subtract_blocked_load_contrib ( cfs_rq , removed_load ) ;
}
2012-10-04 15:18:30 +04:00
2012-10-04 15:18:30 +04:00
if ( decays ) {
cfs_rq - > blocked_load_avg = decay_load ( cfs_rq - > blocked_load_avg ,
decays ) ;
atomic64_add ( decays , & cfs_rq - > decay_counter ) ;
cfs_rq - > last_decay = now ;
}
2012-10-04 15:18:30 +04:00
__update_cfs_rq_tg_load_contrib ( cfs_rq , force_update ) ;
2012-10-04 15:18:29 +04:00
}
2012-10-04 14:51:20 +04:00
static inline void update_rq_runnable_avg ( struct rq * rq , int runnable )
{
__update_entity_runnable_avg ( rq - > clock_task , & rq - > avg , runnable ) ;
2012-10-04 15:18:31 +04:00
__update_tg_runnable_avg ( & rq - > avg , & rq - > cfs ) ;
2012-10-04 14:51:20 +04:00
}
2012-10-04 15:18:30 +04:00
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg ( struct cfs_rq * cfs_rq ,
2012-10-04 15:18:30 +04:00
struct sched_entity * se ,
int wakeup )
2012-10-04 15:18:30 +04:00
{
2012-10-04 15:18:30 +04:00
/*
* We track migrations using entity decay_count < = 0 , on a wake - up
* migration we use a negative decay count to track the remote decays
* accumulated while sleeping .
*/
if ( unlikely ( se - > avg . decay_count < = 0 ) ) {
2012-10-04 15:18:30 +04:00
se - > avg . last_runnable_update = rq_of ( cfs_rq ) - > clock_task ;
2012-10-04 15:18:30 +04:00
if ( se - > avg . decay_count ) {
/*
* In a wake - up migration we have to approximate the
* time sleeping . This is because we can ' t synchronize
* clock_task between the two cpus , and it is not
* guaranteed to be read - safe . Instead , we can
* approximate this using our carried decays , which are
* explicitly atomically readable .
*/
se - > avg . last_runnable_update - = ( - se - > avg . decay_count )
< < 20 ;
update_entity_load_avg ( se , 0 ) ;
/* Indicate that we're now synchronized and on-rq */
se - > avg . decay_count = 0 ;
}
2012-10-04 15:18:30 +04:00
wakeup = 0 ;
} else {
__synchronize_entity_decay ( se ) ;
}
2012-10-04 15:18:30 +04:00
/* migrated tasks did not contribute to our blocked load */
if ( wakeup ) {
2012-10-04 15:18:30 +04:00
subtract_blocked_load_contrib ( cfs_rq , se - > avg . load_avg_contrib ) ;
2012-10-04 15:18:30 +04:00
update_entity_load_avg ( se , 0 ) ;
}
2012-10-04 15:18:30 +04:00
2012-10-04 15:18:30 +04:00
cfs_rq - > runnable_load_avg + = se - > avg . load_avg_contrib ;
2012-10-04 15:18:30 +04:00
/* we force update consideration on load-balancer moves */
update_cfs_rq_blocked_load ( cfs_rq , ! wakeup ) ;
2012-10-04 15:18:30 +04:00
}
2012-10-04 15:18:30 +04:00
/*
* Remove se ' s load from this cfs_rq child load - average , if the entity is
* transitioning to a blocked state we track its projected decay using
* blocked_load_avg .
*/
2012-10-04 15:18:30 +04:00
static inline void dequeue_entity_load_avg ( struct cfs_rq * cfs_rq ,
2012-10-04 15:18:30 +04:00
struct sched_entity * se ,
int sleep )
2012-10-04 15:18:30 +04:00
{
2012-10-04 15:18:30 +04:00
update_entity_load_avg ( se , 1 ) ;
2012-10-04 15:18:30 +04:00
/* we force update consideration on load-balancer moves */
update_cfs_rq_blocked_load ( cfs_rq , ! sleep ) ;
2012-10-04 15:18:30 +04:00
2012-10-04 15:18:30 +04:00
cfs_rq - > runnable_load_avg - = se - > avg . load_avg_contrib ;
2012-10-04 15:18:30 +04:00
if ( sleep ) {
cfs_rq - > blocked_load_avg + = se - > avg . load_avg_contrib ;
se - > avg . decay_count = atomic64_read ( & cfs_rq - > decay_counter ) ;
} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2012-10-04 15:18:30 +04:00
}
2012-10-04 15:18:29 +04:00
# else
2012-10-04 15:18:30 +04:00
static inline void update_entity_load_avg ( struct sched_entity * se ,
int update_cfs_rq ) { }
2012-10-04 14:51:20 +04:00
static inline void update_rq_runnable_avg ( struct rq * rq , int runnable ) { }
2012-10-04 15:18:30 +04:00
static inline void enqueue_entity_load_avg ( struct cfs_rq * cfs_rq ,
2012-10-04 15:18:30 +04:00
struct sched_entity * se ,
int wakeup ) { }
2012-10-04 15:18:30 +04:00
static inline void dequeue_entity_load_avg ( struct cfs_rq * cfs_rq ,
2012-10-04 15:18:30 +04:00
struct sched_entity * se ,
int sleep ) { }
2012-10-04 15:18:30 +04:00
static inline void update_cfs_rq_blocked_load ( struct cfs_rq * cfs_rq ,
int force_update ) { }
2012-10-04 15:18:29 +04:00
# endif
2007-08-09 13:16:48 +04:00
static void enqueue_sleeper ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
# ifdef CONFIG_SCHEDSTATS
2009-07-23 22:13:26 +04:00
struct task_struct * tsk = NULL ;
if ( entity_is_task ( se ) )
tsk = task_of ( se ) ;
2010-03-11 05:37:45 +03:00
if ( se - > statistics . sleep_start ) {
u64 delta = rq_of ( cfs_rq ) - > clock - se - > statistics . sleep_start ;
2007-07-09 20:51:58 +04:00
if ( ( s64 ) delta < 0 )
delta = 0 ;
2010-03-11 05:37:45 +03:00
if ( unlikely ( delta > se - > statistics . sleep_max ) )
se - > statistics . sleep_max = delta ;
2007-07-09 20:51:58 +04:00
2012-01-30 17:51:37 +04:00
se - > statistics . sleep_start = 0 ;
2010-03-11 05:37:45 +03:00
se - > statistics . sum_sleep_runtime + = delta ;
2008-01-25 23:08:34 +03:00
2009-07-23 22:13:26 +04:00
if ( tsk ) {
2009-07-23 22:13:26 +04:00
account_scheduler_latency ( tsk , delta > > 10 , 1 ) ;
2009-07-23 22:13:26 +04:00
trace_sched_stat_sleep ( tsk , delta ) ;
}
2007-07-09 20:51:58 +04:00
}
2010-03-11 05:37:45 +03:00
if ( se - > statistics . block_start ) {
u64 delta = rq_of ( cfs_rq ) - > clock - se - > statistics . block_start ;
2007-07-09 20:51:58 +04:00
if ( ( s64 ) delta < 0 )
delta = 0 ;
2010-03-11 05:37:45 +03:00
if ( unlikely ( delta > se - > statistics . block_max ) )
se - > statistics . block_max = delta ;
2007-07-09 20:51:58 +04:00
2012-01-30 17:51:37 +04:00
se - > statistics . block_start = 0 ;
2010-03-11 05:37:45 +03:00
se - > statistics . sum_sleep_runtime + = delta ;
2007-10-02 16:13:08 +04:00
2009-07-23 22:13:26 +04:00
if ( tsk ) {
2009-07-20 22:26:58 +04:00
if ( tsk - > in_iowait ) {
2010-03-11 05:37:45 +03:00
se - > statistics . iowait_sum + = delta ;
se - > statistics . iowait_count + + ;
2009-07-23 22:13:26 +04:00
trace_sched_stat_iowait ( tsk , delta ) ;
2009-07-20 22:26:58 +04:00
}
2011-11-28 13:03:35 +04:00
trace_sched_stat_blocked ( tsk , delta ) ;
2009-07-23 22:13:26 +04:00
/*
* Blocking time is in units of nanosecs , so shift by
* 20 to get a milliseconds - range estimation of the
* amount of time that the task spent sleeping :
*/
if ( unlikely ( prof_on = = SLEEP_PROFILING ) ) {
profile_hits ( SLEEP_PROFILING ,
( void * ) get_wchan ( tsk ) ,
delta > > 20 ) ;
}
account_scheduler_latency ( tsk , delta > > 10 , 0 ) ;
2007-10-02 16:13:08 +04:00
}
2007-07-09 20:51:58 +04:00
}
# endif
}
2007-10-15 19:00:10 +04:00
static void check_spread ( struct cfs_rq * cfs_rq , struct sched_entity * se )
{
# ifdef CONFIG_SCHED_DEBUG
s64 d = se - > vruntime - cfs_rq - > min_vruntime ;
if ( d < 0 )
d = - d ;
if ( d > 3 * sysctl_sched_latency )
schedstat_inc ( cfs_rq , nr_spread_over ) ;
# endif
}
2007-10-15 19:00:05 +04:00
static void
place_entity ( struct cfs_rq * cfs_rq , struct sched_entity * se , int initial )
{
2008-10-24 13:06:13 +04:00
u64 vruntime = cfs_rq - > min_vruntime ;
2007-10-15 19:00:05 +04:00
2007-11-10 00:39:37 +03:00
/*
* The ' current ' period is already promised to the current tasks ,
* however the extra weight of the new task will slow them down a
* little , place the new task so that it fits in the slot that
* stays open at the end .
*/
2007-10-15 19:00:05 +04:00
if ( initial & & sched_feat ( START_DEBIT ) )
2008-10-17 21:27:04 +04:00
vruntime + = sched_vslice ( cfs_rq , se ) ;
2007-10-15 19:00:05 +04:00
2009-09-18 11:19:25 +04:00
/* sleeps up to a single latency don't count. */
2010-03-11 19:17:17 +03:00
if ( ! initial ) {
2009-09-18 11:19:25 +04:00
unsigned long thresh = sysctl_sched_latency ;
2008-06-27 15:41:11 +04:00
2009-09-18 11:19:25 +04:00
/*
* Halve their sleep time ' s effect , to allow
* for a gentler effect of sleepers :
*/
if ( sched_feat ( GENTLE_FAIR_SLEEPERS ) )
thresh > > = 1 ;
2009-09-16 10:54:45 +04:00
2009-09-18 11:19:25 +04:00
vruntime - = thresh ;
2007-10-15 19:00:05 +04:00
}
sched: Ensure that a child can't gain time over it's parent after fork()
A fork/exec load is usually "pass the baton", so the child
should never be placed behind the parent. With START_DEBIT we
make room for the new task, but with child_runs_first, that
room comes out of the _parent's_ hide. There's nothing to say
that the parent wasn't ahead of min_vruntime at fork() time,
which means that the "baton carrier", who is essentially the
parent in drag, can gain time and increase scheduling latencies
for waiters.
With NEW_FAIR_SLEEPERS + START_DEBIT + child_runs_first
enabled, we essentially pass the sleeper fairness off to the
child, which is fine, but if we don't base placement on the
parent's updated vruntime, we can end up compounding latency
woes if the child itself then does fork/exec. The debit
incurred at fork doesn't hurt the parent who is then going to
sleep and maybe exit, but the child who acquires the error
harms all comers.
This improves latencies of make -j<n> kernel build workloads.
Reported-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-08 13:12:28 +04:00
/* ensure we never gain time by being placed backwards. */
vruntime = max_vruntime ( se - > vruntime , vruntime ) ;
2007-10-15 19:00:10 +04:00
se - > vruntime = vruntime ;
2007-10-15 19:00:05 +04:00
}
2011-07-21 20:43:39 +04:00
static void check_enqueue_throttle ( struct cfs_rq * cfs_rq ) ;
2007-07-09 20:51:58 +04:00
static void
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
enqueue_entity ( struct cfs_rq * cfs_rq , struct sched_entity * se , int flags )
2007-07-09 20:51:58 +04:00
{
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
/*
* Update the normalized vruntime before updating min_vruntime
* through callig update_curr ( ) .
*/
2010-03-24 18:38:48 +03:00
if ( ! ( flags & ENQUEUE_WAKEUP ) | | ( flags & ENQUEUE_WAKING ) )
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
se - > vruntime + = cfs_rq - > min_vruntime ;
2007-07-09 20:51:58 +04:00
/*
2007-10-15 19:00:13 +04:00
* Update run - time statistics of the ' current ' .
2007-07-09 20:51:58 +04:00
*/
2007-08-09 13:16:47 +04:00
update_curr ( cfs_rq ) ;
2012-10-04 15:18:30 +04:00
enqueue_entity_load_avg ( cfs_rq , se , flags & ENQUEUE_WAKEUP ) ;
2008-05-06 01:56:17 +04:00
account_entity_enqueue ( cfs_rq , se ) ;
2011-01-22 07:45:01 +03:00
update_cfs_shares ( cfs_rq ) ;
2007-07-09 20:51:58 +04:00
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
if ( flags & ENQUEUE_WAKEUP ) {
2007-10-15 19:00:05 +04:00
place_entity ( cfs_rq , se , 0 ) ;
2007-08-09 13:16:48 +04:00
enqueue_sleeper ( cfs_rq , se ) ;
2007-10-15 19:00:04 +04:00
}
2007-07-09 20:51:58 +04:00
2007-08-09 13:16:47 +04:00
update_stats_enqueue ( cfs_rq , se ) ;
2007-10-15 19:00:10 +04:00
check_spread ( cfs_rq , se ) ;
2007-10-15 19:00:08 +04:00
if ( se ! = cfs_rq - > curr )
__enqueue_entity ( cfs_rq , se ) ;
2010-11-16 02:47:00 +03:00
se - > on_rq = 1 ;
2010-11-16 02:47:01 +03:00
2011-07-21 20:43:39 +04:00
if ( cfs_rq - > nr_running = = 1 ) {
2010-11-16 02:47:01 +03:00
list_add_leaf_cfs_rq ( cfs_rq ) ;
2011-07-21 20:43:39 +04:00
check_enqueue_throttle ( cfs_rq ) ;
}
2007-07-09 20:51:58 +04:00
}
2011-02-01 17:48:37 +03:00
static void __clear_buddies_last ( struct sched_entity * se )
2008-11-11 13:52:33 +03:00
{
2011-02-01 17:48:37 +03:00
for_each_sched_entity ( se ) {
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
if ( cfs_rq - > last = = se )
cfs_rq - > last = NULL ;
else
break ;
}
}
2008-11-11 13:52:33 +03:00
2011-02-01 17:48:37 +03:00
static void __clear_buddies_next ( struct sched_entity * se )
{
for_each_sched_entity ( se ) {
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
if ( cfs_rq - > next = = se )
cfs_rq - > next = NULL ;
else
break ;
}
2008-11-11 13:52:33 +03:00
}
2011-02-01 17:51:03 +03:00
static void __clear_buddies_skip ( struct sched_entity * se )
{
for_each_sched_entity ( se ) {
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
if ( cfs_rq - > skip = = se )
cfs_rq - > skip = NULL ;
else
break ;
}
}
2009-01-28 16:51:40 +03:00
static void clear_buddies ( struct cfs_rq * cfs_rq , struct sched_entity * se )
{
2011-02-01 17:48:37 +03:00
if ( cfs_rq - > last = = se )
__clear_buddies_last ( se ) ;
if ( cfs_rq - > next = = se )
__clear_buddies_next ( se ) ;
2011-02-01 17:51:03 +03:00
if ( cfs_rq - > skip = = se )
__clear_buddies_skip ( se ) ;
2009-01-28 16:51:40 +03:00
}
2012-03-22 00:07:16 +04:00
static __always_inline void return_cfs_rq_runtime ( struct cfs_rq * cfs_rq ) ;
2011-07-21 20:43:41 +04:00
2007-07-09 20:51:58 +04:00
static void
2010-03-24 18:38:48 +03:00
dequeue_entity ( struct cfs_rq * cfs_rq , struct sched_entity * se , int flags )
2007-07-09 20:51:58 +04:00
{
2007-10-15 19:00:13 +04:00
/*
* Update run - time statistics of the ' current ' .
*/
update_curr ( cfs_rq ) ;
2012-10-04 15:18:30 +04:00
dequeue_entity_load_avg ( cfs_rq , se , flags & DEQUEUE_SLEEP ) ;
2007-10-15 19:00:13 +04:00
2007-08-09 13:16:48 +04:00
update_stats_dequeue ( cfs_rq , se ) ;
2010-03-24 18:38:48 +03:00
if ( flags & DEQUEUE_SLEEP ) {
2007-10-15 19:00:10 +04:00
# ifdef CONFIG_SCHEDSTATS
2007-07-09 20:51:58 +04:00
if ( entity_is_task ( se ) ) {
struct task_struct * tsk = task_of ( se ) ;
if ( tsk - > state & TASK_INTERRUPTIBLE )
2010-03-11 05:37:45 +03:00
se - > statistics . sleep_start = rq_of ( cfs_rq ) - > clock ;
2007-07-09 20:51:58 +04:00
if ( tsk - > state & TASK_UNINTERRUPTIBLE )
2010-03-11 05:37:45 +03:00
se - > statistics . block_start = rq_of ( cfs_rq ) - > clock ;
2007-07-09 20:51:58 +04:00
}
2007-10-15 19:00:06 +04:00
# endif
2007-10-15 19:00:10 +04:00
}
2008-11-11 13:52:33 +03:00
clear_buddies ( cfs_rq , se ) ;
sched: backward looking buddy
Impact: improve/change/fix wakeup-buddy scheduling
Currently we only have a forward looking buddy, that is, we prefer to
schedule to the task we last woke up, under the presumption that its
going to consume the data we just produced, and therefore will have
cache hot benefits.
This allows co-waking producer/consumer task pairs to run ahead of the
pack for a little while, keeping their cache warm. Without this, we
would interleave all pairs, utterly trashing the cache.
This patch introduces a backward looking buddy, that is, suppose that
in the above scenario, the consumer preempts the producer before it
can go to sleep, we will therefore miss the wakeup from consumer to
producer (its already running, after all), breaking the cycle and
reverting to the cache-trashing interleaved schedule pattern.
The backward buddy will try to schedule back to the task that woke us
up in case the forward buddy is not available, under the assumption
that the last task will be the one with the most cache hot task around
barring current.
This will basically allow a task to continue after it got preempted.
In order to avoid starvation, we allow either buddy to get wakeup_gran
ahead of the pack.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-04 23:25:09 +03:00
2007-10-15 19:00:08 +04:00
if ( se ! = cfs_rq - > curr )
2007-10-15 19:00:07 +04:00
__dequeue_entity ( cfs_rq , se ) ;
2010-11-16 02:47:00 +03:00
se - > on_rq = 0 ;
2007-10-15 19:00:07 +04:00
account_entity_dequeue ( cfs_rq , se ) ;
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
/*
* Normalize the entity after updating the min_vruntime because the
* update can refer to the - > curr item and we need to reflect this
* movement in our normalized position .
*/
2010-03-24 18:38:48 +03:00
if ( ! ( flags & DEQUEUE_SLEEP ) )
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
se - > vruntime - = cfs_rq - > min_vruntime ;
2011-05-18 03:21:10 +04:00
2011-07-21 20:43:41 +04:00
/* return excess runtime on last dequeue */
return_cfs_rq_runtime ( cfs_rq ) ;
2011-05-18 03:21:10 +04:00
update_min_vruntime ( cfs_rq ) ;
update_cfs_shares ( cfs_rq ) ;
2007-07-09 20:51:58 +04:00
}
/*
* Preempt the current task with a newly woken task if needed :
*/
2007-09-05 16:32:49 +04:00
static void
2007-10-15 19:00:05 +04:00
check_preempt_tick ( struct cfs_rq * cfs_rq , struct sched_entity * curr )
2007-07-09 20:51:58 +04:00
{
2007-09-05 16:32:49 +04:00
unsigned long ideal_runtime , delta_exec ;
2011-09-16 21:35:52 +04:00
struct sched_entity * se ;
s64 delta ;
2007-09-05 16:32:49 +04:00
2007-10-15 19:00:05 +04:00
ideal_runtime = sched_slice ( cfs_rq , curr ) ;
2007-09-05 16:32:49 +04:00
delta_exec = curr - > sum_exec_runtime - curr - > prev_sum_exec_runtime ;
2009-01-28 16:51:39 +03:00
if ( delta_exec > ideal_runtime ) {
2007-07-09 20:51:58 +04:00
resched_task ( rq_of ( cfs_rq ) - > curr ) ;
2009-01-28 16:51:39 +03:00
/*
* The current task ran long enough , ensure it doesn ' t get
* re - elected due to buddy favours .
*/
clear_buddies ( cfs_rq , curr ) ;
sched: Strengthen buddies and mitigate buddy induced latencies
This patch restores the effectiveness of LAST_BUDDY in preventing
pgsql+oltp from collapsing due to wakeup preemption. It also
switches LAST_BUDDY to exclusively do what it does best, namely
mitigate the effects of aggressive wakeup preemption, which
improves vmark throughput markedly, and restores mysql+oltp
scalability.
Since buddies are about scalability, enable them beginning at the
point where we begin expanding sched_latency, namely
sched_nr_latency. Previously, buddies were cleared aggressively,
which seriously reduced their effectiveness. Not clearing
aggressively however, produces a small drop in mysql+oltp
throughput immediately after peak, indicating that LAST_BUDDY is
actually doing some harm. This is right at the point where X on the
desktop in competition with another load wants low latency service.
Ergo, do not enable until we need to scale.
To mitigate latency induced by buddies, or by a task just missing
wakeup preemption, check latency at tick time.
Last hunk prevents buddies from stymieing BALANCE_NEWIDLE via
CACHE_HOT_BUDDY.
Supporting performance tests:
tip = v2.6.32-rc5-1497-ga525b32
tipx = NO_GENTLE_FAIR_SLEEPERS NEXT_BUDDY granularity knobs = 31 knobs + 31 buddies
tip+x = NO_GENTLE_FAIR_SLEEPERS granularity knobs = 31 knobs
(Three run averages except where noted.)
vmark:
------
tip 108466 messages per second
tip+ 125307 messages per second
tip+x 125335 messages per second
tipx 117781 messages per second
2.6.31.3 122729 messages per second
mysql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 9949.89 18690.20 34801.24 34460.04 32682.88 30765.97 28305.27 25059.64 19548.08
tip+ 10013.90 18526.84 34900.38 34420.14 33069.83 32083.40 30578.30 28010.71 25605.47
tipx 9698.71 18002.70 34477.56 33420.01 32634.30 31657.27 29932.67 26827.52 21487.18
2.6.31.3 8243.11 18784.20 34404.83 33148.38 31900.32 31161.90 29663.81 25995.94 18058.86
pgsql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 13686.37 26609.25 51934.28 51347.81 49479.51 45312.65 36691.91 26851.57 24145.35
tip+ (1x) 13907.85 27135.87 52951.98 52514.04 51742.52 50705.43 49947.97 48374.19 46227.94
tip+x 13906.78 27065.81 52951.19 52542.59 52176.11 51815.94 50838.90 49439.46 46891.00
tipx 13742.46 26769.81 52351.99 51891.73 51320.79 50938.98 50248.65 48908.70 46553.84
2.6.31.3 13815.35 26906.46 52683.34 52061.31 51937.10 51376.80 50474.28 49394.47 47003.25
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-24 01:09:22 +04:00
return ;
}
/*
* Ensure that a task that missed wakeup preemption by a
* narrow margin doesn ' t have to wait for a full slice .
* This also mitigates buddy induced latencies under load .
*/
if ( delta_exec < sysctl_sched_min_granularity )
return ;
2011-09-16 21:35:52 +04:00
se = __pick_first_entity ( cfs_rq ) ;
delta = curr - > vruntime - se - > vruntime ;
sched: Strengthen buddies and mitigate buddy induced latencies
This patch restores the effectiveness of LAST_BUDDY in preventing
pgsql+oltp from collapsing due to wakeup preemption. It also
switches LAST_BUDDY to exclusively do what it does best, namely
mitigate the effects of aggressive wakeup preemption, which
improves vmark throughput markedly, and restores mysql+oltp
scalability.
Since buddies are about scalability, enable them beginning at the
point where we begin expanding sched_latency, namely
sched_nr_latency. Previously, buddies were cleared aggressively,
which seriously reduced their effectiveness. Not clearing
aggressively however, produces a small drop in mysql+oltp
throughput immediately after peak, indicating that LAST_BUDDY is
actually doing some harm. This is right at the point where X on the
desktop in competition with another load wants low latency service.
Ergo, do not enable until we need to scale.
To mitigate latency induced by buddies, or by a task just missing
wakeup preemption, check latency at tick time.
Last hunk prevents buddies from stymieing BALANCE_NEWIDLE via
CACHE_HOT_BUDDY.
Supporting performance tests:
tip = v2.6.32-rc5-1497-ga525b32
tipx = NO_GENTLE_FAIR_SLEEPERS NEXT_BUDDY granularity knobs = 31 knobs + 31 buddies
tip+x = NO_GENTLE_FAIR_SLEEPERS granularity knobs = 31 knobs
(Three run averages except where noted.)
vmark:
------
tip 108466 messages per second
tip+ 125307 messages per second
tip+x 125335 messages per second
tipx 117781 messages per second
2.6.31.3 122729 messages per second
mysql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 9949.89 18690.20 34801.24 34460.04 32682.88 30765.97 28305.27 25059.64 19548.08
tip+ 10013.90 18526.84 34900.38 34420.14 33069.83 32083.40 30578.30 28010.71 25605.47
tipx 9698.71 18002.70 34477.56 33420.01 32634.30 31657.27 29932.67 26827.52 21487.18
2.6.31.3 8243.11 18784.20 34404.83 33148.38 31900.32 31161.90 29663.81 25995.94 18058.86
pgsql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 13686.37 26609.25 51934.28 51347.81 49479.51 45312.65 36691.91 26851.57 24145.35
tip+ (1x) 13907.85 27135.87 52951.98 52514.04 51742.52 50705.43 49947.97 48374.19 46227.94
tip+x 13906.78 27065.81 52951.19 52542.59 52176.11 51815.94 50838.90 49439.46 46891.00
tipx 13742.46 26769.81 52351.99 51891.73 51320.79 50938.98 50248.65 48908.70 46553.84
2.6.31.3 13815.35 26906.46 52683.34 52061.31 51937.10 51376.80 50474.28 49394.47 47003.25
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-24 01:09:22 +04:00
2011-09-16 21:35:52 +04:00
if ( delta < 0 )
return ;
2011-01-05 07:41:17 +03:00
2011-09-16 21:35:52 +04:00
if ( delta > ideal_runtime )
resched_task ( rq_of ( cfs_rq ) - > curr ) ;
2007-07-09 20:51:58 +04:00
}
2007-10-15 19:00:08 +04:00
static void
2007-08-09 13:16:48 +04:00
set_next_entity ( struct cfs_rq * cfs_rq , struct sched_entity * se )
2007-07-09 20:51:58 +04:00
{
2007-10-15 19:00:08 +04:00
/* 'current' is not kept within the tree. */
if ( se - > on_rq ) {
/*
* Any task has to be enqueued before it get to execute on
* a CPU . So account for the time it spent waiting on the
* runqueue .
*/
update_stats_wait_end ( cfs_rq , se ) ;
__dequeue_entity ( cfs_rq , se ) ;
}
2007-08-09 13:16:47 +04:00
update_stats_curr_start ( cfs_rq , se ) ;
2007-10-15 19:00:03 +04:00
cfs_rq - > curr = se ;
2007-10-15 19:00:02 +04:00
# ifdef CONFIG_SCHEDSTATS
/*
* Track our maximum slice length , if the CPU ' s load is at
* least twice that of our own weight ( i . e . dont track it
* when there are only lesser - weight tasks around ) :
*/
2007-10-15 19:00:06 +04:00
if ( rq_of ( cfs_rq ) - > load . weight > = 2 * se - > load . weight ) {
2010-03-11 05:37:45 +03:00
se - > statistics . slice_max = max ( se - > statistics . slice_max ,
2007-10-15 19:00:02 +04:00
se - > sum_exec_runtime - se - > prev_sum_exec_runtime ) ;
}
# endif
2007-09-05 16:32:49 +04:00
se - > prev_sum_exec_runtime = se - > sum_exec_runtime ;
2007-07-09 20:51:58 +04:00
}
2008-10-24 13:06:16 +04:00
static int
wakeup_preempt_entity ( struct sched_entity * curr , struct sched_entity * se ) ;
2011-02-01 17:51:03 +03:00
/*
* Pick the next process , keeping these things in mind , in this order :
* 1 ) keep things fair between processes / task groups
* 2 ) pick the " next " process , since someone really wants that to run
* 3 ) pick the " last " process , for cache locality
* 4 ) do not run the " skip " process , if something else is available
*/
2008-11-04 23:25:07 +03:00
static struct sched_entity * pick_next_entity ( struct cfs_rq * cfs_rq )
2008-03-14 23:12:12 +03:00
{
2011-02-01 17:51:03 +03:00
struct sched_entity * se = __pick_first_entity ( cfs_rq ) ;
sched: Strengthen buddies and mitigate buddy induced latencies
This patch restores the effectiveness of LAST_BUDDY in preventing
pgsql+oltp from collapsing due to wakeup preemption. It also
switches LAST_BUDDY to exclusively do what it does best, namely
mitigate the effects of aggressive wakeup preemption, which
improves vmark throughput markedly, and restores mysql+oltp
scalability.
Since buddies are about scalability, enable them beginning at the
point where we begin expanding sched_latency, namely
sched_nr_latency. Previously, buddies were cleared aggressively,
which seriously reduced their effectiveness. Not clearing
aggressively however, produces a small drop in mysql+oltp
throughput immediately after peak, indicating that LAST_BUDDY is
actually doing some harm. This is right at the point where X on the
desktop in competition with another load wants low latency service.
Ergo, do not enable until we need to scale.
To mitigate latency induced by buddies, or by a task just missing
wakeup preemption, check latency at tick time.
Last hunk prevents buddies from stymieing BALANCE_NEWIDLE via
CACHE_HOT_BUDDY.
Supporting performance tests:
tip = v2.6.32-rc5-1497-ga525b32
tipx = NO_GENTLE_FAIR_SLEEPERS NEXT_BUDDY granularity knobs = 31 knobs + 31 buddies
tip+x = NO_GENTLE_FAIR_SLEEPERS granularity knobs = 31 knobs
(Three run averages except where noted.)
vmark:
------
tip 108466 messages per second
tip+ 125307 messages per second
tip+x 125335 messages per second
tipx 117781 messages per second
2.6.31.3 122729 messages per second
mysql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 9949.89 18690.20 34801.24 34460.04 32682.88 30765.97 28305.27 25059.64 19548.08
tip+ 10013.90 18526.84 34900.38 34420.14 33069.83 32083.40 30578.30 28010.71 25605.47
tipx 9698.71 18002.70 34477.56 33420.01 32634.30 31657.27 29932.67 26827.52 21487.18
2.6.31.3 8243.11 18784.20 34404.83 33148.38 31900.32 31161.90 29663.81 25995.94 18058.86
pgsql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 13686.37 26609.25 51934.28 51347.81 49479.51 45312.65 36691.91 26851.57 24145.35
tip+ (1x) 13907.85 27135.87 52951.98 52514.04 51742.52 50705.43 49947.97 48374.19 46227.94
tip+x 13906.78 27065.81 52951.19 52542.59 52176.11 51815.94 50838.90 49439.46 46891.00
tipx 13742.46 26769.81 52351.99 51891.73 51320.79 50938.98 50248.65 48908.70 46553.84
2.6.31.3 13815.35 26906.46 52683.34 52061.31 51937.10 51376.80 50474.28 49394.47 47003.25
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-24 01:09:22 +04:00
struct sched_entity * left = se ;
2008-11-04 23:25:07 +03:00
2011-02-01 17:51:03 +03:00
/*
* Avoid running the skip buddy , if running something else can
* be done without getting too unfair .
*/
if ( cfs_rq - > skip = = se ) {
struct sched_entity * second = __pick_next_entity ( se ) ;
if ( second & & wakeup_preempt_entity ( second , left ) < 1 )
se = second ;
}
2008-03-14 23:12:12 +03:00
sched: Strengthen buddies and mitigate buddy induced latencies
This patch restores the effectiveness of LAST_BUDDY in preventing
pgsql+oltp from collapsing due to wakeup preemption. It also
switches LAST_BUDDY to exclusively do what it does best, namely
mitigate the effects of aggressive wakeup preemption, which
improves vmark throughput markedly, and restores mysql+oltp
scalability.
Since buddies are about scalability, enable them beginning at the
point where we begin expanding sched_latency, namely
sched_nr_latency. Previously, buddies were cleared aggressively,
which seriously reduced their effectiveness. Not clearing
aggressively however, produces a small drop in mysql+oltp
throughput immediately after peak, indicating that LAST_BUDDY is
actually doing some harm. This is right at the point where X on the
desktop in competition with another load wants low latency service.
Ergo, do not enable until we need to scale.
To mitigate latency induced by buddies, or by a task just missing
wakeup preemption, check latency at tick time.
Last hunk prevents buddies from stymieing BALANCE_NEWIDLE via
CACHE_HOT_BUDDY.
Supporting performance tests:
tip = v2.6.32-rc5-1497-ga525b32
tipx = NO_GENTLE_FAIR_SLEEPERS NEXT_BUDDY granularity knobs = 31 knobs + 31 buddies
tip+x = NO_GENTLE_FAIR_SLEEPERS granularity knobs = 31 knobs
(Three run averages except where noted.)
vmark:
------
tip 108466 messages per second
tip+ 125307 messages per second
tip+x 125335 messages per second
tipx 117781 messages per second
2.6.31.3 122729 messages per second
mysql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 9949.89 18690.20 34801.24 34460.04 32682.88 30765.97 28305.27 25059.64 19548.08
tip+ 10013.90 18526.84 34900.38 34420.14 33069.83 32083.40 30578.30 28010.71 25605.47
tipx 9698.71 18002.70 34477.56 33420.01 32634.30 31657.27 29932.67 26827.52 21487.18
2.6.31.3 8243.11 18784.20 34404.83 33148.38 31900.32 31161.90 29663.81 25995.94 18058.86
pgsql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 13686.37 26609.25 51934.28 51347.81 49479.51 45312.65 36691.91 26851.57 24145.35
tip+ (1x) 13907.85 27135.87 52951.98 52514.04 51742.52 50705.43 49947.97 48374.19 46227.94
tip+x 13906.78 27065.81 52951.19 52542.59 52176.11 51815.94 50838.90 49439.46 46891.00
tipx 13742.46 26769.81 52351.99 51891.73 51320.79 50938.98 50248.65 48908.70 46553.84
2.6.31.3 13815.35 26906.46 52683.34 52061.31 51937.10 51376.80 50474.28 49394.47 47003.25
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-24 01:09:22 +04:00
/*
* Prefer last buddy , try to return the CPU to a preempted task .
*/
if ( cfs_rq - > last & & wakeup_preempt_entity ( cfs_rq - > last , left ) < 1 )
se = cfs_rq - > last ;
2011-02-01 17:51:03 +03:00
/*
* Someone really wants this to run . If it ' s not unfair , run it .
*/
if ( cfs_rq - > next & & wakeup_preempt_entity ( cfs_rq - > next , left ) < 1 )
se = cfs_rq - > next ;
sched: Strengthen buddies and mitigate buddy induced latencies
This patch restores the effectiveness of LAST_BUDDY in preventing
pgsql+oltp from collapsing due to wakeup preemption. It also
switches LAST_BUDDY to exclusively do what it does best, namely
mitigate the effects of aggressive wakeup preemption, which
improves vmark throughput markedly, and restores mysql+oltp
scalability.
Since buddies are about scalability, enable them beginning at the
point where we begin expanding sched_latency, namely
sched_nr_latency. Previously, buddies were cleared aggressively,
which seriously reduced their effectiveness. Not clearing
aggressively however, produces a small drop in mysql+oltp
throughput immediately after peak, indicating that LAST_BUDDY is
actually doing some harm. This is right at the point where X on the
desktop in competition with another load wants low latency service.
Ergo, do not enable until we need to scale.
To mitigate latency induced by buddies, or by a task just missing
wakeup preemption, check latency at tick time.
Last hunk prevents buddies from stymieing BALANCE_NEWIDLE via
CACHE_HOT_BUDDY.
Supporting performance tests:
tip = v2.6.32-rc5-1497-ga525b32
tipx = NO_GENTLE_FAIR_SLEEPERS NEXT_BUDDY granularity knobs = 31 knobs + 31 buddies
tip+x = NO_GENTLE_FAIR_SLEEPERS granularity knobs = 31 knobs
(Three run averages except where noted.)
vmark:
------
tip 108466 messages per second
tip+ 125307 messages per second
tip+x 125335 messages per second
tipx 117781 messages per second
2.6.31.3 122729 messages per second
mysql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 9949.89 18690.20 34801.24 34460.04 32682.88 30765.97 28305.27 25059.64 19548.08
tip+ 10013.90 18526.84 34900.38 34420.14 33069.83 32083.40 30578.30 28010.71 25605.47
tipx 9698.71 18002.70 34477.56 33420.01 32634.30 31657.27 29932.67 26827.52 21487.18
2.6.31.3 8243.11 18784.20 34404.83 33148.38 31900.32 31161.90 29663.81 25995.94 18058.86
pgsql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 13686.37 26609.25 51934.28 51347.81 49479.51 45312.65 36691.91 26851.57 24145.35
tip+ (1x) 13907.85 27135.87 52951.98 52514.04 51742.52 50705.43 49947.97 48374.19 46227.94
tip+x 13906.78 27065.81 52951.19 52542.59 52176.11 51815.94 50838.90 49439.46 46891.00
tipx 13742.46 26769.81 52351.99 51891.73 51320.79 50938.98 50248.65 48908.70 46553.84
2.6.31.3 13815.35 26906.46 52683.34 52061.31 51937.10 51376.80 50474.28 49394.47 47003.25
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-24 01:09:22 +04:00
clear_buddies ( cfs_rq , se ) ;
sched: backward looking buddy
Impact: improve/change/fix wakeup-buddy scheduling
Currently we only have a forward looking buddy, that is, we prefer to
schedule to the task we last woke up, under the presumption that its
going to consume the data we just produced, and therefore will have
cache hot benefits.
This allows co-waking producer/consumer task pairs to run ahead of the
pack for a little while, keeping their cache warm. Without this, we
would interleave all pairs, utterly trashing the cache.
This patch introduces a backward looking buddy, that is, suppose that
in the above scenario, the consumer preempts the producer before it
can go to sleep, we will therefore miss the wakeup from consumer to
producer (its already running, after all), breaking the cycle and
reverting to the cache-trashing interleaved schedule pattern.
The backward buddy will try to schedule back to the task that woke us
up in case the forward buddy is not available, under the assumption
that the last task will be the one with the most cache hot task around
barring current.
This will basically allow a task to continue after it got preempted.
In order to avoid starvation, we allow either buddy to get wakeup_gran
ahead of the pack.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-04 23:25:09 +03:00
return se ;
2008-03-14 23:12:12 +03:00
}
2011-07-21 20:43:39 +04:00
static void check_cfs_rq_runtime ( struct cfs_rq * cfs_rq ) ;
2007-08-09 13:16:48 +04:00
static void put_prev_entity ( struct cfs_rq * cfs_rq , struct sched_entity * prev )
2007-07-09 20:51:58 +04:00
{
/*
* If still on the runqueue then deactivate_task ( )
* was not called and update_curr ( ) has to be done :
*/
if ( prev - > on_rq )
2007-08-09 13:16:47 +04:00
update_curr ( cfs_rq ) ;
2007-07-09 20:51:58 +04:00
2011-07-21 20:43:39 +04:00
/* throttle cfs_rqs exceeding runtime */
check_cfs_rq_runtime ( cfs_rq ) ;
2007-10-15 19:00:10 +04:00
check_spread ( cfs_rq , prev ) ;
2007-10-15 19:00:07 +04:00
if ( prev - > on_rq ) {
2007-08-09 13:16:47 +04:00
update_stats_wait_start ( cfs_rq , prev ) ;
2007-10-15 19:00:07 +04:00
/* Put 'current' back into the tree. */
__enqueue_entity ( cfs_rq , prev ) ;
2012-10-04 15:18:29 +04:00
/* in !on_rq case, update occurred at dequeue */
2012-10-04 15:18:30 +04:00
update_entity_load_avg ( prev , 1 ) ;
2007-10-15 19:00:07 +04:00
}
2007-10-15 19:00:03 +04:00
cfs_rq - > curr = NULL ;
2007-07-09 20:51:58 +04:00
}
2008-01-25 23:08:29 +03:00
static void
entity_tick ( struct cfs_rq * cfs_rq , struct sched_entity * curr , int queued )
2007-07-09 20:51:58 +04:00
{
/*
2007-10-15 19:00:07 +04:00
* Update run - time statistics of the ' current ' .
2007-07-09 20:51:58 +04:00
*/
2007-10-15 19:00:07 +04:00
update_curr ( cfs_rq ) ;
2007-07-09 20:51:58 +04:00
2012-10-04 15:18:29 +04:00
/*
* Ensure that runnable average is periodically updated .
*/
2012-10-04 15:18:30 +04:00
update_entity_load_avg ( curr , 1 ) ;
2012-10-04 15:18:30 +04:00
update_cfs_rq_blocked_load ( cfs_rq , 1 ) ;
2012-10-04 15:18:29 +04:00
2008-01-25 23:08:29 +03:00
# ifdef CONFIG_SCHED_HRTICK
/*
* queued ticks are scheduled to match the slice , so don ' t bother
* validating it and just reschedule .
*/
2008-04-25 05:17:55 +04:00
if ( queued ) {
resched_task ( rq_of ( cfs_rq ) - > curr ) ;
return ;
}
2008-01-25 23:08:29 +03:00
/*
* don ' t let the period tick interfere with the hrtick preemption
*/
if ( ! sched_feat ( DOUBLE_TICK ) & &
hrtimer_active ( & rq_of ( cfs_rq ) - > hrtick_timer ) )
return ;
# endif
2011-07-29 12:20:33 +04:00
if ( cfs_rq - > nr_running > 1 )
2007-10-15 19:00:05 +04:00
check_preempt_tick ( cfs_rq , curr ) ;
2007-07-09 20:51:58 +04:00
}
2011-07-21 20:43:28 +04:00
/**************************************************
* CFS bandwidth control machinery
*/
# ifdef CONFIG_CFS_BANDWIDTH
2011-10-25 12:00:11 +04:00
# ifdef HAVE_JUMP_LABEL
2012-02-24 11:31:31 +04:00
static struct static_key __cfs_bandwidth_used ;
2011-10-25 12:00:11 +04:00
static inline bool cfs_bandwidth_used ( void )
{
2012-02-24 11:31:31 +04:00
return static_key_false ( & __cfs_bandwidth_used ) ;
2011-10-25 12:00:11 +04:00
}
void account_cfs_bandwidth_used ( int enabled , int was_enabled )
{
/* only need to count groups transitioning between enabled/!enabled */
if ( enabled & & ! was_enabled )
2012-02-24 11:31:31 +04:00
static_key_slow_inc ( & __cfs_bandwidth_used ) ;
2011-10-25 12:00:11 +04:00
else if ( ! enabled & & was_enabled )
2012-02-24 11:31:31 +04:00
static_key_slow_dec ( & __cfs_bandwidth_used ) ;
2011-10-25 12:00:11 +04:00
}
# else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used ( void )
{
return true ;
}
void account_cfs_bandwidth_used ( int enabled , int was_enabled ) { }
# endif /* HAVE_JUMP_LABEL */
2011-07-21 20:43:28 +04:00
/*
* default period for cfs group bandwidth .
* default : 0.1 s , units : nanoseconds
*/
static inline u64 default_cfs_period ( void )
{
return 100000000ULL ;
}
2011-07-21 20:43:30 +04:00
static inline u64 sched_cfs_bandwidth_slice ( void )
{
return ( u64 ) sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC ;
}
2011-07-21 20:43:32 +04:00
/*
* Replenish runtime according to assigned quota and update expiration time .
* We use sched_clock_cpu directly instead of rq - > clock to avoid adding
* additional synchronization around rq - > lock .
*
* requires cfs_b - > lock
*/
2011-10-25 12:00:11 +04:00
void __refill_cfs_bandwidth_runtime ( struct cfs_bandwidth * cfs_b )
2011-07-21 20:43:32 +04:00
{
u64 now ;
if ( cfs_b - > quota = = RUNTIME_INF )
return ;
now = sched_clock_cpu ( smp_processor_id ( ) ) ;
cfs_b - > runtime = cfs_b - > quota ;
cfs_b - > runtime_expires = now + ktime_to_ns ( cfs_b - > period ) ;
}
2011-10-25 12:00:11 +04:00
static inline struct cfs_bandwidth * tg_cfs_bandwidth ( struct task_group * tg )
{
return & tg - > cfs_bandwidth ;
}
2012-10-04 15:18:31 +04:00
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task ( struct cfs_rq * cfs_rq )
{
if ( unlikely ( cfs_rq - > throttle_count ) )
return cfs_rq - > throttled_clock_task ;
return rq_of ( cfs_rq ) - > clock_task - cfs_rq - > throttled_clock_task_time ;
}
2011-07-21 20:43:33 +04:00
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime ( struct cfs_rq * cfs_rq )
2011-07-21 20:43:30 +04:00
{
struct task_group * tg = cfs_rq - > tg ;
struct cfs_bandwidth * cfs_b = tg_cfs_bandwidth ( tg ) ;
2011-07-21 20:43:32 +04:00
u64 amount = 0 , min_amount , expires ;
2011-07-21 20:43:30 +04:00
/* note: this is a positive sum as runtime_remaining <= 0 */
min_amount = sched_cfs_bandwidth_slice ( ) - cfs_rq - > runtime_remaining ;
raw_spin_lock ( & cfs_b - > lock ) ;
if ( cfs_b - > quota = = RUNTIME_INF )
amount = min_amount ;
2011-07-21 20:43:31 +04:00
else {
2011-07-21 20:43:32 +04:00
/*
* If the bandwidth pool has become inactive , then at least one
* period must have elapsed since the last consumption .
* Refresh the global state and ensure bandwidth timer becomes
* active .
*/
if ( ! cfs_b - > timer_active ) {
__refill_cfs_bandwidth_runtime ( cfs_b ) ;
2011-07-21 20:43:31 +04:00
__start_cfs_bandwidth ( cfs_b ) ;
2011-07-21 20:43:32 +04:00
}
2011-07-21 20:43:31 +04:00
if ( cfs_b - > runtime > 0 ) {
amount = min ( cfs_b - > runtime , min_amount ) ;
cfs_b - > runtime - = amount ;
cfs_b - > idle = 0 ;
}
2011-07-21 20:43:30 +04:00
}
2011-07-21 20:43:32 +04:00
expires = cfs_b - > runtime_expires ;
2011-07-21 20:43:30 +04:00
raw_spin_unlock ( & cfs_b - > lock ) ;
cfs_rq - > runtime_remaining + = amount ;
2011-07-21 20:43:32 +04:00
/*
* we may have advanced our local expiration to account for allowed
* spread between our sched_clock and the one on which runtime was
* issued .
*/
if ( ( s64 ) ( expires - cfs_rq - > runtime_expires ) > 0 )
cfs_rq - > runtime_expires = expires ;
2011-07-21 20:43:33 +04:00
return cfs_rq - > runtime_remaining > 0 ;
2011-07-21 20:43:30 +04:00
}
2011-07-21 20:43:32 +04:00
/*
* Note : This depends on the synchronization provided by sched_clock and the
* fact that rq - > clock snapshots this value .
*/
static void expire_cfs_rq_runtime ( struct cfs_rq * cfs_rq )
2011-07-21 20:43:30 +04:00
{
2011-07-21 20:43:32 +04:00
struct cfs_bandwidth * cfs_b = tg_cfs_bandwidth ( cfs_rq - > tg ) ;
struct rq * rq = rq_of ( cfs_rq ) ;
/* if the deadline is ahead of our clock, nothing to do */
if ( likely ( ( s64 ) ( rq - > clock - cfs_rq - > runtime_expires ) < 0 ) )
2011-07-21 20:43:30 +04:00
return ;
2011-07-21 20:43:32 +04:00
if ( cfs_rq - > runtime_remaining < 0 )
return ;
/*
* If the local deadline has passed we have to consider the
* possibility that our sched_clock is ' fast ' and the global deadline
* has not truly expired .
*
* Fortunately we can check determine whether this the case by checking
* whether the global deadline has advanced .
*/
if ( ( s64 ) ( cfs_rq - > runtime_expires - cfs_b - > runtime_expires ) > = 0 ) {
/* extend local deadline, drift is bounded above by 2 ticks */
cfs_rq - > runtime_expires + = TICK_NSEC ;
} else {
/* global deadline is ahead, expiration has passed */
cfs_rq - > runtime_remaining = 0 ;
}
}
static void __account_cfs_rq_runtime ( struct cfs_rq * cfs_rq ,
unsigned long delta_exec )
{
/* dock delta_exec before expiring quota (as it could span periods) */
2011-07-21 20:43:30 +04:00
cfs_rq - > runtime_remaining - = delta_exec ;
2011-07-21 20:43:32 +04:00
expire_cfs_rq_runtime ( cfs_rq ) ;
if ( likely ( cfs_rq - > runtime_remaining > 0 ) )
2011-07-21 20:43:30 +04:00
return ;
2011-07-21 20:43:33 +04:00
/*
* if we ' re unable to extend our runtime we resched so that the active
* hierarchy can be throttled
*/
if ( ! assign_cfs_rq_runtime ( cfs_rq ) & & likely ( cfs_rq - > curr ) )
resched_task ( rq_of ( cfs_rq ) - > curr ) ;
2011-07-21 20:43:30 +04:00
}
2012-03-22 00:07:16 +04:00
static __always_inline
void account_cfs_rq_runtime ( struct cfs_rq * cfs_rq , unsigned long delta_exec )
2011-07-21 20:43:30 +04:00
{
2011-11-08 08:26:33 +04:00
if ( ! cfs_bandwidth_used ( ) | | ! cfs_rq - > runtime_enabled )
2011-07-21 20:43:30 +04:00
return ;
__account_cfs_rq_runtime ( cfs_rq , delta_exec ) ;
}
2011-07-21 20:43:33 +04:00
static inline int cfs_rq_throttled ( struct cfs_rq * cfs_rq )
{
2011-11-08 08:26:33 +04:00
return cfs_bandwidth_used ( ) & & cfs_rq - > throttled ;
2011-07-21 20:43:33 +04:00
}
2011-07-21 20:43:36 +04:00
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy ( struct cfs_rq * cfs_rq )
{
2011-11-08 08:26:33 +04:00
return cfs_bandwidth_used ( ) & & cfs_rq - > throttle_count ;
2011-07-21 20:43:36 +04:00
}
/*
* Ensure that neither of the group entities corresponding to src_cpu or
* dest_cpu are members of a throttled hierarchy when performing group
* load - balance operations .
*/
static inline int throttled_lb_pair ( struct task_group * tg ,
int src_cpu , int dest_cpu )
{
struct cfs_rq * src_cfs_rq , * dest_cfs_rq ;
src_cfs_rq = tg - > cfs_rq [ src_cpu ] ;
dest_cfs_rq = tg - > cfs_rq [ dest_cpu ] ;
return throttled_hierarchy ( src_cfs_rq ) | |
throttled_hierarchy ( dest_cfs_rq ) ;
}
/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up ( struct task_group * tg , void * data )
{
struct rq * rq = data ;
struct cfs_rq * cfs_rq = tg - > cfs_rq [ cpu_of ( rq ) ] ;
cfs_rq - > throttle_count - - ;
# ifdef CONFIG_SMP
if ( ! cfs_rq - > throttle_count ) {
2012-10-04 15:18:31 +04:00
/* adjust cfs_rq_clock_task() */
cfs_rq - > throttled_clock_task_time + = rq - > clock_task -
cfs_rq - > throttled_clock_task ;
2011-07-21 20:43:36 +04:00
}
# endif
return 0 ;
}
static int tg_throttle_down ( struct task_group * tg , void * data )
{
struct rq * rq = data ;
struct cfs_rq * cfs_rq = tg - > cfs_rq [ cpu_of ( rq ) ] ;
2012-10-04 15:18:31 +04:00
/* group is entering throttled state, stop time */
if ( ! cfs_rq - > throttle_count )
2012-10-04 15:18:31 +04:00
cfs_rq - > throttled_clock_task = rq - > clock_task ;
2011-07-21 20:43:36 +04:00
cfs_rq - > throttle_count + + ;
return 0 ;
}
2011-07-21 20:43:39 +04:00
static void throttle_cfs_rq ( struct cfs_rq * cfs_rq )
2011-07-21 20:43:33 +04:00
{
struct rq * rq = rq_of ( cfs_rq ) ;
struct cfs_bandwidth * cfs_b = tg_cfs_bandwidth ( cfs_rq - > tg ) ;
struct sched_entity * se ;
long task_delta , dequeue = 1 ;
se = cfs_rq - > tg - > se [ cpu_of ( rq_of ( cfs_rq ) ) ] ;
2012-10-04 15:18:31 +04:00
/* freeze hierarchy runnable averages while throttled */
2011-07-21 20:43:36 +04:00
rcu_read_lock ( ) ;
walk_tg_tree_from ( cfs_rq - > tg , tg_throttle_down , tg_nop , ( void * ) rq ) ;
rcu_read_unlock ( ) ;
2011-07-21 20:43:33 +04:00
task_delta = cfs_rq - > h_nr_running ;
for_each_sched_entity ( se ) {
struct cfs_rq * qcfs_rq = cfs_rq_of ( se ) ;
/* throttled entity or throttle-on-deactivate */
if ( ! se - > on_rq )
break ;
if ( dequeue )
dequeue_entity ( qcfs_rq , se , DEQUEUE_SLEEP ) ;
qcfs_rq - > h_nr_running - = task_delta ;
if ( qcfs_rq - > load . weight )
dequeue = 0 ;
}
if ( ! se )
rq - > nr_running - = task_delta ;
cfs_rq - > throttled = 1 ;
2012-10-04 15:18:31 +04:00
cfs_rq - > throttled_clock = rq - > clock ;
2011-07-21 20:43:33 +04:00
raw_spin_lock ( & cfs_b - > lock ) ;
list_add_tail_rcu ( & cfs_rq - > throttled_list , & cfs_b - > throttled_cfs_rq ) ;
raw_spin_unlock ( & cfs_b - > lock ) ;
}
2011-10-25 12:00:11 +04:00
void unthrottle_cfs_rq ( struct cfs_rq * cfs_rq )
2011-07-21 20:43:34 +04:00
{
struct rq * rq = rq_of ( cfs_rq ) ;
struct cfs_bandwidth * cfs_b = tg_cfs_bandwidth ( cfs_rq - > tg ) ;
struct sched_entity * se ;
int enqueue = 1 ;
long task_delta ;
se = cfs_rq - > tg - > se [ cpu_of ( rq_of ( cfs_rq ) ) ] ;
cfs_rq - > throttled = 0 ;
raw_spin_lock ( & cfs_b - > lock ) ;
2012-10-04 15:18:31 +04:00
cfs_b - > throttled_time + = rq - > clock - cfs_rq - > throttled_clock ;
2011-07-21 20:43:34 +04:00
list_del_rcu ( & cfs_rq - > throttled_list ) ;
raw_spin_unlock ( & cfs_b - > lock ) ;
2011-07-21 20:43:36 +04:00
update_rq_clock ( rq ) ;
/* update hierarchical throttle state */
walk_tg_tree_from ( cfs_rq - > tg , tg_nop , tg_unthrottle_up , ( void * ) rq ) ;
2011-07-21 20:43:34 +04:00
if ( ! cfs_rq - > load . weight )
return ;
task_delta = cfs_rq - > h_nr_running ;
for_each_sched_entity ( se ) {
if ( se - > on_rq )
enqueue = 0 ;
cfs_rq = cfs_rq_of ( se ) ;
if ( enqueue )
enqueue_entity ( cfs_rq , se , ENQUEUE_WAKEUP ) ;
cfs_rq - > h_nr_running + = task_delta ;
if ( cfs_rq_throttled ( cfs_rq ) )
break ;
}
if ( ! se )
rq - > nr_running + = task_delta ;
/* determine whether we need to wake up potentially idle cpu */
if ( rq - > curr = = rq - > idle & & rq - > cfs . nr_running )
resched_task ( rq - > curr ) ;
}
static u64 distribute_cfs_runtime ( struct cfs_bandwidth * cfs_b ,
u64 remaining , u64 expires )
{
struct cfs_rq * cfs_rq ;
u64 runtime = remaining ;
rcu_read_lock ( ) ;
list_for_each_entry_rcu ( cfs_rq , & cfs_b - > throttled_cfs_rq ,
throttled_list ) {
struct rq * rq = rq_of ( cfs_rq ) ;
raw_spin_lock ( & rq - > lock ) ;
if ( ! cfs_rq_throttled ( cfs_rq ) )
goto next ;
runtime = - cfs_rq - > runtime_remaining + 1 ;
if ( runtime > remaining )
runtime = remaining ;
remaining - = runtime ;
cfs_rq - > runtime_remaining + = runtime ;
cfs_rq - > runtime_expires = expires ;
/* we check whether we're throttled above */
if ( cfs_rq - > runtime_remaining > 0 )
unthrottle_cfs_rq ( cfs_rq ) ;
next :
raw_spin_unlock ( & rq - > lock ) ;
if ( ! remaining )
break ;
}
rcu_read_unlock ( ) ;
return remaining ;
}
2011-07-21 20:43:31 +04:00
/*
* Responsible for refilling a task_group ' s bandwidth and unthrottling its
* cfs_rqs as appropriate . If there has been no activity within the last
* period the timer is deactivated until scheduling resumes ; cfs_b - > idle is
* used to track this state .
*/
static int do_sched_cfs_period_timer ( struct cfs_bandwidth * cfs_b , int overrun )
{
2011-07-21 20:43:34 +04:00
u64 runtime , runtime_expires ;
int idle = 1 , throttled ;
2011-07-21 20:43:31 +04:00
raw_spin_lock ( & cfs_b - > lock ) ;
/* no need to continue the timer with no bandwidth constraint */
if ( cfs_b - > quota = = RUNTIME_INF )
goto out_unlock ;
2011-07-21 20:43:34 +04:00
throttled = ! list_empty ( & cfs_b - > throttled_cfs_rq ) ;
/* idle depends on !throttled (for the case of a large deficit) */
idle = cfs_b - > idle & & ! throttled ;
2011-07-21 20:43:40 +04:00
cfs_b - > nr_periods + = overrun ;
2011-07-21 20:43:34 +04:00
2011-07-21 20:43:32 +04:00
/* if we're going inactive then everything else can be deferred */
if ( idle )
goto out_unlock ;
__refill_cfs_bandwidth_runtime ( cfs_b ) ;
2011-07-21 20:43:34 +04:00
if ( ! throttled ) {
/* mark as potentially idle for the upcoming period */
cfs_b - > idle = 1 ;
goto out_unlock ;
}
2011-07-21 20:43:40 +04:00
/* account preceding periods in which throttling occurred */
cfs_b - > nr_throttled + = overrun ;
2011-07-21 20:43:34 +04:00
/*
* There are throttled entities so we must first use the new bandwidth
* to unthrottle them before making it generally available . This
* ensures that all existing debts will be paid before a new cfs_rq is
* allowed to run .
*/
runtime = cfs_b - > runtime ;
runtime_expires = cfs_b - > runtime_expires ;
cfs_b - > runtime = 0 ;
/*
* This check is repeated as we are holding onto the new bandwidth
* while we unthrottle . This can potentially race with an unthrottled
* group trying to acquire new bandwidth from the global pool .
*/
while ( throttled & & runtime > 0 ) {
raw_spin_unlock ( & cfs_b - > lock ) ;
/* we can't nest cfs_b->lock while distributing bandwidth */
runtime = distribute_cfs_runtime ( cfs_b , runtime ,
runtime_expires ) ;
raw_spin_lock ( & cfs_b - > lock ) ;
throttled = ! list_empty ( & cfs_b - > throttled_cfs_rq ) ;
}
2011-07-21 20:43:31 +04:00
2011-07-21 20:43:34 +04:00
/* return (any) remaining runtime */
cfs_b - > runtime = runtime ;
/*
* While we are ensured activity in the period following an
* unthrottle , this also covers the case in which the new bandwidth is
* insufficient to cover the existing bandwidth deficit . ( Forcing the
* timer to remain active while there are any throttled entities . )
*/
cfs_b - > idle = 0 ;
2011-07-21 20:43:31 +04:00
out_unlock :
if ( idle )
cfs_b - > timer_active = 0 ;
raw_spin_unlock ( & cfs_b - > lock ) ;
return idle ;
}
2011-07-21 20:43:39 +04:00
2011-07-21 20:43:41 +04:00
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC ;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC ;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC ;
/* are we near the end of the current quota period? */
static int runtime_refresh_within ( struct cfs_bandwidth * cfs_b , u64 min_expire )
{
struct hrtimer * refresh_timer = & cfs_b - > period_timer ;
u64 remaining ;
/* if the call-back is running a quota refresh is already occurring */
if ( hrtimer_callback_running ( refresh_timer ) )
return 1 ;
/* is a quota refresh about to occur? */
remaining = ktime_to_ns ( hrtimer_expires_remaining ( refresh_timer ) ) ;
if ( remaining < min_expire )
return 1 ;
return 0 ;
}
static void start_cfs_slack_bandwidth ( struct cfs_bandwidth * cfs_b )
{
u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration ;
/* if there's a quota refresh soon don't bother with slack */
if ( runtime_refresh_within ( cfs_b , min_left ) )
return ;
start_bandwidth_timer ( & cfs_b - > slack_timer ,
ns_to_ktime ( cfs_bandwidth_slack_period ) ) ;
}
/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime ( struct cfs_rq * cfs_rq )
{
struct cfs_bandwidth * cfs_b = tg_cfs_bandwidth ( cfs_rq - > tg ) ;
s64 slack_runtime = cfs_rq - > runtime_remaining - min_cfs_rq_runtime ;
if ( slack_runtime < = 0 )
return ;
raw_spin_lock ( & cfs_b - > lock ) ;
if ( cfs_b - > quota ! = RUNTIME_INF & &
cfs_rq - > runtime_expires = = cfs_b - > runtime_expires ) {
cfs_b - > runtime + = slack_runtime ;
/* we are under rq->lock, defer unthrottling using a timer */
if ( cfs_b - > runtime > sched_cfs_bandwidth_slice ( ) & &
! list_empty ( & cfs_b - > throttled_cfs_rq ) )
start_cfs_slack_bandwidth ( cfs_b ) ;
}
raw_spin_unlock ( & cfs_b - > lock ) ;
/* even if it's not valid for return we don't want to try again */
cfs_rq - > runtime_remaining - = slack_runtime ;
}
static __always_inline void return_cfs_rq_runtime ( struct cfs_rq * cfs_rq )
{
2011-11-08 08:26:33 +04:00
if ( ! cfs_bandwidth_used ( ) )
return ;
2011-11-08 08:26:34 +04:00
if ( ! cfs_rq - > runtime_enabled | | cfs_rq - > nr_running )
2011-07-21 20:43:41 +04:00
return ;
__return_cfs_rq_runtime ( cfs_rq ) ;
}
/*
* This is done with a timer ( instead of inline with bandwidth return ) since
* it ' s necessary to juggle rq - > locks to unthrottle their respective cfs_rqs .
*/
static void do_sched_cfs_slack_timer ( struct cfs_bandwidth * cfs_b )
{
u64 runtime = 0 , slice = sched_cfs_bandwidth_slice ( ) ;
u64 expires ;
/* confirm we're still not at a refresh boundary */
if ( runtime_refresh_within ( cfs_b , min_bandwidth_expiration ) )
return ;
raw_spin_lock ( & cfs_b - > lock ) ;
if ( cfs_b - > quota ! = RUNTIME_INF & & cfs_b - > runtime > slice ) {
runtime = cfs_b - > runtime ;
cfs_b - > runtime = 0 ;
}
expires = cfs_b - > runtime_expires ;
raw_spin_unlock ( & cfs_b - > lock ) ;
if ( ! runtime )
return ;
runtime = distribute_cfs_runtime ( cfs_b , runtime , expires ) ;
raw_spin_lock ( & cfs_b - > lock ) ;
if ( expires = = cfs_b - > runtime_expires )
cfs_b - > runtime = runtime ;
raw_spin_unlock ( & cfs_b - > lock ) ;
}
2011-07-21 20:43:39 +04:00
/*
* When a group wakes up we want to make sure that its quota is not already
* expired / exceeded , otherwise it may be allowed to steal additional ticks of
* runtime as update_curr ( ) throttling can not not trigger until it ' s on - rq .
*/
static void check_enqueue_throttle ( struct cfs_rq * cfs_rq )
{
2011-11-08 08:26:33 +04:00
if ( ! cfs_bandwidth_used ( ) )
return ;
2011-07-21 20:43:39 +04:00
/* an active group must be handled by the update_curr()->put() path */
if ( ! cfs_rq - > runtime_enabled | | cfs_rq - > curr )
return ;
/* ensure the group is not already throttled */
if ( cfs_rq_throttled ( cfs_rq ) )
return ;
/* update runtime allocation */
account_cfs_rq_runtime ( cfs_rq , 0 ) ;
if ( cfs_rq - > runtime_remaining < = 0 )
throttle_cfs_rq ( cfs_rq ) ;
}
/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime ( struct cfs_rq * cfs_rq )
{
2011-11-08 08:26:33 +04:00
if ( ! cfs_bandwidth_used ( ) )
return ;
2011-07-21 20:43:39 +04:00
if ( likely ( ! cfs_rq - > runtime_enabled | | cfs_rq - > runtime_remaining > 0 ) )
return ;
/*
* it ' s possible for a throttled entity to be forced into a running
* state ( e . g . set_curr_task ) , in this case we ' re finished .
*/
if ( cfs_rq_throttled ( cfs_rq ) )
return ;
throttle_cfs_rq ( cfs_rq ) ;
}
2011-10-25 12:00:11 +04:00
static inline u64 default_cfs_period ( void ) ;
static int do_sched_cfs_period_timer ( struct cfs_bandwidth * cfs_b , int overrun ) ;
static void do_sched_cfs_slack_timer ( struct cfs_bandwidth * cfs_b ) ;
static enum hrtimer_restart sched_cfs_slack_timer ( struct hrtimer * timer )
{
struct cfs_bandwidth * cfs_b =
container_of ( timer , struct cfs_bandwidth , slack_timer ) ;
do_sched_cfs_slack_timer ( cfs_b ) ;
return HRTIMER_NORESTART ;
}
static enum hrtimer_restart sched_cfs_period_timer ( struct hrtimer * timer )
{
struct cfs_bandwidth * cfs_b =
container_of ( timer , struct cfs_bandwidth , period_timer ) ;
ktime_t now ;
int overrun ;
int idle = 0 ;
for ( ; ; ) {
now = hrtimer_cb_get_time ( timer ) ;
overrun = hrtimer_forward ( timer , now , cfs_b - > period ) ;
if ( ! overrun )
break ;
idle = do_sched_cfs_period_timer ( cfs_b , overrun ) ;
}
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART ;
}
void init_cfs_bandwidth ( struct cfs_bandwidth * cfs_b )
{
raw_spin_lock_init ( & cfs_b - > lock ) ;
cfs_b - > runtime = 0 ;
cfs_b - > quota = RUNTIME_INF ;
cfs_b - > period = ns_to_ktime ( default_cfs_period ( ) ) ;
INIT_LIST_HEAD ( & cfs_b - > throttled_cfs_rq ) ;
hrtimer_init ( & cfs_b - > period_timer , CLOCK_MONOTONIC , HRTIMER_MODE_REL ) ;
cfs_b - > period_timer . function = sched_cfs_period_timer ;
hrtimer_init ( & cfs_b - > slack_timer , CLOCK_MONOTONIC , HRTIMER_MODE_REL ) ;
cfs_b - > slack_timer . function = sched_cfs_slack_timer ;
}
static void init_cfs_rq_runtime ( struct cfs_rq * cfs_rq )
{
cfs_rq - > runtime_enabled = 0 ;
INIT_LIST_HEAD ( & cfs_rq - > throttled_list ) ;
}
/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth ( struct cfs_bandwidth * cfs_b )
{
/*
* The timer may be active because we ' re trying to set a new bandwidth
* period or because we ' re racing with the tear - down path
* ( timer_active = = 0 becomes visible before the hrtimer call - back
* terminates ) . In either case we ensure that it ' s re - programmed
*/
while ( unlikely ( hrtimer_active ( & cfs_b - > period_timer ) ) ) {
raw_spin_unlock ( & cfs_b - > lock ) ;
/* ensure cfs_b->lock is available while we wait */
hrtimer_cancel ( & cfs_b - > period_timer ) ;
raw_spin_lock ( & cfs_b - > lock ) ;
/* if someone else restarted the timer then we're done */
if ( cfs_b - > timer_active )
return ;
}
cfs_b - > timer_active = 1 ;
start_bandwidth_timer ( & cfs_b - > period_timer , cfs_b - > period ) ;
}
static void destroy_cfs_bandwidth ( struct cfs_bandwidth * cfs_b )
{
hrtimer_cancel ( & cfs_b - > period_timer ) ;
hrtimer_cancel ( & cfs_b - > slack_timer ) ;
}
2012-08-10 02:34:47 +04:00
static void unthrottle_offline_cfs_rqs ( struct rq * rq )
2011-10-25 12:00:11 +04:00
{
struct cfs_rq * cfs_rq ;
for_each_leaf_cfs_rq ( rq , cfs_rq ) {
struct cfs_bandwidth * cfs_b = tg_cfs_bandwidth ( cfs_rq - > tg ) ;
if ( ! cfs_rq - > runtime_enabled )
continue ;
/*
* clock_task is not advancing so we just need to make sure
* there ' s some valid quota amount
*/
cfs_rq - > runtime_remaining = cfs_b - > quota ;
if ( cfs_rq_throttled ( cfs_rq ) )
unthrottle_cfs_rq ( cfs_rq ) ;
}
}
# else /* CONFIG_CFS_BANDWIDTH */
2012-10-04 15:18:31 +04:00
static inline u64 cfs_rq_clock_task ( struct cfs_rq * cfs_rq )
{
return rq_of ( cfs_rq ) - > clock_task ;
}
static void account_cfs_rq_runtime ( struct cfs_rq * cfs_rq ,
unsigned long delta_exec ) { }
2011-07-21 20:43:39 +04:00
static void check_cfs_rq_runtime ( struct cfs_rq * cfs_rq ) { }
static void check_enqueue_throttle ( struct cfs_rq * cfs_rq ) { }
2012-03-22 00:07:16 +04:00
static __always_inline void return_cfs_rq_runtime ( struct cfs_rq * cfs_rq ) { }
2011-07-21 20:43:33 +04:00
static inline int cfs_rq_throttled ( struct cfs_rq * cfs_rq )
{
return 0 ;
}
2011-07-21 20:43:36 +04:00
static inline int throttled_hierarchy ( struct cfs_rq * cfs_rq )
{
return 0 ;
}
static inline int throttled_lb_pair ( struct task_group * tg ,
int src_cpu , int dest_cpu )
{
return 0 ;
}
2011-10-25 12:00:11 +04:00
void init_cfs_bandwidth ( struct cfs_bandwidth * cfs_b ) { }
# ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime ( struct cfs_rq * cfs_rq ) { }
2011-07-21 20:43:28 +04:00
# endif
2011-10-25 12:00:11 +04:00
static inline struct cfs_bandwidth * tg_cfs_bandwidth ( struct task_group * tg )
{
return NULL ;
}
static inline void destroy_cfs_bandwidth ( struct cfs_bandwidth * cfs_b ) { }
2012-08-10 02:34:47 +04:00
static inline void unthrottle_offline_cfs_rqs ( struct rq * rq ) { }
2011-10-25 12:00:11 +04:00
# endif /* CONFIG_CFS_BANDWIDTH */
2007-07-09 20:51:58 +04:00
/**************************************************
* CFS operations on tasks :
*/
2008-01-25 23:08:29 +03:00
# ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair ( struct rq * rq , struct task_struct * p )
{
struct sched_entity * se = & p - > se ;
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
WARN_ON ( task_rq ( p ) ! = rq ) ;
2011-11-22 18:20:07 +04:00
if ( cfs_rq - > nr_running > 1 ) {
2008-01-25 23:08:29 +03:00
u64 slice = sched_slice ( cfs_rq , se ) ;
u64 ran = se - > sum_exec_runtime - se - > prev_sum_exec_runtime ;
s64 delta = slice - ran ;
if ( delta < 0 ) {
if ( rq - > curr = = p )
resched_task ( p ) ;
return ;
}
/*
* Don ' t schedule slices shorter than 10000 ns , that just
* doesn ' t make sense . Rely on vruntime for fairness .
*/
2008-07-18 20:01:23 +04:00
if ( rq - > curr ! = p )
2008-07-28 13:53:11 +04:00
delta = max_t ( s64 , 10000LL , delta ) ;
2008-01-25 23:08:29 +03:00
2008-07-18 20:01:23 +04:00
hrtick_start ( rq , delta ) ;
2008-01-25 23:08:29 +03:00
}
}
2008-10-17 21:27:03 +04:00
/*
* called from enqueue / dequeue and updates the hrtick when the
* current task is from our class and nr_running is low enough
* to matter .
*/
static void hrtick_update ( struct rq * rq )
{
struct task_struct * curr = rq - > curr ;
2011-11-22 18:20:07 +04:00
if ( ! hrtick_enabled ( rq ) | | curr - > sched_class ! = & fair_sched_class )
2008-10-17 21:27:03 +04:00
return ;
if ( cfs_rq_of ( & curr - > se ) - > nr_running < sched_nr_latency )
hrtick_start_fair ( rq , curr ) ;
}
2008-06-24 22:09:43 +04:00
# else /* !CONFIG_SCHED_HRTICK */
2008-01-25 23:08:29 +03:00
static inline void
hrtick_start_fair ( struct rq * rq , struct task_struct * p )
{
}
2008-10-17 21:27:03 +04:00
static inline void hrtick_update ( struct rq * rq )
{
}
2008-01-25 23:08:29 +03:00
# endif
2007-07-09 20:51:58 +04:00
/*
* The enqueue_task method is called before nr_running is
* increased . Here we update the fair scheduling stats and
* then put the task into the rbtree :
*/
2010-01-20 23:58:57 +03:00
static void
2010-03-24 18:38:48 +03:00
enqueue_task_fair ( struct rq * rq , struct task_struct * p , int flags )
2007-07-09 20:51:58 +04:00
{
struct cfs_rq * cfs_rq ;
2008-02-25 19:34:02 +03:00
struct sched_entity * se = & p - > se ;
2007-07-09 20:51:58 +04:00
for_each_sched_entity ( se ) {
2008-02-25 19:34:02 +03:00
if ( se - > on_rq )
2007-07-09 20:51:58 +04:00
break ;
cfs_rq = cfs_rq_of ( se ) ;
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
enqueue_entity ( cfs_rq , se , flags ) ;
2011-07-21 20:43:33 +04:00
/*
* end evaluation on encountering a throttled cfs_rq
*
* note : in the case of encountering a throttled cfs_rq we will
* post the final h_nr_running increment below .
*/
if ( cfs_rq_throttled ( cfs_rq ) )
break ;
2011-07-21 20:43:27 +04:00
cfs_rq - > h_nr_running + + ;
2011-07-21 20:43:33 +04:00
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
flags = ENQUEUE_WAKEUP ;
2007-07-09 20:51:58 +04:00
}
2008-01-25 23:08:29 +03:00
2010-11-16 02:47:00 +03:00
for_each_sched_entity ( se ) {
2011-07-22 05:14:31 +04:00
cfs_rq = cfs_rq_of ( se ) ;
2011-07-21 20:43:27 +04:00
cfs_rq - > h_nr_running + + ;
2010-11-16 02:47:00 +03:00
2011-07-21 20:43:33 +04:00
if ( cfs_rq_throttled ( cfs_rq ) )
break ;
2011-01-22 07:45:01 +03:00
update_cfs_shares ( cfs_rq ) ;
2012-10-04 15:18:30 +04:00
update_entity_load_avg ( se , 1 ) ;
2010-11-16 02:47:00 +03:00
}
2012-10-04 14:51:20 +04:00
if ( ! se ) {
update_rq_runnable_avg ( rq , rq - > nr_running ) ;
2011-07-21 20:43:33 +04:00
inc_nr_running ( rq ) ;
2012-10-04 14:51:20 +04:00
}
2008-10-17 21:27:03 +04:00
hrtick_update ( rq ) ;
2007-07-09 20:51:58 +04:00
}
2011-04-14 21:30:53 +04:00
static void set_next_buddy ( struct sched_entity * se ) ;
2007-07-09 20:51:58 +04:00
/*
* The dequeue_task method is called before nr_running is
* decreased . We remove the task from the rbtree and
* update the fair scheduling stats :
*/
2010-03-24 18:38:48 +03:00
static void dequeue_task_fair ( struct rq * rq , struct task_struct * p , int flags )
2007-07-09 20:51:58 +04:00
{
struct cfs_rq * cfs_rq ;
2008-02-25 19:34:02 +03:00
struct sched_entity * se = & p - > se ;
2011-04-14 21:30:53 +04:00
int task_sleep = flags & DEQUEUE_SLEEP ;
2007-07-09 20:51:58 +04:00
for_each_sched_entity ( se ) {
cfs_rq = cfs_rq_of ( se ) ;
2010-03-24 18:38:48 +03:00
dequeue_entity ( cfs_rq , se , flags ) ;
2011-07-21 20:43:33 +04:00
/*
* end evaluation on encountering a throttled cfs_rq
*
* note : in the case of encountering a throttled cfs_rq we will
* post the final h_nr_running decrement below .
*/
if ( cfs_rq_throttled ( cfs_rq ) )
break ;
2011-07-21 20:43:27 +04:00
cfs_rq - > h_nr_running - - ;
2010-11-16 02:47:00 +03:00
2007-07-09 20:51:58 +04:00
/* Don't dequeue parent if it has other entities besides us */
2011-04-14 21:30:53 +04:00
if ( cfs_rq - > load . weight ) {
/*
* Bias pick_next to pick a task from this cfs_rq , as
* p is sleeping when it is within its sched_slice .
*/
if ( task_sleep & & parent_entity ( se ) )
set_next_buddy ( parent_entity ( se ) ) ;
2011-07-07 09:30:37 +04:00
/* avoid re-evaluating load for this entity */
se = parent_entity ( se ) ;
2007-07-09 20:51:58 +04:00
break ;
2011-04-14 21:30:53 +04:00
}
2010-03-24 18:38:48 +03:00
flags | = DEQUEUE_SLEEP ;
2007-07-09 20:51:58 +04:00
}
2008-01-25 23:08:29 +03:00
2010-11-16 02:47:00 +03:00
for_each_sched_entity ( se ) {
2011-07-22 05:14:31 +04:00
cfs_rq = cfs_rq_of ( se ) ;
2011-07-21 20:43:27 +04:00
cfs_rq - > h_nr_running - - ;
2010-11-16 02:47:00 +03:00
2011-07-21 20:43:33 +04:00
if ( cfs_rq_throttled ( cfs_rq ) )
break ;
2011-01-22 07:45:01 +03:00
update_cfs_shares ( cfs_rq ) ;
2012-10-04 15:18:30 +04:00
update_entity_load_avg ( se , 1 ) ;
2010-11-16 02:47:00 +03:00
}
2012-10-04 14:51:20 +04:00
if ( ! se ) {
2011-07-21 20:43:33 +04:00
dec_nr_running ( rq ) ;
2012-10-04 14:51:20 +04:00
update_rq_runnable_avg ( rq , 1 ) ;
}
2008-10-17 21:27:03 +04:00
hrtick_update ( rq ) ;
2007-07-09 20:51:58 +04:00
}
2008-01-25 23:08:09 +03:00
# ifdef CONFIG_SMP
2011-10-25 12:00:11 +04:00
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload ( const int cpu )
{
return cpu_rq ( cpu ) - > load . weight ;
}
/*
* Return a low guess at the load of a migration - source cpu weighted
* according to the scheduling class and " nice " value .
*
* We want to under - estimate the load of migration sources , to
* balance conservatively .
*/
static unsigned long source_load ( int cpu , int type )
{
struct rq * rq = cpu_rq ( cpu ) ;
unsigned long total = weighted_cpuload ( cpu ) ;
if ( type = = 0 | | ! sched_feat ( LB_BIAS ) )
return total ;
return min ( rq - > cpu_load [ type - 1 ] , total ) ;
}
/*
* Return a high guess at the load of a migration - target cpu weighted
* according to the scheduling class and " nice " value .
*/
static unsigned long target_load ( int cpu , int type )
{
struct rq * rq = cpu_rq ( cpu ) ;
unsigned long total = weighted_cpuload ( cpu ) ;
if ( type = = 0 | | ! sched_feat ( LB_BIAS ) )
return total ;
return max ( rq - > cpu_load [ type - 1 ] , total ) ;
}
static unsigned long power_of ( int cpu )
{
return cpu_rq ( cpu ) - > cpu_power ;
}
static unsigned long cpu_avg_load_per_task ( int cpu )
{
struct rq * rq = cpu_rq ( cpu ) ;
unsigned long nr_running = ACCESS_ONCE ( rq - > nr_running ) ;
if ( nr_running )
return rq - > load . weight / nr_running ;
return 0 ;
}
2008-03-16 22:36:10 +03:00
2011-04-05 19:23:47 +04:00
static void task_waking_fair ( struct task_struct * p )
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
{
struct sched_entity * se = & p - > se ;
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
2011-04-05 19:23:48 +04:00
u64 min_vruntime ;
# ifndef CONFIG_64BIT
u64 min_vruntime_copy ;
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
2011-04-05 19:23:48 +04:00
do {
min_vruntime_copy = cfs_rq - > min_vruntime_copy ;
smp_rmb ( ) ;
min_vruntime = cfs_rq - > min_vruntime ;
} while ( min_vruntime ! = min_vruntime_copy ) ;
# else
min_vruntime = cfs_rq - > min_vruntime ;
# endif
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
2011-04-05 19:23:48 +04:00
se - > vruntime - = min_vruntime ;
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
}
2008-06-27 15:41:27 +04:00
# ifdef CONFIG_FAIR_GROUP_SCHED
2008-06-27 15:41:39 +04:00
/*
* effective_load ( ) calculates the load change as seen from the root_task_group
*
* Adding load to a group doesn ' t make a group heavier , but can cause movement
* of group shares between cpus . Assuming the shares were perfectly aligned one
* can calculate the shift in shares .
2011-10-13 18:52:28 +04:00
*
* Calculate the effective load difference if @ wl is added ( subtracted ) to @ tg
* on this @ cpu and results in a total addition ( subtraction ) of @ wg to the
* total group weight .
*
* Given a runqueue weight distribution ( rw_i ) we can compute a shares
* distribution ( s_i ) using :
*
* s_i = rw_i / \ Sum rw_j ( 1 )
*
* Suppose we have 4 CPUs and our @ tg is a direct child of the root group and
* has 7 equal weight tasks , distributed as below ( rw_i ) , with the resulting
* shares distribution ( s_i ) :
*
* rw_i = { 2 , 4 , 1 , 0 }
* s_i = { 2 / 7 , 4 / 7 , 1 / 7 , 0 }
*
* As per wake_affine ( ) we ' re interested in the load of two CPUs ( the CPU the
* task used to run on and the CPU the waker is running on ) , we need to
* compute the effect of waking a task on either CPU and , in case of a sync
* wakeup , compute the effect of the current task going to sleep .
*
* So for a change of @ wl to the local @ cpu with an overall group weight change
* of @ wl we can compute the new shares distribution ( s ' _i ) using :
*
* s ' _i = ( rw_i + @ wl ) / ( @ wg + \ Sum rw_j ) ( 2 )
*
* Suppose we ' re interested in CPUs 0 and 1 , and want to compute the load
* differences in waking a task to CPU 0. The additional task changes the
* weight and shares distributions like :
*
* rw ' _i = { 3 , 4 , 1 , 0 }
* s ' _i = { 3 / 8 , 4 / 8 , 1 / 8 , 0 }
*
* We can then compute the difference in effective weight by using :
*
* dw_i = S * ( s ' _i - s_i ) ( 3 )
*
* Where ' S ' is the group weight as seen by its parent .
*
* Therefore the effective change in loads on CPU 0 would be 5 / 56 ( 3 / 8 - 2 / 7 )
* times the weight of the group . The effect on CPU 1 would be - 4 / 56 ( 4 / 8 -
* 4 / 7 ) times the weight of the group .
2008-06-27 15:41:39 +04:00
*/
2010-11-16 02:47:00 +03:00
static long effective_load ( struct task_group * tg , int cpu , long wl , long wg )
2008-06-27 15:41:27 +04:00
{
2008-06-27 15:41:30 +04:00
struct sched_entity * se = tg - > se [ cpu ] ;
2008-06-27 15:41:38 +04:00
2011-10-13 18:52:28 +04:00
if ( ! tg - > parent ) /* the trivial, non-cgroup case */
2008-06-27 15:41:38 +04:00
return wl ;
2008-06-27 15:41:30 +04:00
for_each_sched_entity ( se ) {
2011-10-13 18:52:28 +04:00
long w , W ;
2008-06-27 15:41:30 +04:00
2011-01-15 04:57:50 +03:00
tg = se - > my_q - > tg ;
2008-06-27 15:41:27 +04:00
2011-10-13 18:52:28 +04:00
/*
* W = @ wg + \ Sum rw_j
*/
W = wg + calc_tg_weight ( tg , se - > my_q ) ;
2008-06-27 15:41:30 +04:00
2011-10-13 18:52:28 +04:00
/*
* w = rw_i + @ wl
*/
w = se - > my_q - > load . weight + wl ;
2008-09-23 17:33:42 +04:00
2011-10-13 18:52:28 +04:00
/*
* wl = S * s ' _i ; see ( 2 )
*/
if ( W > 0 & & w < W )
wl = ( w * tg - > shares ) / W ;
2011-01-15 04:57:50 +03:00
else
wl = tg - > shares ;
2008-09-23 17:33:42 +04:00
2011-10-13 18:52:28 +04:00
/*
* Per the above , wl is the new se - > load . weight value ; since
* those are clipped to [ MIN_SHARES , . . . ) do so now . See
* calc_cfs_shares ( ) .
*/
2011-01-15 04:57:50 +03:00
if ( wl < MIN_SHARES )
wl = MIN_SHARES ;
2011-10-13 18:52:28 +04:00
/*
* wl = dw_i = S * ( s ' _i - s_i ) ; see ( 3 )
*/
2011-01-15 04:57:50 +03:00
wl - = se - > load . weight ;
2011-10-13 18:52:28 +04:00
/*
* Recursively apply this logic to all parent groups to compute
* the final effective load change on the root group . Since
* only the @ tg group gets extra weight , all parent groups can
* only redistribute existing shares . @ wl is the shift in shares
* resulting from this level per the above .
*/
2008-06-27 15:41:30 +04:00
wg = 0 ;
}
2008-06-27 15:41:27 +04:00
2008-06-27 15:41:30 +04:00
return wl ;
2008-06-27 15:41:27 +04:00
}
# else
2008-06-27 15:41:30 +04:00
sched: correct wakeup weight calculations
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}
wakeup on cpu0, weight=1
rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}
s_0 = S * rw_0 / \Sum rw_j ->
\Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)
s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
1 * (2+1) / (7+1) = 3/8 (correct
so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 15:41:37 +04:00
static inline unsigned long effective_load ( struct task_group * tg , int cpu ,
unsigned long wl , unsigned long wg )
2008-06-27 15:41:30 +04:00
{
sched: correct wakeup weight calculations
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}
wakeup on cpu0, weight=1
rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}
s_0 = S * rw_0 / \Sum rw_j ->
\Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)
s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
1 * (2+1) / (7+1) = 3/8 (correct
so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 15:41:37 +04:00
return wl ;
2008-06-27 15:41:27 +04:00
}
2008-06-27 15:41:30 +04:00
2008-06-27 15:41:27 +04:00
# endif
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
static int wake_affine ( struct sched_domain * sd , struct task_struct * p , int sync )
2008-03-16 22:36:10 +03:00
{
2011-01-22 07:44:59 +03:00
s64 this_load , load ;
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
int idx , this_cpu , prev_cpu ;
2008-03-16 22:36:10 +03:00
unsigned long tl_per_task ;
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
struct task_group * tg ;
sched: correct wakeup weight calculations
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}
wakeup on cpu0, weight=1
rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}
s_0 = S * rw_0 / \Sum rw_j ->
\Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)
s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
1 * (2+1) / (7+1) = 3/8 (correct
so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 15:41:37 +04:00
unsigned long weight ;
2008-05-29 13:11:41 +04:00
int balanced ;
2008-03-16 22:36:10 +03:00
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
idx = sd - > wake_idx ;
this_cpu = smp_processor_id ( ) ;
prev_cpu = task_cpu ( p ) ;
load = source_load ( prev_cpu , idx ) ;
this_load = target_load ( this_cpu , idx ) ;
2008-03-16 22:36:10 +03:00
2008-05-29 13:11:41 +04:00
/*
* If sync wakeup then subtract the ( maximum possible )
* effect of the currently running task from the load
* of the current CPU :
*/
sched: correct wakeup weight calculations
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}
wakeup on cpu0, weight=1
rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}
s_0 = S * rw_0 / \Sum rw_j ->
\Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)
s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
1 * (2+1) / (7+1) = 3/8 (correct
so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 15:41:37 +04:00
if ( sync ) {
tg = task_group ( current ) ;
weight = current - > se . load . weight ;
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
this_load + = effective_load ( tg , this_cpu , - weight , - weight ) ;
sched: correct wakeup weight calculations
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}
wakeup on cpu0, weight=1
rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}
s_0 = S * rw_0 / \Sum rw_j ->
\Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)
s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
1 * (2+1) / (7+1) = 3/8 (correct
so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 15:41:37 +04:00
load + = effective_load ( tg , prev_cpu , 0 , - weight ) ;
}
2008-05-29 13:11:41 +04:00
sched: correct wakeup weight calculations
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}
wakeup on cpu0, weight=1
rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}
s_0 = S * rw_0 / \Sum rw_j ->
\Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)
s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
1 * (2+1) / (7+1) = 3/8 (correct
so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 15:41:37 +04:00
tg = task_group ( p ) ;
weight = p - > se . load . weight ;
2008-05-29 13:11:41 +04:00
2009-09-07 20:28:05 +04:00
/*
* In low - load situations , where prev_cpu is idle and this_cpu is idle
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
* due to the sync cause above having dropped this_load to 0 , we ' ll
* always have an imbalance , but there ' s really nothing you can do
* about that , so that ' s good too .
2009-09-07 20:28:05 +04:00
*
* Otherwise check if either cpus are near enough in load to allow this
* task to be woken on this_cpu .
*/
2011-01-22 07:44:59 +03:00
if ( this_load > 0 ) {
s64 this_eff_load , prev_eff_load ;
2010-05-31 14:37:30 +04:00
this_eff_load = 100 ;
this_eff_load * = power_of ( prev_cpu ) ;
this_eff_load * = this_load +
effective_load ( tg , this_cpu , weight , weight ) ;
prev_eff_load = 100 + ( sd - > imbalance_pct - 100 ) / 2 ;
prev_eff_load * = power_of ( this_cpu ) ;
prev_eff_load * = load + effective_load ( tg , prev_cpu , 0 , weight ) ;
balanced = this_eff_load < = prev_eff_load ;
} else
balanced = true ;
2008-05-29 13:11:41 +04:00
2008-03-16 22:36:10 +03:00
/*
2008-03-19 03:42:00 +03:00
* If the currently running task will sleep within
* a reasonable amount of time then attract this newly
* woken task :
2008-03-16 22:36:10 +03:00
*/
2008-10-08 11:16:04 +04:00
if ( sync & & balanced )
return 1 ;
2008-03-16 22:36:10 +03:00
2010-03-11 05:37:45 +03:00
schedstat_inc ( p , se . statistics . nr_wakeups_affine_attempts ) ;
2008-03-16 22:36:10 +03:00
tl_per_task = cpu_avg_load_per_task ( this_cpu ) ;
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
if ( balanced | |
( this_load < = load & &
this_load + target_load ( prev_cpu , idx ) < = tl_per_task ) ) {
2008-03-16 22:36:10 +03:00
/*
* This domain has SD_WAKE_AFFINE and
* p is cache cold in this domain , and
* there is no bad imbalance .
*/
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
schedstat_inc ( sd , ttwu_move_affine ) ;
2010-03-11 05:37:45 +03:00
schedstat_inc ( p , se . statistics . nr_wakeups_affine ) ;
2008-03-16 22:36:10 +03:00
return 1 ;
}
return 0 ;
}
2009-09-10 15:36:25 +04:00
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain .
*/
static struct sched_group *
2009-09-03 15:16:51 +04:00
find_idlest_group ( struct sched_domain * sd , struct task_struct * p ,
2009-09-16 15:46:59 +04:00
int this_cpu , int load_idx )
2008-01-25 23:08:09 +03:00
{
2010-08-11 01:17:51 +04:00
struct sched_group * idlest = NULL , * group = sd - > groups ;
2009-09-10 15:36:25 +04:00
unsigned long min_load = ULONG_MAX , this_load = 0 ;
int imbalance = 100 + ( sd - > imbalance_pct - 100 ) / 2 ;
2008-01-25 23:08:09 +03:00
2009-09-10 15:36:25 +04:00
do {
unsigned long load , avg_load ;
int local_group ;
int i ;
2008-01-25 23:08:09 +03:00
2009-09-10 15:36:25 +04:00
/* Skip over this group if it has no CPUs allowed */
if ( ! cpumask_intersects ( sched_group_cpus ( group ) ,
2011-06-16 14:23:22 +04:00
tsk_cpus_allowed ( p ) ) )
2009-09-10 15:36:25 +04:00
continue ;
local_group = cpumask_test_cpu ( this_cpu ,
sched_group_cpus ( group ) ) ;
/* Tally up the load of all CPUs in the group */
avg_load = 0 ;
for_each_cpu ( i , sched_group_cpus ( group ) ) {
/* Bias balancing toward cpus of our domain */
if ( local_group )
load = source_load ( i , load_idx ) ;
else
load = target_load ( i , load_idx ) ;
avg_load + = load ;
}
/* Adjust by relative CPU power of the group */
2011-07-14 15:00:06 +04:00
avg_load = ( avg_load * SCHED_POWER_SCALE ) / group - > sgp - > power ;
2009-09-10 15:36:25 +04:00
if ( local_group ) {
this_load = avg_load ;
} else if ( avg_load < min_load ) {
min_load = avg_load ;
idlest = group ;
}
} while ( group = group - > next , group ! = sd - > groups ) ;
if ( ! idlest | | 100 * this_load < imbalance * min_load )
return NULL ;
return idlest ;
}
/*
* find_idlest_cpu - find the idlest cpu among the cpus in group .
*/
static int
find_idlest_cpu ( struct sched_group * group , struct task_struct * p , int this_cpu )
{
unsigned long load , min_load = ULONG_MAX ;
int idlest = - 1 ;
int i ;
/* Traverse only the allowed CPUs */
2011-06-16 14:23:22 +04:00
for_each_cpu_and ( i , sched_group_cpus ( group ) , tsk_cpus_allowed ( p ) ) {
2009-09-10 15:36:25 +04:00
load = weighted_cpuload ( i ) ;
if ( load < min_load | | ( load = = min_load & & i = = this_cpu ) ) {
min_load = load ;
idlest = i ;
2008-01-25 23:08:09 +03:00
}
}
2009-09-10 15:36:25 +04:00
return idlest ;
}
2008-01-25 23:08:09 +03:00
2009-11-12 17:55:28 +03:00
/*
* Try and locate an idle CPU in the sched_domain .
*/
2010-04-01 03:47:45 +04:00
static int select_idle_sibling ( struct task_struct * p , int target )
2009-11-12 17:55:28 +03:00
{
int cpu = smp_processor_id ( ) ;
int prev_cpu = task_cpu ( p ) ;
2010-04-01 03:47:45 +04:00
struct sched_domain * sd ;
2012-09-16 23:29:43 +04:00
struct sched_group * sg ;
int i ;
2009-11-12 17:55:28 +03:00
/*
2010-04-01 03:47:45 +04:00
* If the task is going to be woken - up on this cpu and if it is
* already idle , then it is the right target .
2009-11-12 17:55:28 +03:00
*/
2010-04-01 03:47:45 +04:00
if ( target = = cpu & & idle_cpu ( cpu ) )
return cpu ;
/*
* If the task is going to be woken - up on the cpu where it previously
* ran and if it is currently idle , then it the right target .
*/
if ( target = = prev_cpu & & idle_cpu ( prev_cpu ) )
2009-11-12 17:55:29 +03:00
return prev_cpu ;
2009-11-12 17:55:28 +03:00
/*
2012-09-16 23:29:43 +04:00
* Otherwise , iterate the domains and find an elegible idle cpu .
2009-11-12 17:55:28 +03:00
*/
2011-12-07 18:07:31 +04:00
sd = rcu_dereference ( per_cpu ( sd_llc , target ) ) ;
2012-06-12 07:18:32 +04:00
for_each_lower_domain ( sd ) {
2012-09-16 23:29:43 +04:00
sg = sd - > groups ;
do {
if ( ! cpumask_intersects ( sched_group_cpus ( sg ) ,
tsk_cpus_allowed ( p ) ) )
goto next ;
for_each_cpu ( i , sched_group_cpus ( sg ) ) {
if ( ! idle_cpu ( i ) )
goto next ;
}
2012-06-12 07:18:32 +04:00
2012-09-16 23:29:43 +04:00
target = cpumask_first_and ( sched_group_cpus ( sg ) ,
tsk_cpus_allowed ( p ) ) ;
goto done ;
next :
sg = sg - > next ;
} while ( sg ! = sd - > groups ) ;
}
done :
2009-11-12 17:55:28 +03:00
return target ;
}
2009-09-10 15:36:25 +04:00
/*
* sched_balance_self : balance the current task ( running on cpu ) in domains
* that have the ' flag ' flag set . In practice , this is SD_BALANCE_FORK and
* SD_BALANCE_EXEC .
*
* Balance , ie . select the least loaded group .
*
* Returns the target CPU number , or the same CPU if no balancing is needed .
*
* preempt must be disabled .
*/
2010-03-24 20:34:10 +03:00
static int
2011-04-05 19:23:46 +04:00
select_task_rq_fair ( struct task_struct * p , int sd_flag , int wake_flags )
2009-09-10 15:36:25 +04:00
{
2009-09-17 11:01:14 +04:00
struct sched_domain * tmp , * affine_sd = NULL , * sd = NULL ;
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
int cpu = smp_processor_id ( ) ;
int prev_cpu = task_cpu ( p ) ;
int new_cpu = cpu ;
2010-04-01 03:47:45 +04:00
int want_affine = 0 ;
2009-09-16 15:46:59 +04:00
int sync = wake_flags & WF_SYNC ;
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
2012-04-23 14:11:21 +04:00
if ( p - > nr_cpus_allowed = = 1 )
2011-11-22 18:18:24 +04:00
return prev_cpu ;
2009-09-14 21:37:39 +04:00
if ( sd_flag & SD_BALANCE_WAKE ) {
2011-06-16 14:23:22 +04:00
if ( cpumask_test_cpu ( cpu , tsk_cpus_allowed ( p ) ) )
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
want_affine = 1 ;
new_cpu = prev_cpu ;
}
2009-09-10 15:36:25 +04:00
2011-04-07 16:09:50 +04:00
rcu_read_lock ( ) ;
2009-09-10 15:36:25 +04:00
for_each_domain ( cpu , tmp ) {
2009-12-16 20:04:34 +03:00
if ( ! ( tmp - > flags & SD_LOAD_BALANCE ) )
continue ;
2009-11-12 17:55:29 +03:00
/*
2010-04-01 03:47:45 +04:00
* If both cpu and prev_cpu are part of this domain ,
* cpu is a valid SD_WAKE_AFFINE target .
2009-11-12 17:55:29 +03:00
*/
2010-04-01 03:47:45 +04:00
if ( want_affine & & ( tmp - > flags & SD_WAKE_AFFINE ) & &
cpumask_test_cpu ( prev_cpu , sched_domain_span ( tmp ) ) ) {
affine_sd = tmp ;
2009-09-17 11:01:14 +04:00
break ;
2012-07-26 04:55:34 +04:00
}
2009-09-17 11:01:14 +04:00
2012-07-26 04:55:34 +04:00
if ( tmp - > flags & sd_flag )
2009-09-17 11:01:14 +04:00
sd = tmp ;
}
2010-03-11 19:17:16 +03:00
if ( affine_sd ) {
2012-07-26 04:55:34 +04:00
if ( cpu ! = prev_cpu & & wake_affine ( affine_sd , p , sync ) )
2011-04-07 16:09:50 +04:00
prev_cpu = cpu ;
new_cpu = select_idle_sibling ( p , prev_cpu ) ;
goto unlock ;
2010-03-11 19:17:16 +03:00
}
2008-01-25 23:08:09 +03:00
2009-09-10 15:36:25 +04:00
while ( sd ) {
2009-09-16 15:46:59 +04:00
int load_idx = sd - > forkexec_idx ;
2009-09-10 15:36:25 +04:00
struct sched_group * group ;
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
int weight ;
2008-03-16 22:36:10 +03:00
2009-09-14 21:37:39 +04:00
if ( ! ( sd - > flags & sd_flag ) ) {
2009-09-10 15:36:25 +04:00
sd = sd - > child ;
continue ;
}
2008-03-16 22:36:10 +03:00
2009-09-16 15:46:59 +04:00
if ( sd_flag & SD_BALANCE_WAKE )
load_idx = sd - > wake_idx ;
2008-03-16 22:36:10 +03:00
2009-09-16 15:46:59 +04:00
group = find_idlest_group ( sd , p , cpu , load_idx ) ;
2009-09-10 15:36:25 +04:00
if ( ! group ) {
sd = sd - > child ;
continue ;
}
2008-03-19 03:42:00 +03:00
2009-09-11 14:45:38 +04:00
new_cpu = find_idlest_cpu ( group , p , cpu ) ;
2009-09-10 15:36:25 +04:00
if ( new_cpu = = - 1 | | new_cpu = = cpu ) {
/* Now try balancing at a lower domain level of cpu */
sd = sd - > child ;
continue ;
2008-01-25 23:08:09 +03:00
}
2009-09-10 15:36:25 +04:00
/* Now try balancing at a lower domain level of new_cpu */
cpu = new_cpu ;
2010-04-16 16:59:29 +04:00
weight = sd - > span_weight ;
2009-09-10 15:36:25 +04:00
sd = NULL ;
for_each_domain ( cpu , tmp ) {
2010-04-16 16:59:29 +04:00
if ( weight < = tmp - > span_weight )
2009-09-10 15:36:25 +04:00
break ;
2009-09-14 21:37:39 +04:00
if ( tmp - > flags & sd_flag )
2009-09-10 15:36:25 +04:00
sd = tmp ;
}
/* while loop will break here if sd == NULL */
2008-01-25 23:08:09 +03:00
}
2011-04-07 16:09:50 +04:00
unlock :
rcu_read_unlock ( ) ;
2008-01-25 23:08:09 +03:00
sched: Merge select_task_rq_fair() and sched_balance_self()
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-10 15:50:02 +04:00
return new_cpu ;
2008-01-25 23:08:09 +03:00
}
2012-10-04 15:18:30 +04:00
/*
* Called immediately before a task is migrated to a new cpu ; task_cpu ( p ) and
* cfs_rq_of ( p ) references at time of call are still valid and identify the
* previous cpu . However , the caller only guarantees p - > pi_lock is held ; no
* other assumptions , including the state of rq - > lock , should be made .
*/
static void
migrate_task_rq_fair ( struct task_struct * p , int next_cpu )
{
2012-10-04 15:18:30 +04:00
struct sched_entity * se = & p - > se ;
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
/*
* Load tracking : accumulate removed load so that it can be processed
* when we next update owning cfs_rq under rq - > lock . Tasks contribute
* to blocked load iff they have a positive decay - count . It can never
* be negative here since on - rq tasks have decay - count = = 0.
*/
if ( se - > avg . decay_count ) {
se - > avg . decay_count = - __synchronize_entity_decay ( se ) ;
atomic64_add ( se - > avg . load_avg_contrib , & cfs_rq - > removed_load ) ;
}
2012-10-04 15:18:30 +04:00
}
2008-01-25 23:08:09 +03:00
# endif /* CONFIG_SMP */
2009-01-14 14:39:19 +03:00
static unsigned long
wakeup_gran ( struct sched_entity * curr , struct sched_entity * se )
2008-04-19 21:44:57 +04:00
{
unsigned long gran = sysctl_sched_wakeup_granularity ;
/*
2009-01-14 14:39:19 +03:00
* Since its curr running now , convert the gran from real - time
* to virtual - time in his units .
2010-03-11 19:17:04 +03:00
*
* By using ' se ' instead of ' curr ' we penalize light tasks , so
* they get preempted easier . That is , if ' se ' < ' curr ' then
* the resulting gran will be larger , therefore penalizing the
* lighter , if otoh ' se ' > ' curr ' then the resulting gran will
* be smaller , again penalizing the lighter task .
*
* This is especially important for buddies when the leftmost
* task is higher priority than the buddy .
2008-04-19 21:44:57 +04:00
*/
2011-04-08 08:53:09 +04:00
return calc_delta_fair ( gran , se ) ;
2008-04-19 21:44:57 +04:00
}
2008-10-24 13:06:15 +04:00
/*
* Should ' se ' preempt ' curr ' .
*
* | s1
* | s2
* | s3
* g
* | < - - - > | c
*
* w ( c , s1 ) = - 1
* w ( c , s2 ) = 0
* w ( c , s3 ) = 1
*
*/
static int
wakeup_preempt_entity ( struct sched_entity * curr , struct sched_entity * se )
{
s64 gran , vdiff = curr - > vruntime - se - > vruntime ;
if ( vdiff < = 0 )
return - 1 ;
2009-01-14 14:39:19 +03:00
gran = wakeup_gran ( curr , se ) ;
2008-10-24 13:06:15 +04:00
if ( vdiff > gran )
return 1 ;
return 0 ;
}
2008-11-04 23:25:10 +03:00
static void set_last_buddy ( struct sched_entity * se )
{
2011-04-14 05:21:09 +04:00
if ( entity_is_task ( se ) & & unlikely ( task_of ( se ) - > policy = = SCHED_IDLE ) )
return ;
for_each_sched_entity ( se )
cfs_rq_of ( se ) - > last = se ;
2008-11-04 23:25:10 +03:00
}
static void set_next_buddy ( struct sched_entity * se )
{
2011-04-14 05:21:09 +04:00
if ( entity_is_task ( se ) & & unlikely ( task_of ( se ) - > policy = = SCHED_IDLE ) )
return ;
for_each_sched_entity ( se )
cfs_rq_of ( se ) - > next = se ;
2008-11-04 23:25:10 +03:00
}
2011-02-01 17:51:03 +03:00
static void set_skip_buddy ( struct sched_entity * se )
{
2011-04-14 05:21:09 +04:00
for_each_sched_entity ( se )
cfs_rq_of ( se ) - > skip = se ;
2011-02-01 17:51:03 +03:00
}
2007-07-09 20:51:58 +04:00
/*
* Preempt the current task with a newly woken task if needed :
*/
2009-09-16 15:47:58 +04:00
static void check_preempt_wakeup ( struct rq * rq , struct task_struct * p , int wake_flags )
2007-07-09 20:51:58 +04:00
{
struct task_struct * curr = rq - > curr ;
2007-10-15 19:00:12 +04:00
struct sched_entity * se = & curr - > se , * pse = & p - > se ;
2008-12-16 10:45:30 +03:00
struct cfs_rq * cfs_rq = task_cfs_rq ( curr ) ;
sched: Strengthen buddies and mitigate buddy induced latencies
This patch restores the effectiveness of LAST_BUDDY in preventing
pgsql+oltp from collapsing due to wakeup preemption. It also
switches LAST_BUDDY to exclusively do what it does best, namely
mitigate the effects of aggressive wakeup preemption, which
improves vmark throughput markedly, and restores mysql+oltp
scalability.
Since buddies are about scalability, enable them beginning at the
point where we begin expanding sched_latency, namely
sched_nr_latency. Previously, buddies were cleared aggressively,
which seriously reduced their effectiveness. Not clearing
aggressively however, produces a small drop in mysql+oltp
throughput immediately after peak, indicating that LAST_BUDDY is
actually doing some harm. This is right at the point where X on the
desktop in competition with another load wants low latency service.
Ergo, do not enable until we need to scale.
To mitigate latency induced by buddies, or by a task just missing
wakeup preemption, check latency at tick time.
Last hunk prevents buddies from stymieing BALANCE_NEWIDLE via
CACHE_HOT_BUDDY.
Supporting performance tests:
tip = v2.6.32-rc5-1497-ga525b32
tipx = NO_GENTLE_FAIR_SLEEPERS NEXT_BUDDY granularity knobs = 31 knobs + 31 buddies
tip+x = NO_GENTLE_FAIR_SLEEPERS granularity knobs = 31 knobs
(Three run averages except where noted.)
vmark:
------
tip 108466 messages per second
tip+ 125307 messages per second
tip+x 125335 messages per second
tipx 117781 messages per second
2.6.31.3 122729 messages per second
mysql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 9949.89 18690.20 34801.24 34460.04 32682.88 30765.97 28305.27 25059.64 19548.08
tip+ 10013.90 18526.84 34900.38 34420.14 33069.83 32083.40 30578.30 28010.71 25605.47
tipx 9698.71 18002.70 34477.56 33420.01 32634.30 31657.27 29932.67 26827.52 21487.18
2.6.31.3 8243.11 18784.20 34404.83 33148.38 31900.32 31161.90 29663.81 25995.94 18058.86
pgsql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 13686.37 26609.25 51934.28 51347.81 49479.51 45312.65 36691.91 26851.57 24145.35
tip+ (1x) 13907.85 27135.87 52951.98 52514.04 51742.52 50705.43 49947.97 48374.19 46227.94
tip+x 13906.78 27065.81 52951.19 52542.59 52176.11 51815.94 50838.90 49439.46 46891.00
tipx 13742.46 26769.81 52351.99 51891.73 51320.79 50938.98 50248.65 48908.70 46553.84
2.6.31.3 13815.35 26906.46 52683.34 52061.31 51937.10 51376.80 50474.28 49394.47 47003.25
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-24 01:09:22 +04:00
int scale = cfs_rq - > nr_running > = sched_nr_latency ;
2011-04-14 21:30:53 +04:00
int next_buddy_marked = 0 ;
2007-07-09 20:51:58 +04:00
2008-03-19 03:42:00 +03:00
if ( unlikely ( se = = pse ) )
return ;
2011-07-21 20:43:37 +04:00
/*
2012-02-22 22:27:40 +04:00
* This is possible from callers such as move_task ( ) , in which we
2011-07-21 20:43:37 +04:00
* unconditionally check_prempt_curr ( ) after an enqueue ( which may have
* lead to a throttle ) . This both saves work and prevents false
* next - buddy nomination below .
*/
if ( unlikely ( throttled_hierarchy ( cfs_rq_of ( pse ) ) ) )
return ;
2011-04-14 21:30:53 +04:00
if ( sched_feat ( NEXT_BUDDY ) & & scale & & ! ( wake_flags & WF_FORK ) ) {
2009-09-11 14:01:17 +04:00
set_next_buddy ( pse ) ;
2011-04-14 21:30:53 +04:00
next_buddy_marked = 1 ;
}
2008-09-23 17:33:45 +04:00
2008-08-28 13:12:49 +04:00
/*
* We can come here with TIF_NEED_RESCHED already set from new task
* wake up path .
2011-07-21 20:43:37 +04:00
*
* Note : this also catches the edge - case of curr being in a throttled
* group ( e . g . via set_curr_task ) , since update_curr ( ) ( in the
* enqueue of curr ) will have resulted in resched being set . This
* prevents us from potentially nominating it as a false LAST_BUDDY
* below .
2008-08-28 13:12:49 +04:00
*/
if ( test_tsk_need_resched ( curr ) )
return ;
2011-02-23 00:04:33 +03:00
/* Idle tasks are by definition preempted by non-idle tasks. */
if ( unlikely ( curr - > policy = = SCHED_IDLE ) & &
likely ( p - > policy ! = SCHED_IDLE ) )
goto preempt ;
2007-10-15 19:00:18 +04:00
/*
2011-02-23 00:04:33 +03:00
* Batch and idle tasks do not preempt non - idle tasks ( their preemption
* is driven by the tick ) :
2007-10-15 19:00:18 +04:00
*/
2009-01-15 16:53:38 +03:00
if ( unlikely ( p - > policy ! = SCHED_NORMAL ) )
2007-10-15 19:00:18 +04:00
return ;
2007-07-09 20:51:58 +04:00
2008-10-24 13:06:15 +04:00
find_matching_se ( & se , & pse ) ;
2011-07-06 06:07:21 +04:00
update_curr ( cfs_rq_of ( se ) ) ;
2009-04-09 02:29:43 +04:00
BUG_ON ( ! pse ) ;
2011-04-14 21:30:53 +04:00
if ( wakeup_preempt_entity ( se , pse ) = = 1 ) {
/*
* Bias pick_next to pick the sched entity that is
* triggering this preemption .
*/
if ( ! next_buddy_marked )
set_next_buddy ( pse ) ;
2009-11-28 20:51:02 +03:00
goto preempt ;
2011-04-14 21:30:53 +04:00
}
2008-10-24 13:06:15 +04:00
2009-11-28 20:51:02 +03:00
return ;
2009-11-17 12:51:40 +03:00
2009-11-28 20:51:02 +03:00
preempt :
resched_task ( curr ) ;
/*
* Only set the backward buddy when the current task is still
* on the rq . This can happen when a wakeup gets interleaved
* with schedule on the - > pre_schedule ( ) or idle_balance ( )
* point , either of which can * drop the rq lock .
*
* Also , during early boot the idle thread is in the fair class ,
* for obvious reasons its a bad idea to schedule back to it .
*/
if ( unlikely ( ! se - > on_rq | | curr = = rq - > idle ) )
return ;
if ( sched_feat ( LAST_BUDDY ) & & scale & & entity_is_task ( se ) )
set_last_buddy ( se ) ;
2007-07-09 20:51:58 +04:00
}
2007-08-09 13:16:48 +04:00
static struct task_struct * pick_next_task_fair ( struct rq * rq )
2007-07-09 20:51:58 +04:00
{
2008-01-25 23:08:29 +03:00
struct task_struct * p ;
2007-07-09 20:51:58 +04:00
struct cfs_rq * cfs_rq = & rq - > cfs ;
struct sched_entity * se ;
2009-11-24 13:55:45 +03:00
if ( ! cfs_rq - > nr_running )
2007-07-09 20:51:58 +04:00
return NULL ;
do {
2007-08-09 13:16:48 +04:00
se = pick_next_entity ( cfs_rq ) ;
2008-11-04 23:25:07 +03:00
set_next_entity ( cfs_rq , se ) ;
2007-07-09 20:51:58 +04:00
cfs_rq = group_cfs_rq ( se ) ;
} while ( cfs_rq ) ;
2008-01-25 23:08:29 +03:00
p = task_of ( se ) ;
2011-11-22 18:20:07 +04:00
if ( hrtick_enabled ( rq ) )
hrtick_start_fair ( rq , p ) ;
2008-01-25 23:08:29 +03:00
return p ;
2007-07-09 20:51:58 +04:00
}
/*
* Account for a descheduled task :
*/
2007-08-09 13:16:49 +04:00
static void put_prev_task_fair ( struct rq * rq , struct task_struct * prev )
2007-07-09 20:51:58 +04:00
{
struct sched_entity * se = & prev - > se ;
struct cfs_rq * cfs_rq ;
for_each_sched_entity ( se ) {
cfs_rq = cfs_rq_of ( se ) ;
2007-08-09 13:16:48 +04:00
put_prev_entity ( cfs_rq , se ) ;
2007-07-09 20:51:58 +04:00
}
}
2011-02-01 17:51:03 +03:00
/*
* sched_yield ( ) is very simple
*
* The magic of dealing with the - > skip buddy is in pick_next_entity .
*/
static void yield_task_fair ( struct rq * rq )
{
struct task_struct * curr = rq - > curr ;
struct cfs_rq * cfs_rq = task_cfs_rq ( curr ) ;
struct sched_entity * se = & curr - > se ;
/*
* Are we the only task in the tree ?
*/
if ( unlikely ( rq - > nr_running = = 1 ) )
return ;
clear_buddies ( cfs_rq , se ) ;
if ( curr - > policy ! = SCHED_BATCH ) {
update_rq_clock ( rq ) ;
/*
* Update run - time statistics of the ' current ' .
*/
update_curr ( cfs_rq ) ;
2011-11-22 18:21:26 +04:00
/*
* Tell update_rq_clock ( ) that we ' ve just updated ,
* so we don ' t do microscopic update in schedule ( )
* and double the fastpath cost .
*/
rq - > skip_clock_update = 1 ;
2011-02-01 17:51:03 +03:00
}
set_skip_buddy ( se ) ;
}
2011-02-01 17:50:51 +03:00
static bool yield_to_task_fair ( struct rq * rq , struct task_struct * p , bool preempt )
{
struct sched_entity * se = & p - > se ;
2011-07-21 20:43:37 +04:00
/* throttled hierarchies are not runnable */
if ( ! se - > on_rq | | throttled_hierarchy ( cfs_rq_of ( se ) ) )
2011-02-01 17:50:51 +03:00
return false ;
/* Tell the scheduler that we'd really like pse to run next. */
set_next_buddy ( se ) ;
yield_task_fair ( rq ) ;
return true ;
}
2007-10-24 20:23:51 +04:00
# ifdef CONFIG_SMP
2007-07-09 20:51:58 +04:00
/**************************************************
* Fair scheduling class load - balancing methods :
*/
2012-01-31 06:40:32 +04:00
static unsigned long __read_mostly max_load_balance_interval = HZ / 10 ;
2012-02-22 22:27:40 +04:00
# define LBF_ALL_PINNED 0x01
2012-02-21 00:49:09 +04:00
# define LBF_NEED_BREAK 0x02
2012-06-19 16:13:15 +04:00
# define LBF_SOME_PINNED 0x04
2012-02-22 22:27:40 +04:00
struct lb_env {
struct sched_domain * sd ;
struct rq * src_rq ;
2012-06-19 16:17:34 +04:00
int src_cpu ;
2012-02-22 22:27:40 +04:00
int dst_cpu ;
struct rq * dst_rq ;
2012-06-19 16:13:15 +04:00
struct cpumask * dst_grpmask ;
int new_dst_cpu ;
2012-02-22 22:27:40 +04:00
enum cpu_idle_type idle ;
2012-05-02 16:20:37 +04:00
long imbalance ;
2012-07-12 12:10:13 +04:00
/* The set of CPUs under consideration for load-balancing */
struct cpumask * cpus ;
2012-02-22 22:27:40 +04:00
unsigned int flags ;
2012-02-21 00:49:09 +04:00
unsigned int loop ;
unsigned int loop_break ;
unsigned int loop_max ;
2012-02-22 22:27:40 +04:00
} ;
2009-12-17 19:00:43 +03:00
/*
2012-02-22 22:27:40 +04:00
* move_task - move a task from one runqueue to another runqueue .
2009-12-17 19:00:43 +03:00
* Both runqueues must be locked .
*/
2012-02-22 22:27:40 +04:00
static void move_task ( struct task_struct * p , struct lb_env * env )
2009-12-17 19:00:43 +03:00
{
2012-02-22 22:27:40 +04:00
deactivate_task ( env - > src_rq , p , 0 ) ;
set_task_cpu ( p , env - > dst_cpu ) ;
activate_task ( env - > dst_rq , p , 0 ) ;
check_preempt_curr ( env - > dst_rq , p , 0 ) ;
2009-12-17 19:00:43 +03:00
}
2011-10-25 12:00:11 +04:00
/*
* Is this task likely cache - hot :
*/
static int
task_hot ( struct task_struct * p , u64 now , struct sched_domain * sd )
{
s64 delta ;
if ( p - > sched_class ! = & fair_sched_class )
return 0 ;
if ( unlikely ( p - > policy = = SCHED_IDLE ) )
return 0 ;
/*
* Buddy candidates are cache hot :
*/
if ( sched_feat ( CACHE_HOT_BUDDY ) & & this_rq ( ) - > nr_running & &
( & p - > se = = cfs_rq_of ( & p - > se ) - > next | |
& p - > se = = cfs_rq_of ( & p - > se ) - > last ) )
return 1 ;
if ( sysctl_sched_migration_cost = = - 1 )
return 1 ;
if ( sysctl_sched_migration_cost = = 0 )
return 0 ;
delta = now - p - > se . exec_start ;
return delta < ( s64 ) sysctl_sched_migration_cost ;
}
2009-12-17 19:00:43 +03:00
/*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu ?
*/
static
2012-02-22 15:47:19 +04:00
int can_migrate_task ( struct task_struct * p , struct lb_env * env )
2009-12-17 19:00:43 +03:00
{
int tsk_cache_hot = 0 ;
/*
* We do not migrate tasks that are :
* 1 ) running ( obviously ) , or
* 2 ) cannot be migrated to this CPU due to cpus_allowed , or
* 3 ) are cache - hot on their current CPU .
*/
2012-02-22 22:27:40 +04:00
if ( ! cpumask_test_cpu ( env - > dst_cpu , tsk_cpus_allowed ( p ) ) ) {
2012-06-19 16:13:15 +04:00
int new_dst_cpu ;
2010-03-11 05:37:45 +03:00
schedstat_inc ( p , se . statistics . nr_failed_migrations_affine ) ;
2012-06-19 16:13:15 +04:00
/*
* Remember if this task can be migrated to any other cpu in
* our sched_group . We may want to revisit it if we couldn ' t
* meet load balance goals by pulling other tasks on src_cpu .
*
* Also avoid computing new_dst_cpu if we have already computed
* one in current iteration .
*/
if ( ! env - > dst_grpmask | | ( env - > flags & LBF_SOME_PINNED ) )
return 0 ;
new_dst_cpu = cpumask_first_and ( env - > dst_grpmask ,
tsk_cpus_allowed ( p ) ) ;
if ( new_dst_cpu < nr_cpu_ids ) {
env - > flags | = LBF_SOME_PINNED ;
env - > new_dst_cpu = new_dst_cpu ;
}
2009-12-17 19:00:43 +03:00
return 0 ;
}
2012-06-19 16:13:15 +04:00
/* Record that we found atleast one task that could run on dst_cpu */
2012-02-22 15:47:19 +04:00
env - > flags & = ~ LBF_ALL_PINNED ;
2009-12-17 19:00:43 +03:00
2012-02-22 22:27:40 +04:00
if ( task_running ( env - > src_rq , p ) ) {
2010-03-11 05:37:45 +03:00
schedstat_inc ( p , se . statistics . nr_failed_migrations_running ) ;
2009-12-17 19:00:43 +03:00
return 0 ;
}
/*
* Aggressive migration if :
* 1 ) task is cache cold , or
* 2 ) too many balance attempts have failed .
*/
2012-02-22 22:27:40 +04:00
tsk_cache_hot = task_hot ( p , env - > src_rq - > clock_task , env - > sd ) ;
2009-12-17 19:00:43 +03:00
if ( ! tsk_cache_hot | |
2012-02-22 15:47:19 +04:00
env - > sd - > nr_balance_failed > env - > sd - > cache_nice_tries ) {
2009-12-17 19:00:43 +03:00
# ifdef CONFIG_SCHEDSTATS
if ( tsk_cache_hot ) {
2012-02-22 15:47:19 +04:00
schedstat_inc ( env - > sd , lb_hot_gained [ env - > idle ] ) ;
2010-03-11 05:37:45 +03:00
schedstat_inc ( p , se . statistics . nr_forced_migrations ) ;
2009-12-17 19:00:43 +03:00
}
# endif
return 1 ;
}
if ( tsk_cache_hot ) {
2010-03-11 05:37:45 +03:00
schedstat_inc ( p , se . statistics . nr_failed_migrations_hot ) ;
2009-12-17 19:00:43 +03:00
return 0 ;
}
return 1 ;
}
2009-12-17 19:45:42 +03:00
/*
* move_one_task tries to move exactly one task from busiest to this_rq , as
* part of active balancing operations within " domain " .
* Returns 1 if successful and 0 otherwise .
*
* Called with both runqueues locked .
*/
2012-02-22 15:47:19 +04:00
static int move_one_task ( struct lb_env * env )
2009-12-17 19:45:42 +03:00
{
struct task_struct * p , * n ;
2012-02-21 00:49:09 +04:00
list_for_each_entry_safe ( p , n , & env - > src_rq - > cfs_tasks , se . group_node ) {
if ( throttled_lb_pair ( task_group ( p ) , env - > src_rq - > cpu , env - > dst_cpu ) )
continue ;
2009-12-17 19:45:42 +03:00
2012-02-21 00:49:09 +04:00
if ( ! can_migrate_task ( p , env ) )
continue ;
2009-12-17 19:45:42 +03:00
2012-02-21 00:49:09 +04:00
move_task ( p , env ) ;
/*
* Right now , this is only the second place move_task ( )
* is called , so we can safely collect move_task ( )
* stats here rather than inside move_task ( ) .
*/
schedstat_inc ( env - > sd , lb_gained [ env - > idle ] ) ;
return 1 ;
2009-12-17 19:45:42 +03:00
}
return 0 ;
}
2012-02-21 00:49:09 +04:00
static unsigned long task_h_load ( struct task_struct * p ) ;
2012-04-17 15:38:40 +04:00
static const unsigned int sched_nr_migrate_break = 32 ;
2012-03-10 03:07:36 +04:00
/*
2012-05-02 16:20:37 +04:00
* move_tasks tries to move up to imbalance weighted load from busiest to
2012-03-10 03:07:36 +04:00
* this_rq , as part of a balancing operation within domain " sd " .
* Returns 1 if successful and 0 otherwise .
*
* Called with both runqueues locked .
*/
static int move_tasks ( struct lb_env * env )
2009-12-17 19:00:43 +03:00
{
2012-03-10 03:07:36 +04:00
struct list_head * tasks = & env - > src_rq - > cfs_tasks ;
struct task_struct * p ;
2012-02-21 00:49:09 +04:00
unsigned long load ;
int pulled = 0 ;
2009-12-17 19:00:43 +03:00
2012-05-02 16:20:37 +04:00
if ( env - > imbalance < = 0 )
2012-03-10 03:07:36 +04:00
return 0 ;
2009-12-17 19:00:43 +03:00
2012-03-10 03:07:36 +04:00
while ( ! list_empty ( tasks ) ) {
p = list_first_entry ( tasks , struct task_struct , se . group_node ) ;
2009-12-17 19:00:43 +03:00
2012-02-21 00:49:09 +04:00
env - > loop + + ;
/* We've more or less seen every task there is, call it quits */
2012-03-10 03:07:36 +04:00
if ( env - > loop > env - > loop_max )
2012-02-21 00:49:09 +04:00
break ;
2012-03-10 03:07:36 +04:00
/* take a breather every nr_migrate tasks */
2012-02-21 00:49:09 +04:00
if ( env - > loop > env - > loop_break ) {
2012-04-17 15:38:40 +04:00
env - > loop_break + = sched_nr_migrate_break ;
2012-02-22 15:47:19 +04:00
env - > flags | = LBF_NEED_BREAK ;
2009-12-17 19:25:20 +03:00
break ;
2011-09-22 17:30:18 +04:00
}
2009-12-17 19:00:43 +03:00
2012-03-10 03:07:36 +04:00
if ( throttled_lb_pair ( task_group ( p ) , env - > src_cpu , env - > dst_cpu ) )
2012-02-21 00:49:09 +04:00
goto next ;
load = task_h_load ( p ) ;
2012-03-10 03:07:36 +04:00
2012-04-17 15:38:40 +04:00
if ( sched_feat ( LB_MIN ) & & load < 16 & & ! env - > sd - > nr_balance_failed )
2012-02-21 00:49:09 +04:00
goto next ;
2012-05-02 16:20:37 +04:00
if ( ( load / 2 ) > env - > imbalance )
2012-02-21 00:49:09 +04:00
goto next ;
2009-12-17 19:00:43 +03:00
2012-02-21 00:49:09 +04:00
if ( ! can_migrate_task ( p , env ) )
goto next ;
2009-12-17 19:00:43 +03:00
2012-02-22 22:27:40 +04:00
move_task ( p , env ) ;
2009-12-17 19:25:20 +03:00
pulled + + ;
2012-05-02 16:20:37 +04:00
env - > imbalance - = load ;
2009-12-17 19:00:43 +03:00
# ifdef CONFIG_PREEMPT
2009-12-17 19:25:20 +03:00
/*
* NEWIDLE balancing is a source of latency , so preemptible
* kernels will stop after the first task is pulled to minimize
* the critical section .
*/
2012-03-10 03:07:36 +04:00
if ( env - > idle = = CPU_NEWLY_IDLE )
2009-12-17 19:25:20 +03:00
break ;
2009-12-17 19:00:43 +03:00
# endif
2009-12-17 19:25:20 +03:00
/*
* We only want to steal up to the prescribed amount of
* weighted load .
*/
2012-05-02 16:20:37 +04:00
if ( env - > imbalance < = 0 )
2009-12-17 19:25:20 +03:00
break ;
2012-02-21 00:49:09 +04:00
continue ;
next :
2012-03-10 03:07:36 +04:00
list_move_tail ( & p - > se . group_node , tasks ) ;
2009-12-17 19:00:43 +03:00
}
2012-03-10 03:07:36 +04:00
2009-12-17 19:00:43 +03:00
/*
2012-02-22 22:27:40 +04:00
* Right now , this is one of only two places move_task ( ) is called ,
* so we can safely collect move_task ( ) stats here rather than
* inside move_task ( ) .
2009-12-17 19:00:43 +03:00
*/
2012-02-22 15:47:19 +04:00
schedstat_add ( env - > sd , lb_gained [ env - > idle ] , pulled ) ;
2009-12-17 19:00:43 +03:00
2012-03-10 03:07:36 +04:00
return pulled ;
2009-12-17 19:00:43 +03:00
}
2009-12-17 19:47:12 +03:00
# ifdef CONFIG_FAIR_GROUP_SCHED
2010-11-16 02:47:02 +03:00
/*
* update tg - > load_weight by folding this cpu ' s load_avg
*/
2010-11-16 02:47:05 +03:00
static int update_shares_cpu ( struct task_group * tg , int cpu )
2010-11-16 02:47:02 +03:00
{
2012-10-04 15:18:31 +04:00
struct sched_entity * se ;
2010-11-16 02:47:02 +03:00
struct cfs_rq * cfs_rq ;
unsigned long flags ;
struct rq * rq ;
rq = cpu_rq ( cpu ) ;
2012-10-04 15:18:31 +04:00
se = tg - > se [ cpu ] ;
2010-11-16 02:47:02 +03:00
cfs_rq = tg - > cfs_rq [ cpu ] ;
raw_spin_lock_irqsave ( & rq - > lock , flags ) ;
update_rq_clock ( rq ) ;
2012-10-04 15:18:30 +04:00
update_cfs_rq_blocked_load ( cfs_rq , 1 ) ;
2010-11-16 02:47:02 +03:00
2012-10-04 15:18:31 +04:00
if ( se ) {
update_entity_load_avg ( se , 1 ) ;
/*
* We pivot on our runnable average having decayed to zero for
* list removal . This generally implies that all our children
* have also been removed ( modulo rounding error or bandwidth
* control ) ; however , such cases are rare and we can fix these
* at enqueue .
*
* TODO : fix up out - of - order children on enqueue .
*/
if ( ! se - > avg . runnable_avg_sum & & ! cfs_rq - > nr_running )
list_del_leaf_cfs_rq ( cfs_rq ) ;
} else {
update_rq_runnable_avg ( rq , rq - > nr_running ) ;
}
2010-11-16 02:47:02 +03:00
raw_spin_unlock_irqrestore ( & rq - > lock , flags ) ;
return 0 ;
}
static void update_shares ( int cpu )
{
struct cfs_rq * cfs_rq ;
struct rq * rq = cpu_rq ( cpu ) ;
rcu_read_lock ( ) ;
2011-07-13 15:09:25 +04:00
/*
* Iterates the task_group tree in a bottom up fashion , see
* list_add_leaf_cfs_rq ( ) for details .
*/
2011-07-21 20:43:36 +04:00
for_each_leaf_cfs_rq ( rq , cfs_rq ) {
/* throttled entities do not contribute to load */
if ( throttled_hierarchy ( cfs_rq ) )
continue ;
2010-11-16 02:47:05 +03:00
update_shares_cpu ( cfs_rq - > tg , cpu ) ;
2011-07-21 20:43:36 +04:00
}
2010-11-16 02:47:02 +03:00
rcu_read_unlock ( ) ;
}
2011-07-13 15:09:25 +04:00
/*
* Compute the cpu ' s hierarchical load factor for each task group .
* This needs to be done in a top - down fashion because the load of a child
* group is a fraction of its parents load .
*/
static int tg_load_down ( struct task_group * tg , void * data )
{
unsigned long load ;
long cpu = ( long ) data ;
if ( ! tg - > parent ) {
load = cpu_rq ( cpu ) - > load . weight ;
} else {
load = tg - > parent - > cfs_rq [ cpu ] - > h_load ;
load * = tg - > se [ cpu ] - > load . weight ;
load / = tg - > parent - > cfs_rq [ cpu ] - > load . weight + 1 ;
}
tg - > cfs_rq [ cpu ] - > h_load = load ;
return 0 ;
}
static void update_h_load ( long cpu )
{
2012-08-08 23:46:40 +04:00
struct rq * rq = cpu_rq ( cpu ) ;
unsigned long now = jiffies ;
if ( rq - > h_load_throttle = = now )
return ;
rq - > h_load_throttle = now ;
2012-02-21 00:49:09 +04:00
rcu_read_lock ( ) ;
2011-07-13 15:09:25 +04:00
walk_tg_tree ( tg_load_down , tg_nop , ( void * ) cpu ) ;
2012-02-21 00:49:09 +04:00
rcu_read_unlock ( ) ;
2011-07-13 15:09:25 +04:00
}
2012-02-21 00:49:09 +04:00
static unsigned long task_h_load ( struct task_struct * p )
2009-12-17 19:47:12 +03:00
{
2012-02-21 00:49:09 +04:00
struct cfs_rq * cfs_rq = task_cfs_rq ( p ) ;
unsigned long load ;
2009-12-17 19:47:12 +03:00
2012-02-21 00:49:09 +04:00
load = p - > se . load . weight ;
load = div_u64 ( load * cfs_rq - > h_load , cfs_rq - > load . weight + 1 ) ;
2009-12-17 19:47:12 +03:00
2012-02-21 00:49:09 +04:00
return load ;
2009-12-17 19:47:12 +03:00
}
# else
2010-11-16 02:47:02 +03:00
static inline void update_shares ( int cpu )
{
}
2012-02-21 00:49:09 +04:00
static inline void update_h_load ( long cpu )
2009-12-17 19:47:12 +03:00
{
}
2012-02-21 00:49:09 +04:00
static unsigned long task_h_load ( struct task_struct * p )
2009-12-17 19:00:43 +03:00
{
2012-02-21 00:49:09 +04:00
return p - > se . load . weight ;
2009-12-17 19:00:43 +03:00
}
2009-12-17 19:47:12 +03:00
# endif
2009-12-17 19:00:43 +03:00
/********** Helpers for find_busiest_group ************************/
/*
* sd_lb_stats - Structure to store the statistics of a sched_domain
* during load balancing .
*/
struct sd_lb_stats {
struct sched_group * busiest ; /* Busiest group in this sd */
struct sched_group * this ; /* Local group in this sd */
unsigned long total_load ; /* Total load of all groups in sd */
unsigned long total_pwr ; /* Total power of all groups in sd */
unsigned long avg_load ; /* Average load across all groups in sd */
/** Statistics of this group */
unsigned long this_load ;
unsigned long this_load_per_task ;
unsigned long this_nr_running ;
2010-10-16 00:12:29 +04:00
unsigned long this_has_capacity ;
2010-09-18 02:02:32 +04:00
unsigned int this_idle_cpus ;
2009-12-17 19:00:43 +03:00
/* Statistics of the busiest group */
2010-09-18 02:02:32 +04:00
unsigned int busiest_idle_cpus ;
2009-12-17 19:00:43 +03:00
unsigned long max_load ;
unsigned long busiest_load_per_task ;
unsigned long busiest_nr_running ;
2010-02-24 03:13:52 +03:00
unsigned long busiest_group_capacity ;
2010-10-16 00:12:29 +04:00
unsigned long busiest_has_capacity ;
2010-09-18 02:02:32 +04:00
unsigned int busiest_group_weight ;
2009-12-17 19:00:43 +03:00
int group_imb ; /* Is there imbalance in this sd */
} ;
/*
* sg_lb_stats - stats of a sched_group required for load_balancing
*/
struct sg_lb_stats {
unsigned long avg_load ; /*Avg load across the CPUs of the group */
unsigned long group_load ; /* Total load over the CPUs of the group */
unsigned long sum_nr_running ; /* Nr tasks running in the group */
unsigned long sum_weighted_load ; /* Weighted load of group's tasks */
unsigned long group_capacity ;
2010-09-18 02:02:32 +04:00
unsigned long idle_cpus ;
unsigned long group_weight ;
2009-12-17 19:00:43 +03:00
int group_imb ; /* Is there an imbalance in the group ? */
2010-10-16 00:12:29 +04:00
int group_has_capacity ; /* Is there extra capacity in the group? */
2009-12-17 19:00:43 +03:00
} ;
/**
* get_sd_load_idx - Obtain the load index for a given sched domain .
* @ sd : The sched_domain whose load_idx is to be obtained .
* @ idle : The Idle status of the CPU for whose sd load_icx is obtained .
*/
static inline int get_sd_load_idx ( struct sched_domain * sd ,
enum cpu_idle_type idle )
{
int load_idx ;
switch ( idle ) {
case CPU_NOT_IDLE :
load_idx = sd - > busy_idx ;
break ;
case CPU_NEWLY_IDLE :
load_idx = sd - > newidle_idx ;
break ;
default :
load_idx = sd - > idle_idx ;
break ;
}
return load_idx ;
}
unsigned long default_scale_freq_power ( struct sched_domain * sd , int cpu )
{
2011-05-18 21:09:39 +04:00
return SCHED_POWER_SCALE ;
2009-12-17 19:00:43 +03:00
}
unsigned long __weak arch_scale_freq_power ( struct sched_domain * sd , int cpu )
{
return default_scale_freq_power ( sd , cpu ) ;
}
unsigned long default_scale_smt_power ( struct sched_domain * sd , int cpu )
{
2010-04-16 16:59:29 +04:00
unsigned long weight = sd - > span_weight ;
2009-12-17 19:00:43 +03:00
unsigned long smt_gain = sd - > smt_gain ;
smt_gain / = weight ;
return smt_gain ;
}
unsigned long __weak arch_scale_smt_power ( struct sched_domain * sd , int cpu )
{
return default_scale_smt_power ( sd , cpu ) ;
}
unsigned long scale_rt_power ( int cpu )
{
struct rq * rq = cpu_rq ( cpu ) ;
2012-05-22 16:04:28 +04:00
u64 total , available , age_stamp , avg ;
2009-12-17 19:00:43 +03:00
2012-05-22 16:04:28 +04:00
/*
* Since we ' re reading these variables without serialization make sure
* we read them once before doing sanity checks on them .
*/
age_stamp = ACCESS_ONCE ( rq - > age_stamp ) ;
avg = ACCESS_ONCE ( rq - > rt_avg ) ;
total = sched_avg_period ( ) + ( rq - > clock - age_stamp ) ;
2010-10-05 04:03:22 +04:00
2012-05-22 16:04:28 +04:00
if ( unlikely ( total < avg ) ) {
2010-10-05 04:03:22 +04:00
/* Ensures that power won't end up being negative */
available = 0 ;
} else {
2012-05-22 16:04:28 +04:00
available = total - avg ;
2010-10-05 04:03:22 +04:00
}
2009-12-17 19:00:43 +03:00
2011-05-18 21:09:39 +04:00
if ( unlikely ( ( s64 ) total < SCHED_POWER_SCALE ) )
total = SCHED_POWER_SCALE ;
2009-12-17 19:00:43 +03:00
2011-05-18 21:09:39 +04:00
total > > = SCHED_POWER_SHIFT ;
2009-12-17 19:00:43 +03:00
return div_u64 ( available , total ) ;
}
static void update_cpu_power ( struct sched_domain * sd , int cpu )
{
2010-04-16 16:59:29 +04:00
unsigned long weight = sd - > span_weight ;
2011-05-18 21:09:39 +04:00
unsigned long power = SCHED_POWER_SCALE ;
2009-12-17 19:00:43 +03:00
struct sched_group * sdg = sd - > groups ;
if ( ( sd - > flags & SD_SHARE_CPUPOWER ) & & weight > 1 ) {
if ( sched_feat ( ARCH_POWER ) )
power * = arch_scale_smt_power ( sd , cpu ) ;
else
power * = default_scale_smt_power ( sd , cpu ) ;
2011-05-18 21:09:39 +04:00
power > > = SCHED_POWER_SHIFT ;
2009-12-17 19:00:43 +03:00
}
2011-07-14 15:00:06 +04:00
sdg - > sgp - > power_orig = power ;
2010-06-08 08:57:02 +04:00
if ( sched_feat ( ARCH_POWER ) )
power * = arch_scale_freq_power ( sd , cpu ) ;
else
power * = default_scale_freq_power ( sd , cpu ) ;
2011-05-18 21:09:39 +04:00
power > > = SCHED_POWER_SHIFT ;
2010-06-08 08:57:02 +04:00
2009-12-17 19:00:43 +03:00
power * = scale_rt_power ( cpu ) ;
2011-05-18 21:09:39 +04:00
power > > = SCHED_POWER_SHIFT ;
2009-12-17 19:00:43 +03:00
if ( ! power )
power = 1 ;
2010-05-31 14:37:30 +04:00
cpu_rq ( cpu ) - > cpu_power = power ;
2011-07-14 15:00:06 +04:00
sdg - > sgp - > power = power ;
2009-12-17 19:00:43 +03:00
}
2011-10-25 12:00:11 +04:00
void update_group_power ( struct sched_domain * sd , int cpu )
2009-12-17 19:00:43 +03:00
{
struct sched_domain * child = sd - > child ;
struct sched_group * group , * sdg = sd - > groups ;
unsigned long power ;
2011-12-12 23:21:08 +04:00
unsigned long interval ;
interval = msecs_to_jiffies ( sd - > balance_interval ) ;
interval = clamp ( interval , 1UL , max_load_balance_interval ) ;
sdg - > sgp - > next_update = jiffies + interval ;
2009-12-17 19:00:43 +03:00
if ( ! child ) {
update_cpu_power ( sd , cpu ) ;
return ;
}
power = 0 ;
2012-05-23 20:00:43 +04:00
if ( child - > flags & SD_OVERLAP ) {
/*
* SD_OVERLAP domains cannot assume that child groups
* span the current group .
*/
for_each_cpu ( cpu , sched_group_cpus ( sdg ) )
power + = power_of ( cpu ) ;
} else {
/*
* ! SD_OVERLAP domains can assume that child groups
* span the current group .
*/
group = child - > groups ;
do {
power + = group - > sgp - > power ;
group = group - > next ;
} while ( group ! = child - > groups ) ;
}
2009-12-17 19:00:43 +03:00
2012-05-31 14:05:32 +04:00
sdg - > sgp - > power_orig = sdg - > sgp - > power = power ;
2009-12-17 19:00:43 +03:00
}
2010-06-08 08:57:02 +04:00
/*
* Try and fix up capacity for tiny siblings , this is needed when
* things like SD_ASYM_PACKING need f_b_g to select another sibling
* which on its own isn ' t powerful enough .
*
* See update_sd_pick_busiest ( ) and check_asym_packing ( ) .
*/
static inline int
fix_small_capacity ( struct sched_domain * sd , struct sched_group * group )
{
/*
2011-05-18 21:09:39 +04:00
* Only siblings can have significantly less than SCHED_POWER_SCALE
2010-06-08 08:57:02 +04:00
*/
2011-04-07 16:09:52 +04:00
if ( ! ( sd - > flags & SD_SHARE_CPUPOWER ) )
2010-06-08 08:57:02 +04:00
return 0 ;
/*
* If ~ 90 % of the cpu_power is still there , we ' re good .
*/
2011-07-14 15:00:06 +04:00
if ( group - > sgp - > power * 32 > group - > sgp - > power_orig * 29 )
2010-06-08 08:57:02 +04:00
return 1 ;
return 0 ;
}
2009-12-17 19:00:43 +03:00
/**
* update_sg_lb_stats - Update sched_group ' s statistics for load balancing .
2012-06-09 00:18:33 +04:00
* @ env : The load balancing environment .
2009-12-17 19:00:43 +03:00
* @ group : sched_group whose statistics are to be updated .
* @ load_idx : Load index of sched_domain of this_cpu for load calc .
* @ local_group : Does group contain this_cpu .
* @ balance : Should we balance .
* @ sgs : variable to hold the statistics for this group .
*/
2012-05-02 16:20:37 +04:00
static inline void update_sg_lb_stats ( struct lb_env * env ,
struct sched_group * group , int load_idx ,
2012-07-12 12:10:13 +04:00
int local_group , int * balance , struct sg_lb_stats * sgs )
2009-12-17 19:00:43 +03:00
{
2012-05-11 02:22:12 +04:00
unsigned long nr_running , max_nr_running , min_nr_running ;
unsigned long load , max_cpu_load , min_cpu_load ;
2012-05-11 02:12:02 +04:00
unsigned int balance_cpu = - 1 , first_idle_cpu = 0 ;
2010-02-24 03:13:52 +03:00
unsigned long avg_load_per_task = 0 ;
2012-05-02 16:20:37 +04:00
int i ;
2009-12-17 19:00:43 +03:00
2010-01-20 23:02:44 +03:00
if ( local_group )
2012-05-31 16:47:33 +04:00
balance_cpu = group_balance_cpu ( group ) ;
2009-12-17 19:00:43 +03:00
/* Tally up the load of all CPUs in the group */
max_cpu_load = 0 ;
min_cpu_load = ~ 0UL ;
2010-10-13 23:09:36 +04:00
max_nr_running = 0 ;
2012-05-11 02:22:12 +04:00
min_nr_running = ~ 0UL ;
2009-12-17 19:00:43 +03:00
2012-07-12 12:10:13 +04:00
for_each_cpu_and ( i , sched_group_cpus ( group ) , env - > cpus ) {
2009-12-17 19:00:43 +03:00
struct rq * rq = cpu_rq ( i ) ;
2012-05-11 02:22:12 +04:00
nr_running = rq - > nr_running ;
2009-12-17 19:00:43 +03:00
/* Bias balancing toward cpus of our domain */
if ( local_group ) {
2012-05-31 16:47:33 +04:00
if ( idle_cpu ( i ) & & ! first_idle_cpu & &
cpumask_test_cpu ( i , sched_group_mask ( group ) ) ) {
2012-05-11 02:12:02 +04:00
first_idle_cpu = 1 ;
2009-12-17 19:00:43 +03:00
balance_cpu = i ;
}
2012-05-11 02:12:02 +04:00
load = target_load ( i , load_idx ) ;
2009-12-17 19:00:43 +03:00
} else {
load = source_load ( i , load_idx ) ;
2012-05-11 02:22:12 +04:00
if ( load > max_cpu_load )
2009-12-17 19:00:43 +03:00
max_cpu_load = load ;
if ( min_cpu_load > load )
min_cpu_load = load ;
2012-05-11 02:22:12 +04:00
if ( nr_running > max_nr_running )
max_nr_running = nr_running ;
if ( min_nr_running > nr_running )
min_nr_running = nr_running ;
2009-12-17 19:00:43 +03:00
}
sgs - > group_load + = load ;
2012-05-11 02:22:12 +04:00
sgs - > sum_nr_running + = nr_running ;
2009-12-17 19:00:43 +03:00
sgs - > sum_weighted_load + = weighted_cpuload ( i ) ;
2010-09-18 02:02:32 +04:00
if ( idle_cpu ( i ) )
sgs - > idle_cpus + + ;
2009-12-17 19:00:43 +03:00
}
/*
* First idle cpu or the first cpu ( busiest ) in this sched group
* is eligible for doing load balancing at this and above
* domains . In the newly idle case , we will allow all the cpu ' s
* to do the newly idle load balance .
*/
2011-12-12 23:21:08 +04:00
if ( local_group ) {
2012-05-02 16:20:37 +04:00
if ( env - > idle ! = CPU_NEWLY_IDLE ) {
2012-05-11 02:12:02 +04:00
if ( balance_cpu ! = env - > dst_cpu ) {
2011-12-12 23:21:08 +04:00
* balance = 0 ;
return ;
}
2012-05-02 16:20:37 +04:00
update_group_power ( env - > sd , env - > dst_cpu ) ;
2011-12-12 23:21:08 +04:00
} else if ( time_after_eq ( jiffies , group - > sgp - > next_update ) )
2012-05-02 16:20:37 +04:00
update_group_power ( env - > sd , env - > dst_cpu ) ;
2009-12-17 19:00:43 +03:00
}
/* Adjust by relative CPU power of the group */
2011-07-14 15:00:06 +04:00
sgs - > avg_load = ( sgs - > group_load * SCHED_POWER_SCALE ) / group - > sgp - > power ;
2009-12-17 19:00:43 +03:00
/*
* Consider the group unbalanced when the imbalance is larger
2011-02-21 20:56:47 +03:00
* than the average weight of a task .
2009-12-17 19:00:43 +03:00
*
* APZ : with cgroup the avg task weight can vary wildly and
* might not be a suitable number - should we keep a
* normalized nr_running number somewhere that negates
* the hierarchy ?
*/
2010-02-24 03:13:52 +03:00
if ( sgs - > sum_nr_running )
avg_load_per_task = sgs - > sum_weighted_load / sgs - > sum_nr_running ;
2009-12-17 19:00:43 +03:00
2012-05-11 02:22:12 +04:00
if ( ( max_cpu_load - min_cpu_load ) > = avg_load_per_task & &
( max_nr_running - min_nr_running ) > 1 )
2009-12-17 19:00:43 +03:00
sgs - > group_imb = 1 ;
2011-07-14 15:00:06 +04:00
sgs - > group_capacity = DIV_ROUND_CLOSEST ( group - > sgp - > power ,
2011-05-18 21:09:39 +04:00
SCHED_POWER_SCALE ) ;
2010-06-08 08:57:02 +04:00
if ( ! sgs - > group_capacity )
2012-05-02 16:20:37 +04:00
sgs - > group_capacity = fix_small_capacity ( env - > sd , group ) ;
2010-09-18 02:02:32 +04:00
sgs - > group_weight = group - > group_weight ;
2010-10-16 00:12:29 +04:00
if ( sgs - > group_capacity > sgs - > sum_nr_running )
sgs - > group_has_capacity = 1 ;
2009-12-17 19:00:43 +03:00
}
2010-06-08 08:57:02 +04:00
/**
* update_sd_pick_busiest - return 1 on busiest group
2012-06-09 00:18:33 +04:00
* @ env : The load balancing environment .
2010-06-08 08:57:02 +04:00
* @ sds : sched_domain statistics
* @ sg : sched_group candidate to be checked for being the busiest
2010-06-10 06:06:21 +04:00
* @ sgs : sched_group statistics
2010-06-08 08:57:02 +04:00
*
* Determine if @ sg is a busier group than the previously selected
* busiest group .
*/
2012-05-02 16:20:37 +04:00
static bool update_sd_pick_busiest ( struct lb_env * env ,
2010-06-08 08:57:02 +04:00
struct sd_lb_stats * sds ,
struct sched_group * sg ,
2012-05-02 16:20:37 +04:00
struct sg_lb_stats * sgs )
2010-06-08 08:57:02 +04:00
{
if ( sgs - > avg_load < = sds - > max_load )
return false ;
if ( sgs - > sum_nr_running > sgs - > group_capacity )
return true ;
if ( sgs - > group_imb )
return true ;
/*
* ASYM_PACKING needs to move all the work to the lowest
* numbered CPUs in the group , therefore mark all groups
* higher than ourself as busy .
*/
2012-05-02 16:20:37 +04:00
if ( ( env - > sd - > flags & SD_ASYM_PACKING ) & & sgs - > sum_nr_running & &
env - > dst_cpu < group_first_cpu ( sg ) ) {
2010-06-08 08:57:02 +04:00
if ( ! sds - > busiest )
return true ;
if ( group_first_cpu ( sds - > busiest ) > group_first_cpu ( sg ) )
return true ;
}
return false ;
}
2009-12-17 19:00:43 +03:00
/**
2011-10-12 07:00:59 +04:00
* update_sd_lb_stats - Update sched_domain ' s statistics for load balancing .
2012-06-09 00:18:33 +04:00
* @ env : The load balancing environment .
2009-12-17 19:00:43 +03:00
* @ balance : Should we balance .
* @ sds : variable to hold the statistics for this sched_domain .
*/
2012-05-02 16:20:37 +04:00
static inline void update_sd_lb_stats ( struct lb_env * env ,
2012-07-12 12:10:13 +04:00
int * balance , struct sd_lb_stats * sds )
2009-12-17 19:00:43 +03:00
{
2012-05-02 16:20:37 +04:00
struct sched_domain * child = env - > sd - > child ;
struct sched_group * sg = env - > sd - > groups ;
2009-12-17 19:00:43 +03:00
struct sg_lb_stats sgs ;
int load_idx , prefer_sibling = 0 ;
if ( child & & child - > flags & SD_PREFER_SIBLING )
prefer_sibling = 1 ;
2012-05-02 16:20:37 +04:00
load_idx = get_sd_load_idx ( env - > sd , env - > idle ) ;
2009-12-17 19:00:43 +03:00
do {
int local_group ;
2012-05-02 16:20:37 +04:00
local_group = cpumask_test_cpu ( env - > dst_cpu , sched_group_cpus ( sg ) ) ;
2009-12-17 19:00:43 +03:00
memset ( & sgs , 0 , sizeof ( sgs ) ) ;
2012-07-12 12:10:13 +04:00
update_sg_lb_stats ( env , sg , load_idx , local_group , balance , & sgs ) ;
2009-12-17 19:00:43 +03:00
2009-12-24 16:18:21 +03:00
if ( local_group & & ! ( * balance ) )
2009-12-17 19:00:43 +03:00
return ;
sds - > total_load + = sgs . group_load ;
2011-07-14 15:00:06 +04:00
sds - > total_pwr + = sg - > sgp - > power ;
2009-12-17 19:00:43 +03:00
/*
* In case the child domain prefers tasks go to siblings
2010-06-08 08:57:02 +04:00
* first , lower the sg capacity to one so that we ' ll try
sched: Drop group_capacity to 1 only if local group has extra capacity
When SD_PREFER_SIBLING is set on a sched domain, drop group_capacity to 1
only if the local group has extra capacity. The extra check prevents the case
where you always pull from the heaviest group when it is already under-utilized
(possible with a large weight task outweighs the tasks on the system).
For example, consider a 16-cpu quad-core quad-socket machine with MC and NUMA
scheduling domains. Let's say we spawn 15 nice0 tasks and one nice-15 task,
and each task is running on one core. In this case, we observe the following
events when balancing at the NUMA domain:
- find_busiest_group() will always pick the sched group containing the niced
task to be the busiest group.
- find_busiest_queue() will then always pick one of the cpus running the
nice0 task (never picks the cpu with the nice -15 task since
weighted_cpuload > imbalance).
- The load balancer fails to migrate the task since it is the running task
and increments sd->nr_balance_failed.
- It repeats the above steps a few more times until sd->nr_balance_failed > 5,
at which point it kicks off the active load balancer, wakes up the migration
thread and kicks the nice 0 task off the cpu.
The load balancer doesn't stop until we kick out all nice 0 tasks from
the sched group, leaving you with 3 idle cpus and one cpu running the
nice -15 task.
When balancing at the NUMA domain, we drop sgs.group_capacity to 1 if the child
domain (in this case MC) has SD_PREFER_SIBLING set. Subsequent load checks are
not relevant because the niced task has a very large weight.
In this patch, we add an extra condition to the "if(prefer_sibling)" check in
update_sd_lb_stats(). We drop the capacity of a group only if the local group
has extra capacity, ie. nr_running < group_capacity. This patch preserves the
original intent of the prefer_siblings check (to spread tasks across the system
in low utilization scenarios) and fixes the case above.
It helps in the following ways:
- In low utilization cases (where nr_tasks << nr_cpus), we still drop
group_capacity down to 1 if we prefer siblings.
- On very busy systems (where nr_tasks >> nr_cpus), sgs.nr_running will most
likely be > sgs.group_capacity.
- When balancing large weight tasks, if the local group does not have extra
capacity, we do not pick the group with the niced task as the busiest group.
This prevents failed balances, active migration and the under-utilization
described above.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1287173550-30365-5-git-send-email-ncrao@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-10-16 00:12:30 +04:00
* and move all the excess tasks away . We lower the capacity
* of a group only if the local group has the capacity to fit
* these excess tasks , i . e . nr_running < group_capacity . The
* extra check prevents the case where you always pull from the
* heaviest group when it is already under - utilized ( possible
* with a large weight task outweighs the tasks on the system ) .
2009-12-17 19:00:43 +03:00
*/
sched: Drop group_capacity to 1 only if local group has extra capacity
When SD_PREFER_SIBLING is set on a sched domain, drop group_capacity to 1
only if the local group has extra capacity. The extra check prevents the case
where you always pull from the heaviest group when it is already under-utilized
(possible with a large weight task outweighs the tasks on the system).
For example, consider a 16-cpu quad-core quad-socket machine with MC and NUMA
scheduling domains. Let's say we spawn 15 nice0 tasks and one nice-15 task,
and each task is running on one core. In this case, we observe the following
events when balancing at the NUMA domain:
- find_busiest_group() will always pick the sched group containing the niced
task to be the busiest group.
- find_busiest_queue() will then always pick one of the cpus running the
nice0 task (never picks the cpu with the nice -15 task since
weighted_cpuload > imbalance).
- The load balancer fails to migrate the task since it is the running task
and increments sd->nr_balance_failed.
- It repeats the above steps a few more times until sd->nr_balance_failed > 5,
at which point it kicks off the active load balancer, wakes up the migration
thread and kicks the nice 0 task off the cpu.
The load balancer doesn't stop until we kick out all nice 0 tasks from
the sched group, leaving you with 3 idle cpus and one cpu running the
nice -15 task.
When balancing at the NUMA domain, we drop sgs.group_capacity to 1 if the child
domain (in this case MC) has SD_PREFER_SIBLING set. Subsequent load checks are
not relevant because the niced task has a very large weight.
In this patch, we add an extra condition to the "if(prefer_sibling)" check in
update_sd_lb_stats(). We drop the capacity of a group only if the local group
has extra capacity, ie. nr_running < group_capacity. This patch preserves the
original intent of the prefer_siblings check (to spread tasks across the system
in low utilization scenarios) and fixes the case above.
It helps in the following ways:
- In low utilization cases (where nr_tasks << nr_cpus), we still drop
group_capacity down to 1 if we prefer siblings.
- On very busy systems (where nr_tasks >> nr_cpus), sgs.nr_running will most
likely be > sgs.group_capacity.
- When balancing large weight tasks, if the local group does not have extra
capacity, we do not pick the group with the niced task as the busiest group.
This prevents failed balances, active migration and the under-utilization
described above.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1287173550-30365-5-git-send-email-ncrao@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-10-16 00:12:30 +04:00
if ( prefer_sibling & & ! local_group & & sds - > this_has_capacity )
2009-12-17 19:00:43 +03:00
sgs . group_capacity = min ( sgs . group_capacity , 1UL ) ;
if ( local_group ) {
sds - > this_load = sgs . avg_load ;
2010-06-08 08:57:02 +04:00
sds - > this = sg ;
2009-12-17 19:00:43 +03:00
sds - > this_nr_running = sgs . sum_nr_running ;
sds - > this_load_per_task = sgs . sum_weighted_load ;
2010-10-16 00:12:29 +04:00
sds - > this_has_capacity = sgs . group_has_capacity ;
2010-09-18 02:02:32 +04:00
sds - > this_idle_cpus = sgs . idle_cpus ;
2012-05-02 16:20:37 +04:00
} else if ( update_sd_pick_busiest ( env , sds , sg , & sgs ) ) {
2009-12-17 19:00:43 +03:00
sds - > max_load = sgs . avg_load ;
2010-06-08 08:57:02 +04:00
sds - > busiest = sg ;
2009-12-17 19:00:43 +03:00
sds - > busiest_nr_running = sgs . sum_nr_running ;
2010-09-18 02:02:32 +04:00
sds - > busiest_idle_cpus = sgs . idle_cpus ;
2010-02-24 03:13:52 +03:00
sds - > busiest_group_capacity = sgs . group_capacity ;
2009-12-17 19:00:43 +03:00
sds - > busiest_load_per_task = sgs . sum_weighted_load ;
2010-10-16 00:12:29 +04:00
sds - > busiest_has_capacity = sgs . group_has_capacity ;
2010-09-18 02:02:32 +04:00
sds - > busiest_group_weight = sgs . group_weight ;
2009-12-17 19:00:43 +03:00
sds - > group_imb = sgs . group_imb ;
}
2010-06-08 08:57:02 +04:00
sg = sg - > next ;
2012-05-02 16:20:37 +04:00
} while ( sg ! = env - > sd - > groups ) ;
2010-06-08 08:57:02 +04:00
}
/**
* check_asym_packing - Check to see if the group is packed into the
* sched doman .
*
* This is primarily intended to used at the sibling level . Some
* cores like POWER7 prefer to use lower numbered SMT threads . In the
* case of POWER7 , it can move to lower SMT modes only when higher
* threads are idle . When in lower SMT modes , the threads will
* perform better since they share less core resources . Hence when we
* have idle threads , we want them to be the higher ones .
*
* This packing function is run on idle threads . It checks to see if
* the busiest CPU in this domain ( core in the P7 case ) has a higher
* CPU number than the packing function is being run on . Here we are
* assuming lower CPU number will be equivalent to lower a SMT thread
* number .
*
2010-06-10 06:06:21 +04:00
* Returns 1 when packing is required and a task should be moved to
* this CPU . The amount of the imbalance is returned in * imbalance .
*
2012-06-09 00:18:33 +04:00
* @ env : The load balancing environment .
2010-06-08 08:57:02 +04:00
* @ sds : Statistics of the sched_domain which is to be packed
*/
2012-05-02 16:20:37 +04:00
static int check_asym_packing ( struct lb_env * env , struct sd_lb_stats * sds )
2010-06-08 08:57:02 +04:00
{
int busiest_cpu ;
2012-05-02 16:20:37 +04:00
if ( ! ( env - > sd - > flags & SD_ASYM_PACKING ) )
2010-06-08 08:57:02 +04:00
return 0 ;
if ( ! sds - > busiest )
return 0 ;
busiest_cpu = group_first_cpu ( sds - > busiest ) ;
2012-05-02 16:20:37 +04:00
if ( env - > dst_cpu > busiest_cpu )
2010-06-08 08:57:02 +04:00
return 0 ;
2012-05-02 16:20:37 +04:00
env - > imbalance = DIV_ROUND_CLOSEST (
sds - > max_load * sds - > busiest - > sgp - > power , SCHED_POWER_SCALE ) ;
2010-06-08 08:57:02 +04:00
return 1 ;
2009-12-17 19:00:43 +03:00
}
/**
* fix_small_imbalance - Calculate the minor imbalance that exists
* amongst the groups of a sched_domain , during
* load balancing .
2012-06-09 00:18:33 +04:00
* @ env : The load balancing environment .
2009-12-17 19:00:43 +03:00
* @ sds : Statistics of the sched_domain whose imbalance is to be calculated .
*/
2012-05-02 16:20:37 +04:00
static inline
void fix_small_imbalance ( struct lb_env * env , struct sd_lb_stats * sds )
2009-12-17 19:00:43 +03:00
{
unsigned long tmp , pwr_now = 0 , pwr_move = 0 ;
unsigned int imbn = 2 ;
2010-02-24 03:13:52 +03:00
unsigned long scaled_busy_load_per_task ;
2009-12-17 19:00:43 +03:00
if ( sds - > this_nr_running ) {
sds - > this_load_per_task / = sds - > this_nr_running ;
if ( sds - > busiest_load_per_task >
sds - > this_load_per_task )
imbn = 1 ;
2012-05-02 16:20:37 +04:00
} else {
2009-12-17 19:00:43 +03:00
sds - > this_load_per_task =
2012-05-02 16:20:37 +04:00
cpu_avg_load_per_task ( env - > dst_cpu ) ;
}
2009-12-17 19:00:43 +03:00
2010-02-24 03:13:52 +03:00
scaled_busy_load_per_task = sds - > busiest_load_per_task
2011-05-18 21:09:39 +04:00
* SCHED_POWER_SCALE ;
2011-07-14 15:00:06 +04:00
scaled_busy_load_per_task / = sds - > busiest - > sgp - > power ;
2010-02-24 03:13:52 +03:00
if ( sds - > max_load - sds - > this_load + scaled_busy_load_per_task > =
( scaled_busy_load_per_task * imbn ) ) {
2012-05-02 16:20:37 +04:00
env - > imbalance = sds - > busiest_load_per_task ;
2009-12-17 19:00:43 +03:00
return ;
}
/*
* OK , we don ' t have enough imbalance to justify moving tasks ,
* however we may be able to increase total CPU power used by
* moving them .
*/
2011-07-14 15:00:06 +04:00
pwr_now + = sds - > busiest - > sgp - > power *
2009-12-17 19:00:43 +03:00
min ( sds - > busiest_load_per_task , sds - > max_load ) ;
2011-07-14 15:00:06 +04:00
pwr_now + = sds - > this - > sgp - > power *
2009-12-17 19:00:43 +03:00
min ( sds - > this_load_per_task , sds - > this_load ) ;
2011-05-18 21:09:39 +04:00
pwr_now / = SCHED_POWER_SCALE ;
2009-12-17 19:00:43 +03:00
/* Amount of load we'd subtract */
2011-05-18 21:09:39 +04:00
tmp = ( sds - > busiest_load_per_task * SCHED_POWER_SCALE ) /
2011-07-14 15:00:06 +04:00
sds - > busiest - > sgp - > power ;
2009-12-17 19:00:43 +03:00
if ( sds - > max_load > tmp )
2011-07-14 15:00:06 +04:00
pwr_move + = sds - > busiest - > sgp - > power *
2009-12-17 19:00:43 +03:00
min ( sds - > busiest_load_per_task , sds - > max_load - tmp ) ;
/* Amount of load we'd add */
2011-07-14 15:00:06 +04:00
if ( sds - > max_load * sds - > busiest - > sgp - > power <
2011-05-18 21:09:39 +04:00
sds - > busiest_load_per_task * SCHED_POWER_SCALE )
2011-07-14 15:00:06 +04:00
tmp = ( sds - > max_load * sds - > busiest - > sgp - > power ) /
sds - > this - > sgp - > power ;
2009-12-17 19:00:43 +03:00
else
2011-05-18 21:09:39 +04:00
tmp = ( sds - > busiest_load_per_task * SCHED_POWER_SCALE ) /
2011-07-14 15:00:06 +04:00
sds - > this - > sgp - > power ;
pwr_move + = sds - > this - > sgp - > power *
2009-12-17 19:00:43 +03:00
min ( sds - > this_load_per_task , sds - > this_load + tmp ) ;
2011-05-18 21:09:39 +04:00
pwr_move / = SCHED_POWER_SCALE ;
2009-12-17 19:00:43 +03:00
/* Move if we gain throughput */
if ( pwr_move > pwr_now )
2012-05-02 16:20:37 +04:00
env - > imbalance = sds - > busiest_load_per_task ;
2009-12-17 19:00:43 +03:00
}
/**
* calculate_imbalance - Calculate the amount of imbalance present within the
* groups of a given sched_domain during load balance .
2012-05-02 16:20:37 +04:00
* @ env : load balance environment
2009-12-17 19:00:43 +03:00
* @ sds : statistics of the sched_domain whose imbalance is to be calculated .
*/
2012-05-02 16:20:37 +04:00
static inline void calculate_imbalance ( struct lb_env * env , struct sd_lb_stats * sds )
2009-12-17 19:00:43 +03:00
{
2010-02-24 03:13:52 +03:00
unsigned long max_pull , load_above_capacity = ~ 0UL ;
sds - > busiest_load_per_task / = sds - > busiest_nr_running ;
if ( sds - > group_imb ) {
sds - > busiest_load_per_task =
min ( sds - > busiest_load_per_task , sds - > avg_load ) ;
}
2009-12-17 19:00:43 +03:00
/*
* In the presence of smp nice balancing , certain scenarios can have
* max load less than avg load ( as we skip the groups at or below
* its cpu_power , while calculating max_load . . )
*/
if ( sds - > max_load < sds - > avg_load ) {
2012-05-02 16:20:37 +04:00
env - > imbalance = 0 ;
return fix_small_imbalance ( env , sds ) ;
2009-12-17 19:00:43 +03:00
}
2010-02-24 03:13:52 +03:00
if ( ! sds - > group_imb ) {
/*
* Don ' t want to pull so many tasks that a group would go idle .
*/
load_above_capacity = ( sds - > busiest_nr_running -
sds - > busiest_group_capacity ) ;
2011-05-18 21:09:39 +04:00
load_above_capacity * = ( SCHED_LOAD_SCALE * SCHED_POWER_SCALE ) ;
2010-02-24 03:13:52 +03:00
2011-07-14 15:00:06 +04:00
load_above_capacity / = sds - > busiest - > sgp - > power ;
2010-02-24 03:13:52 +03:00
}
/*
* We ' re trying to get all the cpus to the average_load , so we don ' t
* want to push ourselves above the average load , nor do we wish to
* reduce the max loaded cpu below the average load . At the same time ,
* we also don ' t want to reduce the group load below the group capacity
* ( so that we can implement power - savings policies etc ) . Thus we look
* for the minimum possible imbalance .
* Be careful of negative numbers as they ' ll appear as very large values
* with unsigned longs .
*/
max_pull = min ( sds - > max_load - sds - > avg_load , load_above_capacity ) ;
2009-12-17 19:00:43 +03:00
/* How much load to actually move to equalise the imbalance */
2012-05-02 16:20:37 +04:00
env - > imbalance = min ( max_pull * sds - > busiest - > sgp - > power ,
2011-07-14 15:00:06 +04:00
( sds - > avg_load - sds - > this_load ) * sds - > this - > sgp - > power )
2011-05-18 21:09:39 +04:00
/ SCHED_POWER_SCALE ;
2009-12-17 19:00:43 +03:00
/*
* if * imbalance is less than the average load per runnable task
2011-03-31 05:57:33 +04:00
* there is no guarantee that any tasks will be moved so we ' ll have
2009-12-17 19:00:43 +03:00
* a think about bumping its value to force at least one task to be
* moved
*/
2012-05-02 16:20:37 +04:00
if ( env - > imbalance < sds - > busiest_load_per_task )
return fix_small_imbalance ( env , sds ) ;
2009-12-17 19:00:43 +03:00
}
2010-10-16 00:12:29 +04:00
2009-12-17 19:00:43 +03:00
/******* find_busiest_group() helpers end here *********************/
/**
* find_busiest_group - Returns the busiest group within the sched_domain
* if there is an imbalance . If there isn ' t an imbalance , and
* the user has opted for power - savings , it returns a group whose
* CPUs can be put to idle by rebalancing those tasks elsewhere , if
* such a group exists .
*
* Also calculates the amount of weighted load which should be moved
* to restore balance .
*
2012-06-09 00:18:33 +04:00
* @ env : The load balancing environment .
2009-12-17 19:00:43 +03:00
* @ balance : Pointer to a variable indicating if this_cpu
* is the appropriate cpu to perform load balancing at this_level .
*
* Returns : - the busiest group if imbalance exists .
* - If no imbalance and user has opted for power - savings balance ,
* return the least loaded group whose CPUs can be
* put to idle by rebalancing its tasks onto our group .
*/
static struct sched_group *
2012-07-12 12:10:13 +04:00
find_busiest_group ( struct lb_env * env , int * balance )
2009-12-17 19:00:43 +03:00
{
struct sd_lb_stats sds ;
memset ( & sds , 0 , sizeof ( sds ) ) ;
/*
* Compute the various statistics relavent for load balancing at
* this level .
*/
2012-07-12 12:10:13 +04:00
update_sd_lb_stats ( env , balance , & sds ) ;
2009-12-17 19:00:43 +03:00
2011-02-21 20:55:32 +03:00
/*
* this_cpu is not the appropriate cpu to perform load balancing at
* this level .
2009-12-17 19:00:43 +03:00
*/
2009-12-24 16:18:21 +03:00
if ( ! ( * balance ) )
2009-12-17 19:00:43 +03:00
goto ret ;
2012-05-02 16:20:37 +04:00
if ( ( env - > idle = = CPU_IDLE | | env - > idle = = CPU_NEWLY_IDLE ) & &
check_asym_packing ( env , & sds ) )
2010-06-08 08:57:02 +04:00
return sds . busiest ;
2011-02-21 20:55:32 +03:00
/* There is no busy sibling group to pull tasks from */
2009-12-17 19:00:43 +03:00
if ( ! sds . busiest | | sds . busiest_nr_running = = 0 )
goto out_balanced ;
2011-05-18 21:09:39 +04:00
sds . avg_load = ( SCHED_POWER_SCALE * sds . total_load ) / sds . total_pwr ;
2011-04-08 04:23:22 +04:00
2011-02-21 20:56:47 +03:00
/*
* If the busiest group is imbalanced the below checks don ' t
* work because they assumes all things are equal , which typically
* isn ' t true due to cpus_allowed constraints and the like .
*/
if ( sds . group_imb )
goto force_balance ;
2011-02-21 20:55:32 +03:00
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
2012-05-02 16:20:37 +04:00
if ( env - > idle = = CPU_NEWLY_IDLE & & sds . this_has_capacity & &
2010-10-16 00:12:29 +04:00
! sds . busiest_has_capacity )
goto force_balance ;
2011-02-21 20:55:32 +03:00
/*
* If the local group is more busy than the selected busiest group
* don ' t try and pull any tasks .
*/
2009-12-17 19:00:43 +03:00
if ( sds . this_load > = sds . max_load )
goto out_balanced ;
2011-02-21 20:55:32 +03:00
/*
* Don ' t pull any tasks if this group is already above the domain
* average load .
*/
2009-12-17 19:00:43 +03:00
if ( sds . this_load > = sds . avg_load )
goto out_balanced ;
2012-05-02 16:20:37 +04:00
if ( env - > idle = = CPU_IDLE ) {
2010-09-18 02:02:32 +04:00
/*
* This cpu is idle . If the busiest group load doesn ' t
* have more tasks than the number of available cpu ' s and
* there is no imbalance between this and busiest group
* wrt to idle cpu ' s , it is balanced .
*/
2011-02-21 20:52:53 +03:00
if ( ( sds . this_idle_cpus < = sds . busiest_idle_cpus + 1 ) & &
2010-09-18 02:02:32 +04:00
sds . busiest_nr_running < = sds . busiest_group_weight )
goto out_balanced ;
2011-02-21 20:52:53 +03:00
} else {
/*
* In the CPU_NEWLY_IDLE , CPU_NOT_IDLE cases , use
* imbalance_pct to be conservative .
*/
2012-05-02 16:20:37 +04:00
if ( 100 * sds . max_load < = env - > sd - > imbalance_pct * sds . this_load )
2011-02-21 20:52:53 +03:00
goto out_balanced ;
2010-09-18 02:02:32 +04:00
}
2009-12-17 19:00:43 +03:00
2010-10-16 00:12:29 +04:00
force_balance :
2009-12-17 19:00:43 +03:00
/* Looks like there is an imbalance. Compute it */
2012-05-02 16:20:37 +04:00
calculate_imbalance ( env , & sds ) ;
2009-12-17 19:00:43 +03:00
return sds . busiest ;
out_balanced :
ret :
2012-05-02 16:20:37 +04:00
env - > imbalance = 0 ;
2009-12-17 19:00:43 +03:00
return NULL ;
}
/*
* find_busiest_queue - find the busiest runqueue among the cpus in group .
*/
2012-05-02 16:20:37 +04:00
static struct rq * find_busiest_queue ( struct lb_env * env ,
2012-07-12 12:10:13 +04:00
struct sched_group * group )
2009-12-17 19:00:43 +03:00
{
struct rq * busiest = NULL , * rq ;
unsigned long max_load = 0 ;
int i ;
for_each_cpu ( i , sched_group_cpus ( group ) ) {
unsigned long power = power_of ( i ) ;
2011-05-18 21:09:39 +04:00
unsigned long capacity = DIV_ROUND_CLOSEST ( power ,
SCHED_POWER_SCALE ) ;
2009-12-17 19:00:43 +03:00
unsigned long wl ;
2010-06-08 08:57:02 +04:00
if ( ! capacity )
2012-05-02 16:20:37 +04:00
capacity = fix_small_capacity ( env - > sd , group ) ;
2010-06-08 08:57:02 +04:00
2012-07-12 12:10:13 +04:00
if ( ! cpumask_test_cpu ( i , env - > cpus ) )
2009-12-17 19:00:43 +03:00
continue ;
rq = cpu_rq ( i ) ;
2010-02-16 18:48:56 +03:00
wl = weighted_cpuload ( i ) ;
2009-12-17 19:00:43 +03:00
2010-02-16 18:48:56 +03:00
/*
* When comparing with imbalance , use weighted_cpuload ( )
* which is not scaled with the cpu power .
*/
2012-05-02 16:20:37 +04:00
if ( capacity & & rq - > nr_running = = 1 & & wl > env - > imbalance )
2009-12-17 19:00:43 +03:00
continue ;
2010-02-16 18:48:56 +03:00
/*
* For the load comparisons with the other cpu ' s , consider
* the weighted_cpuload ( ) scaled with the cpu power , so that
* the load can be moved away from the cpu that is potentially
* running at a lower capacity .
*/
2011-05-18 21:09:39 +04:00
wl = ( wl * SCHED_POWER_SCALE ) / power ;
2010-02-16 18:48:56 +03:00
2009-12-17 19:00:43 +03:00
if ( wl > max_load ) {
max_load = wl ;
busiest = rq ;
}
}
return busiest ;
}
/*
* Max backoff if we encounter pinned tasks . Pretty arbitrary value , but
* so long as it is large enough .
*/
# define MAX_PINNED_INTERVAL 512
/* Working cpumask for load_balance and load_balance_newidle. */
2011-10-25 12:00:11 +04:00
DEFINE_PER_CPU ( cpumask_var_t , load_balance_tmpmask ) ;
2009-12-17 19:00:43 +03:00
2012-05-02 16:20:37 +04:00
static int need_active_balance ( struct lb_env * env )
2009-12-23 17:10:31 +03:00
{
2012-05-02 16:20:37 +04:00
struct sched_domain * sd = env - > sd ;
if ( env - > idle = = CPU_NEWLY_IDLE ) {
2010-06-08 08:57:02 +04:00
/*
* ASYM_PACKING needs to force migrate tasks from busy but
* higher numbered CPUs in order to pack all tasks in the
* lowest numbered CPUs .
*/
2012-05-02 16:20:37 +04:00
if ( ( sd - > flags & SD_ASYM_PACKING ) & & env - > src_cpu > env - > dst_cpu )
2010-06-08 08:57:02 +04:00
return 1 ;
2009-12-23 17:10:31 +03:00
}
return unlikely ( sd - > nr_balance_failed > sd - > cache_nice_tries + 2 ) ;
}
2010-05-06 20:49:21 +04:00
static int active_load_balance_cpu_stop ( void * data ) ;
2009-12-17 19:00:43 +03:00
/*
* Check this_cpu to ensure it is balanced within domain . Attempt to move
* tasks if there is an imbalance .
*/
static int load_balance ( int this_cpu , struct rq * this_rq ,
struct sched_domain * sd , enum cpu_idle_type idle ,
int * balance )
{
2012-06-19 16:13:15 +04:00
int ld_moved , cur_ld_moved , active_balance = 0 ;
int lb_iterations , max_lb_iterations ;
2009-12-17 19:00:43 +03:00
struct sched_group * group ;
struct rq * busiest ;
unsigned long flags ;
struct cpumask * cpus = __get_cpu_var ( load_balance_tmpmask ) ;
2012-02-22 15:47:19 +04:00
struct lb_env env = {
. sd = sd ,
2012-02-22 22:27:40 +04:00
. dst_cpu = this_cpu ,
. dst_rq = this_rq ,
2012-06-19 16:13:15 +04:00
. dst_grpmask = sched_group_cpus ( sd - > groups ) ,
2012-02-22 15:47:19 +04:00
. idle = idle ,
2012-04-17 15:38:40 +04:00
. loop_break = sched_nr_migrate_break ,
2012-07-12 12:10:13 +04:00
. cpus = cpus ,
2012-02-22 15:47:19 +04:00
} ;
2009-12-17 19:00:43 +03:00
cpumask_copy ( cpus , cpu_active_mask ) ;
2012-06-19 16:13:15 +04:00
max_lb_iterations = cpumask_weight ( env . dst_grpmask ) ;
2009-12-17 19:00:43 +03:00
schedstat_inc ( sd , lb_count [ idle ] ) ;
redo :
2012-07-12 12:10:13 +04:00
group = find_busiest_group ( & env , balance ) ;
2009-12-17 19:00:43 +03:00
if ( * balance = = 0 )
goto out_balanced ;
if ( ! group ) {
schedstat_inc ( sd , lb_nobusyg [ idle ] ) ;
goto out_balanced ;
}
2012-07-12 12:10:13 +04:00
busiest = find_busiest_queue ( & env , group ) ;
2009-12-17 19:00:43 +03:00
if ( ! busiest ) {
schedstat_inc ( sd , lb_nobusyq [ idle ] ) ;
goto out_balanced ;
}
2012-08-06 12:41:59 +04:00
BUG_ON ( busiest = = env . dst_rq ) ;
2009-12-17 19:00:43 +03:00
2012-05-02 16:20:37 +04:00
schedstat_add ( sd , lb_imbalance [ idle ] , env . imbalance ) ;
2009-12-17 19:00:43 +03:00
ld_moved = 0 ;
2012-06-19 16:13:15 +04:00
lb_iterations = 1 ;
2009-12-17 19:00:43 +03:00
if ( busiest - > nr_running > 1 ) {
/*
* Attempt to move tasks . If find_busiest_group has found
* an imbalance but busiest - > nr_running < = 1 , the group is
* still unbalanced . ld_moved simply stays zero , so it is
* correctly treated as an imbalance .
*/
2012-02-22 15:47:19 +04:00
env . flags | = LBF_ALL_PINNED ;
2012-04-26 15:12:27 +04:00
env . src_cpu = busiest - > cpu ;
env . src_rq = busiest ;
env . loop_max = min ( sysctl_sched_nr_migrate , busiest - > nr_running ) ;
2012-02-22 15:47:19 +04:00
2012-08-08 23:46:40 +04:00
update_h_load ( env . src_cpu ) ;
2012-03-10 03:07:36 +04:00
more_balance :
2009-12-17 19:00:43 +03:00
local_irq_save ( flags ) ;
2012-08-06 12:41:59 +04:00
double_rq_lock ( env . dst_rq , busiest ) ;
2012-06-19 16:13:15 +04:00
/*
* cur_ld_moved - load moved in current iteration
* ld_moved - cumulative load moved across iterations
*/
cur_ld_moved = move_tasks ( & env ) ;
ld_moved + = cur_ld_moved ;
2012-08-06 12:41:59 +04:00
double_rq_unlock ( env . dst_rq , busiest ) ;
2009-12-17 19:00:43 +03:00
local_irq_restore ( flags ) ;
2012-03-10 03:07:36 +04:00
if ( env . flags & LBF_NEED_BREAK ) {
env . flags & = ~ LBF_NEED_BREAK ;
goto more_balance ;
}
2009-12-17 19:00:43 +03:00
/*
* some other cpu did the load balance for us .
*/
2012-06-19 16:13:15 +04:00
if ( cur_ld_moved & & env . dst_cpu ! = smp_processor_id ( ) )
resched_cpu ( env . dst_cpu ) ;
/*
* Revisit ( affine ) tasks on src_cpu that couldn ' t be moved to
* us and move them to an alternate dst_cpu in our sched_group
* where they can run . The upper limit on how many times we
* iterate on same src_cpu is dependent on number of cpus in our
* sched_group .
*
* This changes load balance semantics a bit on who can move
* load to a given_cpu . In addition to the given_cpu itself
* ( or a ilb_cpu acting on its behalf where given_cpu is
* nohz - idle ) , we now have balance_cpu in a position to move
* load to given_cpu . In rare situations , this may cause
* conflicts ( balance_cpu and given_cpu / ilb_cpu deciding
* _independently_ and at _same_ time to move some load to
* given_cpu ) causing exceess load to be moved to given_cpu .
* This however should not happen so much in practice and
* moreover subsequent load balance cycles should correct the
* excess load moved .
*/
if ( ( env . flags & LBF_SOME_PINNED ) & & env . imbalance > 0 & &
lb_iterations + + < max_lb_iterations ) {
2012-08-06 12:41:59 +04:00
env . dst_rq = cpu_rq ( env . new_dst_cpu ) ;
2012-06-19 16:13:15 +04:00
env . dst_cpu = env . new_dst_cpu ;
env . flags & = ~ LBF_SOME_PINNED ;
env . loop = 0 ;
env . loop_break = sched_nr_migrate_break ;
/*
* Go back to " more_balance " rather than " redo " since we
* need to continue with same src_cpu .
*/
goto more_balance ;
}
2009-12-17 19:00:43 +03:00
/* All tasks on this runqueue were pinned by CPU affinity */
2012-02-22 15:47:19 +04:00
if ( unlikely ( env . flags & LBF_ALL_PINNED ) ) {
2009-12-17 19:00:43 +03:00
cpumask_clear_cpu ( cpu_of ( busiest ) , cpus ) ;
2012-06-19 16:22:07 +04:00
if ( ! cpumask_empty ( cpus ) ) {
env . loop = 0 ;
env . loop_break = sched_nr_migrate_break ;
2009-12-17 19:00:43 +03:00
goto redo ;
2012-06-19 16:22:07 +04:00
}
2009-12-17 19:00:43 +03:00
goto out_balanced ;
}
}
if ( ! ld_moved ) {
schedstat_inc ( sd , lb_failed [ idle ] ) ;
2010-09-11 05:19:17 +04:00
/*
* Increment the failure counter only on periodic balance .
* We do not want newidle balance , which can be very
* frequent , pollute the failure counter causing
* excessive cache_hot migrations and active balances .
*/
if ( idle ! = CPU_NEWLY_IDLE )
sd - > nr_balance_failed + + ;
2009-12-17 19:00:43 +03:00
2012-05-02 16:20:37 +04:00
if ( need_active_balance ( & env ) ) {
2009-12-17 19:00:43 +03:00
raw_spin_lock_irqsave ( & busiest - > lock , flags ) ;
2010-05-06 20:49:21 +04:00
/* don't kick the active_load_balance_cpu_stop,
* if the curr task on busiest cpu can ' t be
* moved to this_cpu
2009-12-17 19:00:43 +03:00
*/
if ( ! cpumask_test_cpu ( this_cpu ,
2011-06-16 14:23:22 +04:00
tsk_cpus_allowed ( busiest - > curr ) ) ) {
2009-12-17 19:00:43 +03:00
raw_spin_unlock_irqrestore ( & busiest - > lock ,
flags ) ;
2012-02-22 15:47:19 +04:00
env . flags | = LBF_ALL_PINNED ;
2009-12-17 19:00:43 +03:00
goto out_one_pinned ;
}
2010-05-06 20:49:21 +04:00
/*
* - > active_balance synchronizes accesses to
* - > active_balance_work . Once set , it ' s cleared
* only after active load balance is finished .
*/
2009-12-17 19:00:43 +03:00
if ( ! busiest - > active_balance ) {
busiest - > active_balance = 1 ;
busiest - > push_cpu = this_cpu ;
active_balance = 1 ;
}
raw_spin_unlock_irqrestore ( & busiest - > lock , flags ) ;
2010-05-06 20:49:21 +04:00
2012-05-02 16:20:37 +04:00
if ( active_balance ) {
2010-05-06 20:49:21 +04:00
stop_one_cpu_nowait ( cpu_of ( busiest ) ,
active_load_balance_cpu_stop , busiest ,
& busiest - > active_balance_work ) ;
2012-05-02 16:20:37 +04:00
}
2009-12-17 19:00:43 +03:00
/*
* We ' ve kicked active balancing , reset the failure
* counter .
*/
sd - > nr_balance_failed = sd - > cache_nice_tries + 1 ;
}
} else
sd - > nr_balance_failed = 0 ;
if ( likely ( ! active_balance ) ) {
/* We were unbalanced, so reset the balancing interval */
sd - > balance_interval = sd - > min_interval ;
} else {
/*
* If we ' ve begun active balancing , start to back off . This
* case may not be covered by the all_pinned logic if there
* is only 1 task on the busy runqueue ( because we don ' t call
* move_tasks ) .
*/
if ( sd - > balance_interval < sd - > max_interval )
sd - > balance_interval * = 2 ;
}
goto out ;
out_balanced :
schedstat_inc ( sd , lb_balanced [ idle ] ) ;
sd - > nr_balance_failed = 0 ;
out_one_pinned :
/* tune up the balancing interval */
2012-02-22 15:47:19 +04:00
if ( ( ( env . flags & LBF_ALL_PINNED ) & &
2011-09-22 17:23:13 +04:00
sd - > balance_interval < MAX_PINNED_INTERVAL ) | |
2009-12-17 19:00:43 +03:00
( sd - > balance_interval < sd - > max_interval ) )
sd - > balance_interval * = 2 ;
2011-02-15 01:38:50 +03:00
ld_moved = 0 ;
2009-12-17 19:00:43 +03:00
out :
return ld_moved ;
}
/*
* idle_balance is called by schedule ( ) if this_cpu is about to become
* idle . Attempts to pull tasks from other CPUs .
*/
2011-10-25 12:00:11 +04:00
void idle_balance ( int this_cpu , struct rq * this_rq )
2009-12-17 19:00:43 +03:00
{
struct sched_domain * sd ;
int pulled_task = 0 ;
unsigned long next_balance = jiffies + HZ ;
this_rq - > idle_stamp = this_rq - > clock ;
if ( this_rq - > avg_idle < sysctl_sched_migration_cost )
return ;
2012-10-04 14:51:20 +04:00
update_rq_runnable_avg ( this_rq , 1 ) ;
2009-12-23 17:29:42 +03:00
/*
* Drop the rq - > lock , but keep IRQ / preempt disabled .
*/
raw_spin_unlock ( & this_rq - > lock ) ;
2010-11-16 02:47:07 +03:00
update_shares ( this_cpu ) ;
2011-04-07 16:09:50 +04:00
rcu_read_lock ( ) ;
2009-12-17 19:00:43 +03:00
for_each_domain ( this_cpu , sd ) {
unsigned long interval ;
2009-12-23 17:29:42 +03:00
int balance = 1 ;
2009-12-17 19:00:43 +03:00
if ( ! ( sd - > flags & SD_LOAD_BALANCE ) )
continue ;
2009-12-23 17:29:42 +03:00
if ( sd - > flags & SD_BALANCE_NEWIDLE ) {
2009-12-17 19:00:43 +03:00
/* If we've pulled tasks over stop searching: */
2009-12-23 17:29:42 +03:00
pulled_task = load_balance ( this_cpu , this_rq ,
sd , CPU_NEWLY_IDLE , & balance ) ;
}
2009-12-17 19:00:43 +03:00
interval = msecs_to_jiffies ( sd - > balance_interval ) ;
if ( time_after ( next_balance , sd - > last_balance + interval ) )
next_balance = sd - > last_balance + interval ;
2010-11-17 22:42:04 +03:00
if ( pulled_task ) {
this_rq - > idle_stamp = 0 ;
2009-12-17 19:00:43 +03:00
break ;
2010-11-17 22:42:04 +03:00
}
2009-12-17 19:00:43 +03:00
}
2011-04-07 16:09:50 +04:00
rcu_read_unlock ( ) ;
2009-12-23 17:29:42 +03:00
raw_spin_lock ( & this_rq - > lock ) ;
2009-12-17 19:00:43 +03:00
if ( pulled_task | | time_after ( jiffies , this_rq - > next_balance ) ) {
/*
* We are going idle . next_balance may be set based on
* a busy processor . So reset next_balance .
*/
this_rq - > next_balance = next_balance ;
}
}
/*
2010-05-06 20:49:21 +04:00
* active_load_balance_cpu_stop is run by cpu stopper . It pushes
* running tasks off the busiest CPU onto idle CPUs . It requires at
* least 1 task to be running on each physical CPU where possible , and
* avoids physical / logical imbalances .
2009-12-17 19:00:43 +03:00
*/
2010-05-06 20:49:21 +04:00
static int active_load_balance_cpu_stop ( void * data )
2009-12-17 19:00:43 +03:00
{
2010-05-06 20:49:21 +04:00
struct rq * busiest_rq = data ;
int busiest_cpu = cpu_of ( busiest_rq ) ;
2009-12-17 19:00:43 +03:00
int target_cpu = busiest_rq - > push_cpu ;
2010-05-06 20:49:21 +04:00
struct rq * target_rq = cpu_rq ( target_cpu ) ;
2009-12-17 19:00:43 +03:00
struct sched_domain * sd ;
2010-05-06 20:49:21 +04:00
raw_spin_lock_irq ( & busiest_rq - > lock ) ;
/* make sure the requested cpu hasn't gone down in the meantime */
if ( unlikely ( busiest_cpu ! = smp_processor_id ( ) | |
! busiest_rq - > active_balance ) )
goto out_unlock ;
2009-12-17 19:00:43 +03:00
/* Is there any task to move? */
if ( busiest_rq - > nr_running < = 1 )
2010-05-06 20:49:21 +04:00
goto out_unlock ;
2009-12-17 19:00:43 +03:00
/*
* This condition is " impossible " , if it occurs
* we need to fix it . Originally reported by
* Bjorn Helgaas on a 128 - cpu setup .
*/
BUG_ON ( busiest_rq = = target_rq ) ;
/* move a task from busiest_rq to target_rq */
double_lock_balance ( busiest_rq , target_rq ) ;
/* Search for an sd spanning us and the target CPU. */
2011-04-07 16:09:50 +04:00
rcu_read_lock ( ) ;
2009-12-17 19:00:43 +03:00
for_each_domain ( target_cpu , sd ) {
if ( ( sd - > flags & SD_LOAD_BALANCE ) & &
cpumask_test_cpu ( busiest_cpu , sched_domain_span ( sd ) ) )
break ;
}
if ( likely ( sd ) ) {
2012-02-22 15:47:19 +04:00
struct lb_env env = {
. sd = sd ,
2012-02-22 22:27:40 +04:00
. dst_cpu = target_cpu ,
. dst_rq = target_rq ,
. src_cpu = busiest_rq - > cpu ,
. src_rq = busiest_rq ,
2012-02-22 15:47:19 +04:00
. idle = CPU_IDLE ,
} ;
2009-12-17 19:00:43 +03:00
schedstat_inc ( sd , alb_count ) ;
2012-02-22 15:47:19 +04:00
if ( move_one_task ( & env ) )
2009-12-17 19:00:43 +03:00
schedstat_inc ( sd , alb_pushed ) ;
else
schedstat_inc ( sd , alb_failed ) ;
}
2011-04-07 16:09:50 +04:00
rcu_read_unlock ( ) ;
2009-12-17 19:00:43 +03:00
double_unlock_balance ( busiest_rq , target_rq ) ;
2010-05-06 20:49:21 +04:00
out_unlock :
busiest_rq - > active_balance = 0 ;
raw_spin_unlock_irq ( & busiest_rq - > lock ) ;
return 0 ;
2009-12-17 19:00:43 +03:00
}
# ifdef CONFIG_NO_HZ
2010-05-22 04:09:41 +04:00
/*
* idle load balancing details
* - When one of the busy CPUs notice that there may be an idle rebalancing
* needed , they will kick the idle load balancer , which then does idle
* load balancing for all the idle CPUs .
*/
2009-12-17 19:00:43 +03:00
static struct {
2010-05-22 04:09:41 +04:00
cpumask_var_t idle_cpus_mask ;
2011-12-02 05:07:34 +04:00
atomic_t nr_cpus ;
2010-05-22 04:09:41 +04:00
unsigned long next_balance ; /* in jiffy units */
} nohz ____cacheline_aligned ;
2009-12-17 19:00:43 +03:00
2012-01-09 14:28:35 +04:00
static inline int find_new_ilb ( int call_cpu )
2009-12-17 19:00:43 +03:00
{
2011-12-02 05:07:34 +04:00
int ilb = cpumask_first ( nohz . idle_cpus_mask ) ;
2009-12-17 19:00:43 +03:00
2011-12-02 05:07:35 +04:00
if ( ilb < nr_cpu_ids & & idle_cpu ( ilb ) )
return ilb ;
return nr_cpu_ids ;
2009-12-17 19:00:43 +03:00
}
2010-05-22 04:09:41 +04:00
/*
* Kick a CPU to do the nohz balancing , if it is time for it . We pick the
* nohz_load_balancer CPU ( if there is one ) otherwise fallback to any idle
* CPU ( if there is one ) .
*/
static void nohz_balancer_kick ( int cpu )
{
int ilb_cpu ;
nohz . next_balance + + ;
2011-12-02 05:07:34 +04:00
ilb_cpu = find_new_ilb ( cpu ) ;
2010-05-22 04:09:41 +04:00
2011-12-02 05:07:34 +04:00
if ( ilb_cpu > = nr_cpu_ids )
return ;
2010-05-22 04:09:41 +04:00
2011-12-06 23:26:34 +04:00
if ( test_and_set_bit ( NOHZ_BALANCE_KICK , nohz_flags ( ilb_cpu ) ) )
2011-12-02 05:07:32 +04:00
return ;
/*
* Use smp_send_reschedule ( ) instead of resched_cpu ( ) .
* This way we generate a sched IPI on the target cpu which
* is idle . And the softirq performing nohz idle load balance
* will be run before returning from the IPI .
*/
smp_send_reschedule ( ilb_cpu ) ;
2010-05-22 04:09:41 +04:00
return ;
}
2012-09-10 11:10:58 +04:00
static inline void nohz_balance_exit_idle ( int cpu )
2012-01-20 06:28:57 +04:00
{
if ( unlikely ( test_bit ( NOHZ_TICK_STOPPED , nohz_flags ( cpu ) ) ) ) {
cpumask_clear_cpu ( cpu , nohz . idle_cpus_mask ) ;
atomic_dec ( & nohz . nr_cpus ) ;
clear_bit ( NOHZ_TICK_STOPPED , nohz_flags ( cpu ) ) ;
}
}
2011-12-02 05:07:33 +04:00
static inline void set_cpu_sd_state_busy ( void )
{
struct sched_domain * sd ;
int cpu = smp_processor_id ( ) ;
if ( ! test_bit ( NOHZ_IDLE , nohz_flags ( cpu ) ) )
return ;
clear_bit ( NOHZ_IDLE , nohz_flags ( cpu ) ) ;
rcu_read_lock ( ) ;
for_each_domain ( cpu , sd )
atomic_inc ( & sd - > groups - > sgp - > nr_busy_cpus ) ;
rcu_read_unlock ( ) ;
}
void set_cpu_sd_state_idle ( void )
{
struct sched_domain * sd ;
int cpu = smp_processor_id ( ) ;
if ( test_bit ( NOHZ_IDLE , nohz_flags ( cpu ) ) )
return ;
set_bit ( NOHZ_IDLE , nohz_flags ( cpu ) ) ;
rcu_read_lock ( ) ;
for_each_domain ( cpu , sd )
atomic_dec ( & sd - > groups - > sgp - > nr_busy_cpus ) ;
rcu_read_unlock ( ) ;
}
2009-12-17 19:00:43 +03:00
/*
2012-09-10 11:10:58 +04:00
* This routine will record that the cpu is going idle with tick stopped .
2011-12-02 05:07:34 +04:00
* This info will be used in performing idle load balancing in the future .
2009-12-17 19:00:43 +03:00
*/
2012-09-10 11:10:58 +04:00
void nohz_balance_enter_idle ( int cpu )
2009-12-17 19:00:43 +03:00
{
2012-01-20 06:28:57 +04:00
/*
* If this cpu is going down , then nothing needs to be done .
*/
if ( ! cpu_active ( cpu ) )
return ;
2012-09-10 11:10:58 +04:00
if ( test_bit ( NOHZ_TICK_STOPPED , nohz_flags ( cpu ) ) )
return ;
2009-12-17 19:00:43 +03:00
2012-09-10 11:10:58 +04:00
cpumask_set_cpu ( cpu , nohz . idle_cpus_mask ) ;
atomic_inc ( & nohz . nr_cpus ) ;
set_bit ( NOHZ_TICK_STOPPED , nohz_flags ( cpu ) ) ;
2009-12-17 19:00:43 +03:00
}
2012-01-20 06:28:57 +04:00
static int __cpuinit sched_ilb_notifier ( struct notifier_block * nfb ,
unsigned long action , void * hcpu )
{
switch ( action & ~ CPU_TASKS_FROZEN ) {
case CPU_DYING :
2012-09-10 11:10:58 +04:00
nohz_balance_exit_idle ( smp_processor_id ( ) ) ;
2012-01-20 06:28:57 +04:00
return NOTIFY_OK ;
default :
return NOTIFY_DONE ;
}
}
2009-12-17 19:00:43 +03:00
# endif
static DEFINE_SPINLOCK ( balancing ) ;
2011-04-05 12:14:25 +04:00
/*
* Scale the max load_balance interval with the number of CPUs in the system .
* This trades load - balance latency on larger machines for less cross talk .
*/
2011-10-25 12:00:11 +04:00
void update_max_interval ( void )
2011-04-05 12:14:25 +04:00
{
max_load_balance_interval = HZ * num_online_cpus ( ) / 10 ;
}
2009-12-17 19:00:43 +03:00
/*
* It checks each scheduling domain to see if it is due to be balanced ,
* and initiates a balancing operation if so .
*
* Balancing parameters are set up in arch_init_sched_domains .
*/
static void rebalance_domains ( int cpu , enum cpu_idle_type idle )
{
int balance = 1 ;
struct rq * rq = cpu_rq ( cpu ) ;
unsigned long interval ;
2012-05-11 02:12:02 +04:00
struct sched_domain * sd ;
2009-12-17 19:00:43 +03:00
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60 * HZ ;
int update_next_balance = 0 ;
int need_serialize ;
2010-11-16 02:47:00 +03:00
update_shares ( cpu ) ;
2011-04-07 16:09:50 +04:00
rcu_read_lock ( ) ;
2009-12-17 19:00:43 +03:00
for_each_domain ( cpu , sd ) {
if ( ! ( sd - > flags & SD_LOAD_BALANCE ) )
continue ;
interval = sd - > balance_interval ;
if ( idle ! = CPU_IDLE )
interval * = sd - > busy_factor ;
/* scale ms to jiffies */
interval = msecs_to_jiffies ( interval ) ;
2011-04-05 12:14:25 +04:00
interval = clamp ( interval , 1UL , max_load_balance_interval ) ;
2009-12-17 19:00:43 +03:00
need_serialize = sd - > flags & SD_SERIALIZE ;
if ( need_serialize ) {
if ( ! spin_trylock ( & balancing ) )
goto out ;
}
if ( time_after_eq ( jiffies , sd - > last_balance + interval ) ) {
if ( load_balance ( cpu , rq , sd , idle , & balance ) ) {
/*
* We ' ve pulled tasks over so either we ' re no
2011-02-21 20:52:53 +03:00
* longer idle .
2009-12-17 19:00:43 +03:00
*/
idle = CPU_NOT_IDLE ;
}
sd - > last_balance = jiffies ;
}
if ( need_serialize )
spin_unlock ( & balancing ) ;
out :
if ( time_after ( next_balance , sd - > last_balance + interval ) ) {
next_balance = sd - > last_balance + interval ;
update_next_balance = 1 ;
}
/*
* Stop the load balance at this level . There is another
* CPU in our sched group which is doing load balancing more
* actively .
*/
if ( ! balance )
break ;
}
2011-04-07 16:09:50 +04:00
rcu_read_unlock ( ) ;
2009-12-17 19:00:43 +03:00
/*
* next_balance will be updated only when there is a need .
* When the cpu is attached to null domain for ex , it will not be
* updated .
*/
if ( likely ( update_next_balance ) )
rq - > next_balance = next_balance ;
}
2010-05-22 04:09:41 +04:00
# ifdef CONFIG_NO_HZ
2009-12-17 19:00:43 +03:00
/*
2010-05-22 04:09:41 +04:00
* In CONFIG_NO_HZ case , the idle balance kickee will do the
2009-12-17 19:00:43 +03:00
* rebalancing for all the cpus for whom scheduler ticks are stopped .
*/
2010-05-22 04:09:41 +04:00
static void nohz_idle_balance ( int this_cpu , enum cpu_idle_type idle )
{
struct rq * this_rq = cpu_rq ( this_cpu ) ;
struct rq * rq ;
int balance_cpu ;
2011-12-02 05:07:32 +04:00
if ( idle ! = CPU_IDLE | |
! test_bit ( NOHZ_BALANCE_KICK , nohz_flags ( this_cpu ) ) )
goto end ;
2010-05-22 04:09:41 +04:00
for_each_cpu ( balance_cpu , nohz . idle_cpus_mask ) {
2011-12-06 23:19:37 +04:00
if ( balance_cpu = = this_cpu | | ! idle_cpu ( balance_cpu ) )
2010-05-22 04:09:41 +04:00
continue ;
/*
* If this cpu gets work to do , stop the load balancing
* work being done for other cpus . Next load
* balancing owner will pick it up .
*/
2011-12-02 05:07:32 +04:00
if ( need_resched ( ) )
2010-05-22 04:09:41 +04:00
break ;
2012-09-13 08:11:26 +04:00
rq = cpu_rq ( balance_cpu ) ;
raw_spin_lock_irq ( & rq - > lock ) ;
update_rq_clock ( rq ) ;
update_idle_cpu_load ( rq ) ;
raw_spin_unlock_irq ( & rq - > lock ) ;
2010-05-22 04:09:41 +04:00
rebalance_domains ( balance_cpu , CPU_IDLE ) ;
if ( time_after ( this_rq - > next_balance , rq - > next_balance ) )
this_rq - > next_balance = rq - > next_balance ;
}
nohz . next_balance = this_rq - > next_balance ;
2011-12-02 05:07:32 +04:00
end :
clear_bit ( NOHZ_BALANCE_KICK , nohz_flags ( this_cpu ) ) ;
2010-05-22 04:09:41 +04:00
}
/*
2011-12-02 05:07:34 +04:00
* Current heuristic for kicking the idle load balancer in the presence
* of an idle cpu is the system .
* - This rq has more than one task .
* - At any scheduler domain level , this cpu ' s scheduler group has multiple
* busy cpu ' s exceeding the group ' s power .
* - For SD_ASYM_PACKING , if the lower numbered cpu ' s in the scheduler
* domain span are idle .
2010-05-22 04:09:41 +04:00
*/
static inline int nohz_kick_needed ( struct rq * rq , int cpu )
{
unsigned long now = jiffies ;
2011-12-02 05:07:34 +04:00
struct sched_domain * sd ;
2010-05-22 04:09:41 +04:00
2011-12-02 05:07:32 +04:00
if ( unlikely ( idle_cpu ( cpu ) ) )
2010-05-22 04:09:41 +04:00
return 0 ;
2011-12-02 05:07:32 +04:00
/*
* We may be recently in ticked or tickless idle mode . At the first
* busy tick after returning from idle , we will update the busy stats .
*/
2011-12-02 05:07:33 +04:00
set_cpu_sd_state_busy ( ) ;
2012-09-10 11:10:58 +04:00
nohz_balance_exit_idle ( cpu ) ;
2011-12-02 05:07:34 +04:00
/*
* None are in tickless mode and hence no need for NOHZ idle load
* balancing .
*/
if ( likely ( ! atomic_read ( & nohz . nr_cpus ) ) )
return 0 ;
2011-12-02 05:07:32 +04:00
if ( time_before ( now , nohz . next_balance ) )
2010-05-22 04:09:41 +04:00
return 0 ;
2011-12-02 05:07:34 +04:00
if ( rq - > nr_running > = 2 )
goto need_kick ;
2010-05-22 04:09:41 +04:00
2011-12-07 17:32:08 +04:00
rcu_read_lock ( ) ;
2011-12-02 05:07:34 +04:00
for_each_domain ( cpu , sd ) {
struct sched_group * sg = sd - > groups ;
struct sched_group_power * sgp = sg - > sgp ;
int nr_busy = atomic_read ( & sgp - > nr_busy_cpus ) ;
2010-05-22 04:09:41 +04:00
2011-12-02 05:07:34 +04:00
if ( sd - > flags & SD_SHARE_PKG_RESOURCES & & nr_busy > 1 )
2011-12-07 17:32:08 +04:00
goto need_kick_unlock ;
2011-12-02 05:07:34 +04:00
if ( sd - > flags & SD_ASYM_PACKING & & nr_busy ! = sg - > group_weight
& & ( cpumask_first_and ( nohz . idle_cpus_mask ,
sched_domain_span ( sd ) ) < cpu ) )
2011-12-07 17:32:08 +04:00
goto need_kick_unlock ;
2011-12-02 05:07:34 +04:00
if ( ! ( sd - > flags & ( SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING ) ) )
break ;
2010-05-22 04:09:41 +04:00
}
2011-12-07 17:32:08 +04:00
rcu_read_unlock ( ) ;
2010-05-22 04:09:41 +04:00
return 0 ;
2011-12-07 17:32:08 +04:00
need_kick_unlock :
rcu_read_unlock ( ) ;
2011-12-02 05:07:34 +04:00
need_kick :
return 1 ;
2010-05-22 04:09:41 +04:00
}
# else
static void nohz_idle_balance ( int this_cpu , enum cpu_idle_type idle ) { }
# endif
/*
* run_rebalance_domains is triggered when needed from the scheduler tick .
* Also triggered for nohz idle balancing ( with nohz_balancing_kick set ) .
*/
2009-12-17 19:00:43 +03:00
static void run_rebalance_domains ( struct softirq_action * h )
{
int this_cpu = smp_processor_id ( ) ;
struct rq * this_rq = cpu_rq ( this_cpu ) ;
2011-10-04 02:09:01 +04:00
enum cpu_idle_type idle = this_rq - > idle_balance ?
2009-12-17 19:00:43 +03:00
CPU_IDLE : CPU_NOT_IDLE ;
rebalance_domains ( this_cpu , idle ) ;
/*
2010-05-22 04:09:41 +04:00
* If this cpu has a pending nohz_balance_kick , then do the
2009-12-17 19:00:43 +03:00
* balancing on behalf of the other idle cpus whose ticks are
* stopped .
*/
2010-05-22 04:09:41 +04:00
nohz_idle_balance ( this_cpu , idle ) ;
2009-12-17 19:00:43 +03:00
}
static inline int on_null_domain ( int cpu )
{
2010-02-28 19:32:18 +03:00
return ! rcu_dereference_sched ( cpu_rq ( cpu ) - > sd ) ;
2009-12-17 19:00:43 +03:00
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing .
*/
2011-10-25 12:00:11 +04:00
void trigger_load_balance ( struct rq * rq , int cpu )
2009-12-17 19:00:43 +03:00
{
/* Don't need to rebalance while attached to NULL domain */
if ( time_after_eq ( jiffies , rq - > next_balance ) & &
likely ( ! on_null_domain ( cpu ) ) )
raise_softirq ( SCHED_SOFTIRQ ) ;
2010-05-22 04:09:41 +04:00
# ifdef CONFIG_NO_HZ
2011-12-02 05:07:32 +04:00
if ( nohz_kick_needed ( rq , cpu ) & & likely ( ! on_null_domain ( cpu ) ) )
2010-05-22 04:09:41 +04:00
nohz_balancer_kick ( cpu ) ;
# endif
2009-12-17 19:00:43 +03:00
}
2009-11-30 14:16:46 +03:00
static void rq_online_fair ( struct rq * rq )
{
update_sysctl ( ) ;
}
static void rq_offline_fair ( struct rq * rq )
{
update_sysctl ( ) ;
2012-08-10 02:34:47 +04:00
/* Ensure any throttled groups are reachable by pick_next_task */
unthrottle_offline_cfs_rqs ( rq ) ;
2009-11-30 14:16:46 +03:00
}
2008-06-24 22:09:43 +04:00
# endif /* CONFIG_SMP */
2007-10-24 20:23:51 +04:00
2007-07-09 20:51:58 +04:00
/*
* scheduler tick hitting a task of our scheduling class :
*/
2008-01-25 23:08:29 +03:00
static void task_tick_fair ( struct rq * rq , struct task_struct * curr , int queued )
2007-07-09 20:51:58 +04:00
{
struct cfs_rq * cfs_rq ;
struct sched_entity * se = & curr - > se ;
for_each_sched_entity ( se ) {
cfs_rq = cfs_rq_of ( se ) ;
2008-01-25 23:08:29 +03:00
entity_tick ( cfs_rq , se , queued ) ;
2007-07-09 20:51:58 +04:00
}
2012-10-04 14:51:20 +04:00
update_rq_runnable_avg ( rq , 1 ) ;
2007-07-09 20:51:58 +04:00
}
/*
2009-11-27 19:32:46 +03:00
* called on fork with the child task as argument from the parent ' s context
* - child not yet on the tasklist
* - preemption disabled
2007-07-09 20:51:58 +04:00
*/
2009-11-27 19:32:46 +03:00
static void task_fork_fair ( struct task_struct * p )
2007-07-09 20:51:58 +04:00
{
2011-12-15 09:36:55 +04:00
struct cfs_rq * cfs_rq ;
struct sched_entity * se = & p - > se , * curr ;
2007-10-15 19:00:14 +04:00
int this_cpu = smp_processor_id ( ) ;
2009-11-27 19:32:46 +03:00
struct rq * rq = this_rq ( ) ;
unsigned long flags ;
2009-11-17 16:28:38 +03:00
raw_spin_lock_irqsave ( & rq - > lock , flags ) ;
2007-07-09 20:51:58 +04:00
2010-08-19 15:31:43 +04:00
update_rq_clock ( rq ) ;
2011-12-15 09:36:55 +04:00
cfs_rq = task_cfs_rq ( current ) ;
curr = cfs_rq - > curr ;
2010-10-07 04:32:51 +04:00
if ( unlikely ( task_cpu ( p ) ! = this_cpu ) ) {
rcu_read_lock ( ) ;
2009-11-27 19:32:46 +03:00
__set_task_cpu ( p , this_cpu ) ;
2010-10-07 04:32:51 +04:00
rcu_read_unlock ( ) ;
}
2007-07-09 20:51:58 +04:00
2007-08-28 14:53:24 +04:00
update_curr ( cfs_rq ) ;
2009-11-27 19:32:46 +03:00
sched: Ensure that a child can't gain time over it's parent after fork()
A fork/exec load is usually "pass the baton", so the child
should never be placed behind the parent. With START_DEBIT we
make room for the new task, but with child_runs_first, that
room comes out of the _parent's_ hide. There's nothing to say
that the parent wasn't ahead of min_vruntime at fork() time,
which means that the "baton carrier", who is essentially the
parent in drag, can gain time and increase scheduling latencies
for waiters.
With NEW_FAIR_SLEEPERS + START_DEBIT + child_runs_first
enabled, we essentially pass the sleeper fairness off to the
child, which is fine, but if we don't base placement on the
parent's updated vruntime, we can end up compounding latency
woes if the child itself then does fork/exec. The debit
incurred at fork doesn't hurt the parent who is then going to
sleep and maybe exit, but the child who acquires the error
harms all comers.
This improves latencies of make -j<n> kernel build workloads.
Reported-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-08 13:12:28 +04:00
if ( curr )
se - > vruntime = curr - > vruntime ;
2007-10-15 19:00:05 +04:00
place_entity ( cfs_rq , se , 1 ) ;
2007-10-15 19:00:04 +04:00
2009-11-27 19:32:46 +03:00
if ( sysctl_sched_child_runs_first & & curr & & entity_before ( curr , se ) ) {
2007-10-15 19:00:08 +04:00
/*
2007-10-15 19:00:08 +04:00
* Upon rescheduling , sched_class : : put_prev_task ( ) will place
* ' current ' within the tree based on its new key value .
*/
2007-10-15 19:00:04 +04:00
swap ( curr - > vruntime , se - > vruntime ) ;
2008-08-28 13:12:49 +04:00
resched_task ( rq - > curr ) ;
2007-10-15 19:00:04 +04:00
}
2007-07-09 20:51:58 +04:00
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
se - > vruntime - = cfs_rq - > min_vruntime ;
2009-11-17 16:28:38 +03:00
raw_spin_unlock_irqrestore ( & rq - > lock , flags ) ;
2007-07-09 20:51:58 +04:00
}
2008-01-25 23:08:22 +03:00
/*
* Priority of the task has changed . Check to see if we preempt
* the current task .
*/
2011-01-17 19:03:27 +03:00
static void
prio_changed_fair ( struct rq * rq , struct task_struct * p , int oldprio )
2008-01-25 23:08:22 +03:00
{
2011-01-17 19:03:27 +03:00
if ( ! p - > se . on_rq )
return ;
2008-01-25 23:08:22 +03:00
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased , or if we are not currently running on
* this runqueue and our priority is higher than the current ' s
*/
2011-01-17 19:03:27 +03:00
if ( rq - > curr = = p ) {
2008-01-25 23:08:22 +03:00
if ( p - > prio > oldprio )
resched_task ( rq - > curr ) ;
} else
2008-09-21 01:38:02 +04:00
check_preempt_curr ( rq , p , 0 ) ;
2008-01-25 23:08:22 +03:00
}
2011-01-17 19:03:27 +03:00
static void switched_from_fair ( struct rq * rq , struct task_struct * p )
{
struct sched_entity * se = & p - > se ;
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
/*
* Ensure the task ' s vruntime is normalized , so that when its
* switched back to the fair class the enqueue_entity ( . flags = 0 ) will
* do the right thing .
*
* If it was on_rq , then the dequeue_entity ( . flags = 0 ) will already
* have normalized the vruntime , if it was ! on_rq , then only when
* the task is sleeping will it still have non - normalized vruntime .
*/
if ( ! se - > on_rq & & p - > state ! = TASK_RUNNING ) {
/*
* Fix up our vruntime so that the current sleep doesn ' t
* cause ' unlimited ' sleep bonus .
*/
place_entity ( cfs_rq , se , 0 ) ;
se - > vruntime - = cfs_rq - > min_vruntime ;
}
2012-10-04 15:18:30 +04:00
# if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
/*
* Remove our load from contribution when we leave sched_fair
* and ensure we don ' t carry in an old decay_count if we
* switch back .
*/
if ( p - > se . avg . decay_count ) {
struct cfs_rq * cfs_rq = cfs_rq_of ( & p - > se ) ;
__synchronize_entity_decay ( & p - > se ) ;
subtract_blocked_load_contrib ( cfs_rq ,
p - > se . avg . load_avg_contrib ) ;
}
# endif
2011-01-17 19:03:27 +03:00
}
2008-01-25 23:08:22 +03:00
/*
* We switched to the sched_fair class .
*/
2011-01-17 19:03:27 +03:00
static void switched_to_fair ( struct rq * rq , struct task_struct * p )
2008-01-25 23:08:22 +03:00
{
2011-01-17 19:03:27 +03:00
if ( ! p - > se . on_rq )
return ;
2008-01-25 23:08:22 +03:00
/*
* We were most likely switched from sched_rt , so
* kick off the schedule if running , otherwise just see
* if we can still preempt the current task .
*/
2011-01-17 19:03:27 +03:00
if ( rq - > curr = = p )
2008-01-25 23:08:22 +03:00
resched_task ( rq - > curr ) ;
else
2008-09-21 01:38:02 +04:00
check_preempt_curr ( rq , p , 0 ) ;
2008-01-25 23:08:22 +03:00
}
2007-10-15 19:00:08 +04:00
/* Account for a task changing its policy or group.
*
* This routine is mostly called to set cfs_rq - > curr field when a task
* migrates between groups / classes .
*/
static void set_curr_task_fair ( struct rq * rq )
{
struct sched_entity * se = & rq - > curr - > se ;
2011-07-21 20:43:30 +04:00
for_each_sched_entity ( se ) {
struct cfs_rq * cfs_rq = cfs_rq_of ( se ) ;
set_next_entity ( cfs_rq , se ) ;
/* ensure bandwidth has been allocated on our new cfs_rq */
account_cfs_rq_runtime ( cfs_rq , 0 ) ;
}
2007-10-15 19:00:08 +04:00
}
2011-10-25 12:00:11 +04:00
void init_cfs_rq ( struct cfs_rq * cfs_rq )
{
cfs_rq - > tasks_timeline = RB_ROOT ;
cfs_rq - > min_vruntime = ( u64 ) ( - ( 1LL < < 20 ) ) ;
# ifndef CONFIG_64BIT
cfs_rq - > min_vruntime_copy = cfs_rq - > min_vruntime ;
# endif
2012-10-04 15:18:30 +04:00
# if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
atomic64_set ( & cfs_rq - > decay_counter , 1 ) ;
2012-10-04 15:18:30 +04:00
atomic64_set ( & cfs_rq - > removed_load , 0 ) ;
2012-10-04 15:18:30 +04:00
# endif
2011-10-25 12:00:11 +04:00
}
2008-02-29 23:21:01 +03:00
# ifdef CONFIG_FAIR_GROUP_SCHED
2010-10-15 17:24:15 +04:00
static void task_move_group_fair ( struct task_struct * p , int on_rq )
2008-02-29 23:21:01 +03:00
{
2012-10-04 15:18:30 +04:00
struct cfs_rq * cfs_rq ;
2010-10-15 17:24:15 +04:00
/*
* If the task was not on the rq at the time of this cgroup movement
* it must have been asleep , sleeping tasks keep their - > vruntime
* absolute on their old rq until wakeup ( needed for the fair sleeper
* bonus in place_entity ( ) ) .
*
* If it was on the rq , we ' ve just ' preempted ' it , which does convert
* - > vruntime to a relative base .
*
* Make sure both cases convert their relative position when migrating
* to another cgroup ' s rq . This does somewhat interfere with the
* fair sleeper stuff for the first placement , but who cares .
*/
2011-12-15 09:36:07 +04:00
/*
* When ! on_rq , vruntime of the task has usually NOT been normalized .
* But there are some cases where it has already been normalized :
*
* - Moving a forked child which is waiting for being woken up by
* wake_up_new_task ( ) .
2011-12-15 09:37:41 +04:00
* - Moving a task which has been woken up by try_to_wake_up ( ) and
* waiting for actually being woken up by sched_ttwu_pending ( ) .
2011-12-15 09:36:07 +04:00
*
* To prevent boost or penalty in the new cfs_rq caused by delta
* min_vruntime between the two cfs_rqs , we skip vruntime adjustment .
*/
2011-12-15 09:37:41 +04:00
if ( ! on_rq & & ( ! p - > se . sum_exec_runtime | | p - > state = = TASK_WAKING ) )
2011-12-15 09:36:07 +04:00
on_rq = 1 ;
2010-10-15 17:24:15 +04:00
if ( ! on_rq )
p - > se . vruntime - = cfs_rq_of ( & p - > se ) - > min_vruntime ;
set_task_rq ( p , task_cpu ( p ) ) ;
2012-10-04 15:18:30 +04:00
if ( ! on_rq ) {
cfs_rq = cfs_rq_of ( & p - > se ) ;
p - > se . vruntime + = cfs_rq - > min_vruntime ;
# ifdef CONFIG_SMP
/*
* migrate_task_rq_fair ( ) will have removed our previous
* contribution , but we must synchronize for ongoing future
* decay .
*/
p - > se . avg . decay_count = atomic64_read ( & cfs_rq - > decay_counter ) ;
cfs_rq - > blocked_load_avg + = p - > se . avg . load_avg_contrib ;
# endif
}
2008-02-29 23:21:01 +03:00
}
2011-10-25 12:00:11 +04:00
void free_fair_sched_group ( struct task_group * tg )
{
int i ;
destroy_cfs_bandwidth ( tg_cfs_bandwidth ( tg ) ) ;
for_each_possible_cpu ( i ) {
if ( tg - > cfs_rq )
kfree ( tg - > cfs_rq [ i ] ) ;
if ( tg - > se )
kfree ( tg - > se [ i ] ) ;
}
kfree ( tg - > cfs_rq ) ;
kfree ( tg - > se ) ;
}
int alloc_fair_sched_group ( struct task_group * tg , struct task_group * parent )
{
struct cfs_rq * cfs_rq ;
struct sched_entity * se ;
int i ;
tg - > cfs_rq = kzalloc ( sizeof ( cfs_rq ) * nr_cpu_ids , GFP_KERNEL ) ;
if ( ! tg - > cfs_rq )
goto err ;
tg - > se = kzalloc ( sizeof ( se ) * nr_cpu_ids , GFP_KERNEL ) ;
if ( ! tg - > se )
goto err ;
tg - > shares = NICE_0_LOAD ;
init_cfs_bandwidth ( tg_cfs_bandwidth ( tg ) ) ;
for_each_possible_cpu ( i ) {
cfs_rq = kzalloc_node ( sizeof ( struct cfs_rq ) ,
GFP_KERNEL , cpu_to_node ( i ) ) ;
if ( ! cfs_rq )
goto err ;
se = kzalloc_node ( sizeof ( struct sched_entity ) ,
GFP_KERNEL , cpu_to_node ( i ) ) ;
if ( ! se )
goto err_free_rq ;
init_cfs_rq ( cfs_rq ) ;
init_tg_cfs_entry ( tg , cfs_rq , se , i , parent - > se [ i ] ) ;
}
return 1 ;
err_free_rq :
kfree ( cfs_rq ) ;
err :
return 0 ;
}
void unregister_fair_sched_group ( struct task_group * tg , int cpu )
{
struct rq * rq = cpu_rq ( cpu ) ;
unsigned long flags ;
/*
* Only empty task groups can be destroyed ; so we can speculatively
* check on_list without danger of it being re - added .
*/
if ( ! tg - > cfs_rq [ cpu ] - > on_list )
return ;
raw_spin_lock_irqsave ( & rq - > lock , flags ) ;
list_del_leaf_cfs_rq ( tg - > cfs_rq [ cpu ] ) ;
raw_spin_unlock_irqrestore ( & rq - > lock , flags ) ;
}
void init_tg_cfs_entry ( struct task_group * tg , struct cfs_rq * cfs_rq ,
struct sched_entity * se , int cpu ,
struct sched_entity * parent )
{
struct rq * rq = cpu_rq ( cpu ) ;
cfs_rq - > tg = tg ;
cfs_rq - > rq = rq ;
init_cfs_rq_runtime ( cfs_rq ) ;
tg - > cfs_rq [ cpu ] = cfs_rq ;
tg - > se [ cpu ] = se ;
/* se could be NULL for root_task_group */
if ( ! se )
return ;
if ( ! parent )
se - > cfs_rq = & rq - > cfs ;
else
se - > cfs_rq = parent - > my_q ;
se - > my_q = cfs_rq ;
update_load_set ( & se - > load , 0 ) ;
se - > parent = parent ;
}
static DEFINE_MUTEX ( shares_mutex ) ;
int sched_group_set_shares ( struct task_group * tg , unsigned long shares )
{
int i ;
unsigned long flags ;
/*
* We can ' t change the weight of the root cgroup .
*/
if ( ! tg - > se [ 0 ] )
return - EINVAL ;
shares = clamp ( shares , scale_load ( MIN_SHARES ) , scale_load ( MAX_SHARES ) ) ;
mutex_lock ( & shares_mutex ) ;
if ( tg - > shares = = shares )
goto done ;
tg - > shares = shares ;
for_each_possible_cpu ( i ) {
struct rq * rq = cpu_rq ( i ) ;
struct sched_entity * se ;
se = tg - > se [ i ] ;
/* Propagate contribution to hierarchy */
raw_spin_lock_irqsave ( & rq - > lock , flags ) ;
for_each_sched_entity ( se )
update_cfs_shares ( group_cfs_rq ( se ) ) ;
raw_spin_unlock_irqrestore ( & rq - > lock , flags ) ;
}
done :
mutex_unlock ( & shares_mutex ) ;
return 0 ;
}
# else /* CONFIG_FAIR_GROUP_SCHED */
void free_fair_sched_group ( struct task_group * tg ) { }
int alloc_fair_sched_group ( struct task_group * tg , struct task_group * parent )
{
return 1 ;
}
void unregister_fair_sched_group ( struct task_group * tg , int cpu ) { }
# endif /* CONFIG_FAIR_GROUP_SCHED */
2008-02-29 23:21:01 +03:00
2010-01-14 06:21:52 +03:00
static unsigned int get_rr_interval_fair ( struct rq * rq , struct task_struct * task )
2009-09-21 05:31:53 +04:00
{
struct sched_entity * se = & task - > se ;
unsigned int rr_interval = 0 ;
/*
* Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
* idle runqueue :
*/
if ( rq - > cfs . load . weight )
rr_interval = NS_TO_JIFFIES ( sched_slice ( & rq - > cfs , se ) ) ;
return rr_interval ;
}
2007-07-09 20:51:58 +04:00
/*
* All the scheduling class methods :
*/
2011-10-25 12:00:11 +04:00
const struct sched_class fair_sched_class = {
2007-10-15 19:00:12 +04:00
. next = & idle_sched_class ,
2007-07-09 20:51:58 +04:00
. enqueue_task = enqueue_task_fair ,
. dequeue_task = dequeue_task_fair ,
. yield_task = yield_task_fair ,
2011-02-01 17:50:51 +03:00
. yield_to_task = yield_to_task_fair ,
2007-07-09 20:51:58 +04:00
2007-10-15 19:00:05 +04:00
. check_preempt_curr = check_preempt_wakeup ,
2007-07-09 20:51:58 +04:00
. pick_next_task = pick_next_task_fair ,
. put_prev_task = put_prev_task_fair ,
2007-10-24 20:23:51 +04:00
# ifdef CONFIG_SMP
2008-10-22 11:25:26 +04:00
. select_task_rq = select_task_rq_fair ,
2012-10-04 15:18:30 +04:00
. migrate_task_rq = migrate_task_rq_fair ,
2008-10-22 11:25:26 +04:00
2009-11-30 14:16:46 +03:00
. rq_online = rq_online_fair ,
. rq_offline = rq_offline_fair ,
sched: Remove the cfs_rq dependency from set_task_cpu()
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-16 20:04:41 +03:00
. task_waking = task_waking_fair ,
2007-10-24 20:23:51 +04:00
# endif
2007-07-09 20:51:58 +04:00
2007-10-15 19:00:08 +04:00
. set_curr_task = set_curr_task_fair ,
2007-07-09 20:51:58 +04:00
. task_tick = task_tick_fair ,
2009-11-27 19:32:46 +03:00
. task_fork = task_fork_fair ,
2008-01-25 23:08:22 +03:00
. prio_changed = prio_changed_fair ,
2011-01-17 19:03:27 +03:00
. switched_from = switched_from_fair ,
2008-01-25 23:08:22 +03:00
. switched_to = switched_to_fair ,
2008-02-29 23:21:01 +03:00
2009-09-21 05:31:53 +04:00
. get_rr_interval = get_rr_interval_fair ,
2008-02-29 23:21:01 +03:00
# ifdef CONFIG_FAIR_GROUP_SCHED
2010-10-15 17:24:15 +04:00
. task_move_group = task_move_group_fair ,
2008-02-29 23:21:01 +03:00
# endif
2007-07-09 20:51:58 +04:00
} ;
# ifdef CONFIG_SCHED_DEBUG
2011-10-25 12:00:11 +04:00
void print_cfs_stats ( struct seq_file * m , int cpu )
2007-07-09 20:51:58 +04:00
{
struct cfs_rq * cfs_rq ;
2008-01-25 23:08:34 +03:00
rcu_read_lock ( ) ;
2007-08-09 13:16:51 +04:00
for_each_leaf_cfs_rq ( cpu_rq ( cpu ) , cfs_rq )
2007-08-09 13:16:47 +04:00
print_cfs_rq ( m , cpu , cfs_rq ) ;
2008-01-25 23:08:34 +03:00
rcu_read_unlock ( ) ;
2007-07-09 20:51:58 +04:00
}
# endif
2011-10-25 12:00:11 +04:00
__init void init_sched_fair_class ( void )
{
# ifdef CONFIG_SMP
open_softirq ( SCHED_SOFTIRQ , run_rebalance_domains ) ;
# ifdef CONFIG_NO_HZ
2012-03-08 02:44:26 +04:00
nohz . next_balance = jiffies ;
2011-10-25 12:00:11 +04:00
zalloc_cpumask_var ( & nohz . idle_cpus_mask , GFP_NOWAIT ) ;
2012-01-20 06:28:57 +04:00
cpu_notifier ( sched_ilb_notifier , 0 ) ;
2011-10-25 12:00:11 +04:00
# endif
# endif /* SMP */
}