linux/net/xdp/xskmap.c

282 lines
6.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* XSKMAP used for AF_XDP sockets
* Copyright(c) 2018 Intel Corporation.
*/
#include <linux/bpf.h>
#include <linux/filter.h>
#include <net/xdp_sock.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/btf_ids.h>
#include "xsk.h"
static struct xsk_map_node *xsk_map_node_alloc(struct xsk_map *map,
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
struct xdp_sock __rcu **map_entry)
{
struct xsk_map_node *node;
node = bpf_map_kzalloc(&map->map, sizeof(*node),
GFP_ATOMIC | __GFP_NOWARN);
if (!node)
return ERR_PTR(-ENOMEM);
bpf_map_inc(&map->map);
atomic_inc(&map->count);
node->map = map;
node->map_entry = map_entry;
return node;
}
static void xsk_map_node_free(struct xsk_map_node *node)
{
struct xsk_map *map = node->map;
bpf_map_put(&node->map->map);
kfree(node);
atomic_dec(&map->count);
}
static void xsk_map_sock_add(struct xdp_sock *xs, struct xsk_map_node *node)
{
spin_lock_bh(&xs->map_list_lock);
list_add_tail(&node->node, &xs->map_list);
spin_unlock_bh(&xs->map_list_lock);
}
static void xsk_map_sock_delete(struct xdp_sock *xs,
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
struct xdp_sock __rcu **map_entry)
{
struct xsk_map_node *n, *tmp;
spin_lock_bh(&xs->map_list_lock);
list_for_each_entry_safe(n, tmp, &xs->map_list, node) {
if (map_entry == n->map_entry) {
list_del(&n->node);
xsk_map_node_free(n);
}
}
spin_unlock_bh(&xs->map_list_lock);
}
static struct bpf_map *xsk_map_alloc(union bpf_attr *attr)
{
struct xsk_map *m;
int numa_node;
u64 size;
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 ||
attr->map_flags & ~(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY))
return ERR_PTR(-EINVAL);
numa_node = bpf_map_attr_numa_node(attr);
size = struct_size(m, xsk_map, attr->max_entries);
m = bpf_map_area_alloc(size, numa_node);
if (!m)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&m->map, attr);
spin_lock_init(&m->lock);
return &m->map;
}
static u64 xsk_map_mem_usage(const struct bpf_map *map)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
return struct_size(m, xsk_map, map->max_entries) +
(u64)atomic_read(&m->count) * sizeof(struct xsk_map_node);
}
static void xsk_map_free(struct bpf_map *map)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
synchronize_net();
bpf_map_area_free(m);
}
static int xsk_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
u32 index = key ? *(u32 *)key : U32_MAX;
u32 *next = next_key;
if (index >= m->map.max_entries) {
*next = 0;
return 0;
}
if (index == m->map.max_entries - 1)
return -ENOENT;
*next = index + 1;
return 0;
}
bpf: Allow for map-in-map with dynamic inner array map entries Recent work in f4d05259213f ("bpf: Add map_meta_equal map ops") and 134fede4eecf ("bpf: Relax max_entries check for most of the inner map types") added support for dynamic inner max elements for most map-in-map types. Exceptions were maps like array or prog array where the map_gen_lookup() callback uses the maps' max_entries field as a constant when emitting instructions. We recently implemented Maglev consistent hashing into Cilium's load balancer which uses map-in-map with an outer map being hash and inner being array holding the Maglev backend table for each service. This has been designed this way in order to reduce overall memory consumption given the outer hash map allows to avoid preallocating a large, flat memory area for all services. Also, the number of service mappings is not always known a-priori. The use case for dynamic inner array map entries is to further reduce memory overhead, for example, some services might just have a small number of back ends while others could have a large number. Right now the Maglev backend table for small and large number of backends would need to have the same inner array map entries which adds a lot of unneeded overhead. Dynamic inner array map entries can be realized by avoiding the inlined code generation for their lookup. The lookup will still be efficient since it will be calling into array_map_lookup_elem() directly and thus avoiding retpoline. The patch adds a BPF_F_INNER_MAP flag to map creation which therefore skips inline code generation and relaxes array_map_meta_equal() check to ignore both maps' max_entries. This also still allows to have faster lookups for map-in-map when BPF_F_INNER_MAP is not specified and hence dynamic max_entries not needed. Example code generation where inner map is dynamic sized array: # bpftool p d x i 125 int handle__sys_enter(void * ctx): ; int handle__sys_enter(void *ctx) 0: (b4) w1 = 0 ; int key = 0; 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 ; 3: (07) r2 += -4 ; inner_map = bpf_map_lookup_elem(&outer_arr_dyn, &key); 4: (18) r1 = map[id:468] 6: (07) r1 += 272 7: (61) r0 = *(u32 *)(r2 +0) 8: (35) if r0 >= 0x3 goto pc+5 9: (67) r0 <<= 3 10: (0f) r0 += r1 11: (79) r0 = *(u64 *)(r0 +0) 12: (15) if r0 == 0x0 goto pc+1 13: (05) goto pc+1 14: (b7) r0 = 0 15: (b4) w6 = -1 ; if (!inner_map) 16: (15) if r0 == 0x0 goto pc+6 17: (bf) r2 = r10 ; 18: (07) r2 += -4 ; val = bpf_map_lookup_elem(inner_map, &key); 19: (bf) r1 = r0 | No inlining but instead 20: (85) call array_map_lookup_elem#149280 | call to array_map_lookup_elem() ; return val ? *val : -1; | for inner array lookup. 21: (15) if r0 == 0x0 goto pc+1 ; return val ? *val : -1; 22: (61) r6 = *(u32 *)(r0 +0) ; } 23: (bc) w0 = w6 24: (95) exit Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20201010234006.7075-4-daniel@iogearbox.net
2020-10-11 01:40:03 +02:00
static int xsk_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
{
const int ret = BPF_REG_0, mp = BPF_REG_1, index = BPF_REG_2;
struct bpf_insn *insn = insn_buf;
*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(sizeof(struct xsk_sock *)));
*insn++ = BPF_ALU64_IMM(BPF_ADD, mp, offsetof(struct xsk_map, xsk_map));
*insn++ = BPF_ALU64_REG(BPF_ADD, ret, mp);
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(struct xsk_sock *), ret, ret, 0);
*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
*insn++ = BPF_MOV64_IMM(ret, 0);
return insn - insn_buf;
}
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
* by local_bh_disable() (from XDP calls inside NAPI). The
* rcu_read_lock_bh_held() below makes lockdep accept both.
*/
static void *__xsk_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
if (key >= map->max_entries)
return NULL;
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
return rcu_dereference_check(m->xsk_map[key], rcu_read_lock_bh_held());
}
static void *xsk_map_lookup_elem(struct bpf_map *map, void *key)
{
return __xsk_map_lookup_elem(map, *(u32 *)key);
}
static void *xsk_map_lookup_elem_sys_only(struct bpf_map *map, void *key)
{
return ERR_PTR(-EOPNOTSUPP);
}
bpf: return long from bpf_map_ops funcs This patch changes the return types of bpf_map_ops functions to long, where previously int was returned. Using long allows for bpf programs to maintain the sign bit in the absence of sign extension during situations where inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative error is returned. The definitions of the helper funcs are generated from comments in the bpf uapi header at `include/uapi/linux/bpf.h`. The return type of these helpers was previously changed from int to long in commit bdb7b79b4ce8. For any case where one of the map helpers call the bpf_map_ops funcs that are still returning 32-bit int, a compiler might not include sign extension instructions to properly convert the 32-bit negative value a 64-bit negative value. For example: bpf assembly excerpt of an inlined helper calling a kernel function and checking for a specific error: ; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST); ... 46: call 0xffffffffe103291c ; htab_map_update_elem ; if (err && err != -EEXIST) { 4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax kernel function assembly excerpt of return value from `htab_map_update_elem` returning 32-bit int: movl $0xffffffef, %r9d ... movl %r9d, %eax ...results in the comparison: cmp $0xffffffffffffffef, $0x00000000ffffffef Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long") Tested-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-22 12:47:54 -07:00
static long xsk_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
struct xdp_sock __rcu **map_entry;
struct xdp_sock *xs, *old_xs;
u32 i = *(u32 *)key, fd = *(u32 *)value;
struct xsk_map_node *node;
struct socket *sock;
int err;
if (unlikely(map_flags > BPF_EXIST))
return -EINVAL;
if (unlikely(i >= m->map.max_entries))
return -E2BIG;
sock = sockfd_lookup(fd, &err);
if (!sock)
return err;
if (sock->sk->sk_family != PF_XDP) {
sockfd_put(sock);
return -EOPNOTSUPP;
}
xs = (struct xdp_sock *)sock->sk;
map_entry = &m->xsk_map[i];
node = xsk_map_node_alloc(m, map_entry);
if (IS_ERR(node)) {
sockfd_put(sock);
return PTR_ERR(node);
}
spin_lock_bh(&m->lock);
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
old_xs = rcu_dereference_protected(*map_entry, lockdep_is_held(&m->lock));
if (old_xs == xs) {
err = 0;
goto out;
} else if (old_xs && map_flags == BPF_NOEXIST) {
err = -EEXIST;
goto out;
} else if (!old_xs && map_flags == BPF_EXIST) {
err = -ENOENT;
goto out;
}
xsk_map_sock_add(xs, node);
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
rcu_assign_pointer(*map_entry, xs);
if (old_xs)
xsk_map_sock_delete(old_xs, map_entry);
spin_unlock_bh(&m->lock);
sockfd_put(sock);
return 0;
out:
spin_unlock_bh(&m->lock);
sockfd_put(sock);
xsk_map_node_free(node);
return err;
}
bpf: return long from bpf_map_ops funcs This patch changes the return types of bpf_map_ops functions to long, where previously int was returned. Using long allows for bpf programs to maintain the sign bit in the absence of sign extension during situations where inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative error is returned. The definitions of the helper funcs are generated from comments in the bpf uapi header at `include/uapi/linux/bpf.h`. The return type of these helpers was previously changed from int to long in commit bdb7b79b4ce8. For any case where one of the map helpers call the bpf_map_ops funcs that are still returning 32-bit int, a compiler might not include sign extension instructions to properly convert the 32-bit negative value a 64-bit negative value. For example: bpf assembly excerpt of an inlined helper calling a kernel function and checking for a specific error: ; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST); ... 46: call 0xffffffffe103291c ; htab_map_update_elem ; if (err && err != -EEXIST) { 4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax kernel function assembly excerpt of return value from `htab_map_update_elem` returning 32-bit int: movl $0xffffffef, %r9d ... movl %r9d, %eax ...results in the comparison: cmp $0xffffffffffffffef, $0x00000000ffffffef Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long") Tested-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-22 12:47:54 -07:00
static long xsk_map_delete_elem(struct bpf_map *map, void *key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
struct xdp_sock __rcu **map_entry;
struct xdp_sock *old_xs;
int k = *(u32 *)key;
if (k >= map->max_entries)
return -EINVAL;
spin_lock_bh(&m->lock);
map_entry = &m->xsk_map[k];
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
old_xs = unrcu_pointer(xchg(map_entry, NULL));
if (old_xs)
xsk_map_sock_delete(old_xs, map_entry);
spin_unlock_bh(&m->lock);
return 0;
}
bpf: return long from bpf_map_ops funcs This patch changes the return types of bpf_map_ops functions to long, where previously int was returned. Using long allows for bpf programs to maintain the sign bit in the absence of sign extension during situations where inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative error is returned. The definitions of the helper funcs are generated from comments in the bpf uapi header at `include/uapi/linux/bpf.h`. The return type of these helpers was previously changed from int to long in commit bdb7b79b4ce8. For any case where one of the map helpers call the bpf_map_ops funcs that are still returning 32-bit int, a compiler might not include sign extension instructions to properly convert the 32-bit negative value a 64-bit negative value. For example: bpf assembly excerpt of an inlined helper calling a kernel function and checking for a specific error: ; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST); ... 46: call 0xffffffffe103291c ; htab_map_update_elem ; if (err && err != -EEXIST) { 4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax kernel function assembly excerpt of return value from `htab_map_update_elem` returning 32-bit int: movl $0xffffffef, %r9d ... movl %r9d, %eax ...results in the comparison: cmp $0xffffffffffffffef, $0x00000000ffffffef Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long") Tested-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-22 12:47:54 -07:00
static long xsk_map_redirect(struct bpf_map *map, u64 index, u64 flags)
{
return __bpf_xdp_redirect_map(map, index, flags, 0,
xdp: Extend xdp_redirect_map with broadcast support This patch adds two flags BPF_F_BROADCAST and BPF_F_EXCLUDE_INGRESS to extend xdp_redirect_map for broadcast support. With BPF_F_BROADCAST the packet will be broadcasted to all the interfaces in the map. with BPF_F_EXCLUDE_INGRESS the ingress interface will be excluded when do broadcasting. When getting the devices in dev hash map via dev_map_hash_get_next_key(), there is a possibility that we fall back to the first key when a device was removed. This will duplicate packets on some interfaces. So just walk the whole buckets to avoid this issue. For dev array map, we also walk the whole map to find valid interfaces. Function bpf_clear_redirect_map() was removed in commit ee75aef23afe ("bpf, xdp: Restructure redirect actions"). Add it back as we need to use ri->map again. With test topology: +-------------------+ +-------------------+ | Host A (i40e 10G) | ---------- | eno1(i40e 10G) | +-------------------+ | | | Host B | +-------------------+ | | | Host C (i40e 10G) | ---------- | eno2(i40e 10G) | +-------------------+ | | | +------+ | | veth0 -- | Peer | | | veth1 -- | | | | veth2 -- | NS | | | +------+ | +-------------------+ On Host A: # pktgen/pktgen_sample03_burst_single_flow.sh -i eno1 -d $dst_ip -m $dst_mac -s 64 On Host B(Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 128G Memory): Use xdp_redirect_map and xdp_redirect_map_multi in samples/bpf for testing. All the veth peers in the NS have a XDP_DROP program loaded. The forward_map max_entries in xdp_redirect_map_multi is modify to 4. Testing the performance impact on the regular xdp_redirect path with and without patch (to check impact of additional check for broadcast mode): 5.12 rc4 | redirect_map i40e->i40e | 2.0M | 9.7M 5.12 rc4 | redirect_map i40e->veth | 1.7M | 11.8M 5.12 rc4 + patch | redirect_map i40e->i40e | 2.0M | 9.6M 5.12 rc4 + patch | redirect_map i40e->veth | 1.7M | 11.7M Testing the performance when cloning packets with the redirect_map_multi test, using a redirect map size of 4, filled with 1-3 devices: 5.12 rc4 + patch | redirect_map multi i40e->veth (x1) | 1.7M | 11.4M 5.12 rc4 + patch | redirect_map multi i40e->veth (x2) | 1.1M | 4.3M 5.12 rc4 + patch | redirect_map multi i40e->veth (x3) | 0.8M | 2.6M Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Link: https://lore.kernel.org/bpf/20210519090747.1655268-3-liuhangbin@gmail.com
2021-05-19 17:07:45 +08:00
__xsk_map_lookup_elem);
}
void xsk_map_try_sock_delete(struct xsk_map *map, struct xdp_sock *xs,
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
struct xdp_sock __rcu **map_entry)
{
spin_lock_bh(&map->lock);
xdp: Add proper __rcu annotations to redirect map entries XDP_REDIRECT works by a three-step process: the bpf_redirect() and bpf_redirect_map() helpers will lookup the target of the redirect and store it (along with some other metadata) in a per-CPU struct bpf_redirect_info. Next, when the program returns the XDP_REDIRECT return code, the driver will call xdp_do_redirect() which will use the information thus stored to actually enqueue the frame into a bulk queue structure (that differs slightly by map type, but shares the same principle). Finally, before exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will flush all the different bulk queues, thus completing the redirect. Pointers to the map entries will be kept around for this whole sequence of steps, protected by RCU. However, there is no top-level rcu_read_lock() in the core code; instead drivers add their own rcu_read_lock() around the XDP portions of the code, but somewhat inconsistently as Martin discovered[0]. However, things still work because everything happens inside a single NAPI poll sequence, which means it's between a pair of calls to local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could document this intention by using rcu_dereference_check() with rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and lockdep to verify that everything is done correctly. This patch does just that: we add an __rcu annotation to the map entry pointers and remove the various comments explaining the NAPI poll assurance strewn through devmap.c in favour of a longer explanation in filter.c. The goal is to have one coherent documentation of the entire flow, and rely on the RCU annotations as a "standard" way of communicating the flow in the map code (which can additionally be understood by sparse and lockdep). The RCU annotation replacements result in a fairly straight-forward replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE() becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the proper constructs to cast the pointer back and forth between __rcu and __kernel address space (for the benefit of sparse). The one complication is that xskmap has a few constructions where double-pointers are passed back and forth; these simply all gain __rcu annotations, and only the final reference/dereference to the inner-most pointer gets changed. With this, everything can be run through sparse without eliciting complaints, and lockdep can verify correctness even without the use of rcu_read_lock() in the drivers. Subsequent patches will clean these up from the drivers. [0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/ [1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
2021-06-24 18:05:55 +02:00
if (rcu_access_pointer(*map_entry) == xs) {
rcu_assign_pointer(*map_entry, NULL);
xsk_map_sock_delete(xs, map_entry);
}
spin_unlock_bh(&map->lock);
}
static bool xsk_map_meta_equal(const struct bpf_map *meta0,
const struct bpf_map *meta1)
{
return meta0->max_entries == meta1->max_entries &&
bpf_map_meta_equal(meta0, meta1);
}
BTF_ID_LIST_SINGLE(xsk_map_btf_ids, struct, xsk_map)
const struct bpf_map_ops xsk_map_ops = {
.map_meta_equal = xsk_map_meta_equal,
.map_alloc = xsk_map_alloc,
.map_free = xsk_map_free,
.map_get_next_key = xsk_map_get_next_key,
.map_lookup_elem = xsk_map_lookup_elem,
.map_gen_lookup = xsk_map_gen_lookup,
.map_lookup_elem_sys_only = xsk_map_lookup_elem_sys_only,
.map_update_elem = xsk_map_update_elem,
.map_delete_elem = xsk_map_delete_elem,
.map_check_btf = map_check_no_btf,
.map_mem_usage = xsk_map_mem_usage,
.map_btf_id = &xsk_map_btf_ids[0],
.map_redirect = xsk_map_redirect,
};