linux/drivers/char/misc.c

292 lines
6.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/drivers/char/misc.c
*
* Generic misc open routine by Johan Myreen
*
* Based on code from Linus
*
* Teemu Rantanen's Microsoft Busmouse support and Derrick Cole's
* changes incorporated into 0.97pl4
* by Peter Cervasio (pete%q106fm.uucp@wupost.wustl.edu) (08SEP92)
* See busmouse.c for particulars.
*
* Made things a lot mode modular - easy to compile in just one or two
* of the misc drivers, as they are now completely independent. Linus.
*
* Support for loadable modules. 8-Sep-95 Philip Blundell <pjb27@cam.ac.uk>
*
* Fixed a failing symbol register to free the device registration
* Alan Cox <alan@lxorguk.ukuu.org.uk> 21-Jan-96
*
* Dynamic minors and /proc/mice by Alessandro Rubini. 26-Mar-96
*
* Renamed to misc and miscdevice to be more accurate. Alan Cox 26-Mar-96
*
* Handling of mouse minor numbers for kerneld:
* Idea by Jacques Gelinas <jack@solucorp.qc.ca>,
* adapted by Bjorn Ekwall <bj0rn@blox.se>
* corrected by Alan Cox <alan@lxorguk.ukuu.org.uk>
*
* Changes for kmod (from kerneld):
* Cyrus Durgin <cider@speakeasy.org>
*
* Added devfs support. Richard Gooch <rgooch@atnf.csiro.au> 10-Jan-1998
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/gfp.h>
/*
* Head entry for the doubly linked miscdevice list
*/
static LIST_HEAD(misc_list);
static DEFINE_MUTEX(misc_mtx);
/*
* Assigned numbers, used for dynamic minors
*/
#define DYNAMIC_MINORS 128 /* like dynamic majors */
static DECLARE_BITMAP(misc_minors, DYNAMIC_MINORS);
#ifdef CONFIG_PROC_FS
static void *misc_seq_start(struct seq_file *seq, loff_t *pos)
{
mutex_lock(&misc_mtx);
return seq_list_start(&misc_list, *pos);
}
static void *misc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
return seq_list_next(v, &misc_list, pos);
}
static void misc_seq_stop(struct seq_file *seq, void *v)
{
mutex_unlock(&misc_mtx);
}
static int misc_seq_show(struct seq_file *seq, void *v)
{
const struct miscdevice *p = list_entry(v, struct miscdevice, list);
seq_printf(seq, "%3i %s\n", p->minor, p->name ? p->name : "");
return 0;
}
static const struct seq_operations misc_seq_ops = {
.start = misc_seq_start,
.next = misc_seq_next,
.stop = misc_seq_stop,
.show = misc_seq_show,
};
#endif
static int misc_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct miscdevice *c;
int err = -ENODEV;
const struct file_operations *new_fops = NULL;
mutex_lock(&misc_mtx);
list_for_each_entry(c, &misc_list, list) {
if (c->minor == minor) {
new_fops = fops_get(c->fops);
break;
}
}
if (!new_fops) {
mutex_unlock(&misc_mtx);
request_module("char-major-%d-%d", MISC_MAJOR, minor);
mutex_lock(&misc_mtx);
list_for_each_entry(c, &misc_list, list) {
if (c->minor == minor) {
new_fops = fops_get(c->fops);
break;
}
}
if (!new_fops)
goto fail;
}
/*
* Place the miscdevice in the file's
* private_data so it can be used by the
* file operations, including f_op->open below
*/
file->private_data = c;
err = 0;
replace_fops(file, new_fops);
if (file->f_op->open)
err = file->f_op->open(inode, file);
fail:
mutex_unlock(&misc_mtx);
return err;
}
static struct class *misc_class;
static const struct file_operations misc_fops = {
.owner = THIS_MODULE,
.open = misc_open,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 18:52:59 +02:00
.llseek = noop_llseek,
};
/**
* misc_register - register a miscellaneous device
* @misc: device structure
*
* Register a miscellaneous device with the kernel. If the minor
* number is set to %MISC_DYNAMIC_MINOR a minor number is assigned
* and placed in the minor field of the structure. For other cases
* the minor number requested is used.
*
* The structure passed is linked into the kernel and may not be
* destroyed until it has been unregistered. By default, an open()
* syscall to the device sets file->private_data to point to the
* structure. Drivers don't need open in fops for this.
*
* A zero is returned on success and a negative errno code for
* failure.
*/
int misc_register(struct miscdevice *misc)
{
dev_t dev;
int err = 0;
bool is_dynamic = (misc->minor == MISC_DYNAMIC_MINOR);
INIT_LIST_HEAD(&misc->list);
mutex_lock(&misc_mtx);
if (is_dynamic) {
int i = find_first_zero_bit(misc_minors, DYNAMIC_MINORS);
if (i >= DYNAMIC_MINORS) {
err = -EBUSY;
goto out;
}
misc->minor = DYNAMIC_MINORS - i - 1;
set_bit(i, misc_minors);
} else {
struct miscdevice *c;
list_for_each_entry(c, &misc_list, list) {
if (c->minor == misc->minor) {
err = -EBUSY;
goto out;
}
}
}
dev = MKDEV(MISC_MAJOR, misc->minor);
misc->this_device =
device_create_with_groups(misc_class, misc->parent, dev,
misc, misc->groups, "%s", misc->name);
if (IS_ERR(misc->this_device)) {
if (is_dynamic) {
int i = DYNAMIC_MINORS - misc->minor - 1;
if (i < DYNAMIC_MINORS && i >= 0)
clear_bit(i, misc_minors);
misc->minor = MISC_DYNAMIC_MINOR;
}
err = PTR_ERR(misc->this_device);
goto out;
}
/*
* Add it to the front, so that later devices can "override"
* earlier defaults
*/
list_add(&misc->list, &misc_list);
out:
mutex_unlock(&misc_mtx);
return err;
}
EXPORT_SYMBOL(misc_register);
/**
* misc_deregister - unregister a miscellaneous device
* @misc: device to unregister
*
* Unregister a miscellaneous device that was previously
* successfully registered with misc_register().
*/
void misc_deregister(struct miscdevice *misc)
{
int i = DYNAMIC_MINORS - misc->minor - 1;
if (WARN_ON(list_empty(&misc->list)))
return;
mutex_lock(&misc_mtx);
list_del(&misc->list);
device_destroy(misc_class, MKDEV(MISC_MAJOR, misc->minor));
if (i < DYNAMIC_MINORS && i >= 0)
clear_bit(i, misc_minors);
mutex_unlock(&misc_mtx);
}
EXPORT_SYMBOL(misc_deregister);
static char *misc_devnode(struct device *dev, umode_t *mode)
{
struct miscdevice *c = dev_get_drvdata(dev);
if (mode && c->mode)
*mode = c->mode;
if (c->nodename)
return kstrdup(c->nodename, GFP_KERNEL);
return NULL;
}
static int __init misc_init(void)
{
int err;
struct proc_dir_entry *ret;
ret = proc_create_seq("misc", 0, NULL, &misc_seq_ops);
misc_class = class_create(THIS_MODULE, "misc");
err = PTR_ERR(misc_class);
if (IS_ERR(misc_class))
goto fail_remove;
err = -EIO;
if (register_chrdev(MISC_MAJOR, "misc", &misc_fops))
goto fail_printk;
misc_class->devnode = misc_devnode;
return 0;
fail_printk:
pr_err("unable to get major %d for misc devices\n", MISC_MAJOR);
class_destroy(misc_class);
fail_remove:
if (ret)
remove_proc_entry("misc", NULL);
return err;
}
subsys_initcall(misc_init);