linux/fs/autofs/root.c

582 lines
15 KiB
C
Raw Normal View History

/* -*- linux-c -*- --------------------------------------------------------- *
*
* linux/fs/autofs/root.c
*
* Copyright 1997-1998 Transmeta Corporation -- All Rights Reserved
*
* This file is part of the Linux kernel and is made available under
* the terms of the GNU General Public License, version 2, or at your
* option, any later version, incorporated herein by reference.
*
* ------------------------------------------------------------------------- */
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/stat.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/param.h>
#include <linux/time.h>
#include <linux/smp_lock.h>
#include "autofs_i.h"
static int autofs_root_readdir(struct file *,void *,filldir_t);
static struct dentry *autofs_root_lookup(struct inode *,struct dentry *, struct nameidata *);
static int autofs_root_symlink(struct inode *,struct dentry *,const char *);
static int autofs_root_unlink(struct inode *,struct dentry *);
static int autofs_root_rmdir(struct inode *,struct dentry *);
static int autofs_root_mkdir(struct inode *,struct dentry *,int);
static int autofs_root_ioctl(struct inode *, struct file *,unsigned int,unsigned long);
const struct file_operations autofs_root_operations = {
.read = generic_read_dir,
.readdir = autofs_root_readdir,
.ioctl = autofs_root_ioctl,
};
const struct inode_operations autofs_root_inode_operations = {
.lookup = autofs_root_lookup,
.unlink = autofs_root_unlink,
.symlink = autofs_root_symlink,
.mkdir = autofs_root_mkdir,
.rmdir = autofs_root_rmdir,
};
static int autofs_root_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
struct autofs_dir_ent *ent = NULL;
struct autofs_dirhash *dirhash;
struct autofs_sb_info *sbi;
struct inode * inode = filp->f_path.dentry->d_inode;
off_t onr, nr;
lock_kernel();
sbi = autofs_sbi(inode->i_sb);
dirhash = &sbi->dirhash;
nr = filp->f_pos;
switch(nr)
{
case 0:
if (filldir(dirent, ".", 1, nr, inode->i_ino, DT_DIR) < 0)
goto out;
filp->f_pos = ++nr;
/* fall through */
case 1:
if (filldir(dirent, "..", 2, nr, inode->i_ino, DT_DIR) < 0)
goto out;
filp->f_pos = ++nr;
/* fall through */
default:
while (onr = nr, ent = autofs_hash_enum(dirhash,&nr,ent)) {
if (!ent->dentry || d_mountpoint(ent->dentry)) {
if (filldir(dirent,ent->name,ent->len,onr,ent->ino,DT_UNKNOWN) < 0)
goto out;
filp->f_pos = nr;
}
}
break;
}
out:
unlock_kernel();
return 0;
}
static int try_to_fill_dentry(struct dentry *dentry, struct super_block *sb, struct autofs_sb_info *sbi)
{
struct inode * inode;
struct autofs_dir_ent *ent;
int status = 0;
if (!(ent = autofs_hash_lookup(&sbi->dirhash, &dentry->d_name))) {
do {
if (status && dentry->d_inode) {
if (status != -ENOENT)
printk("autofs warning: lookup failure on positive dentry, status = %d, name = %s\n", status, dentry->d_name.name);
return 0; /* Try to get the kernel to invalidate this dentry */
}
/* Turn this into a real negative dentry? */
if (status == -ENOENT) {
dentry->d_time = jiffies + AUTOFS_NEGATIVE_TIMEOUT;
dentry->d_flags &= ~DCACHE_AUTOFS_PENDING;
return 1;
} else if (status) {
/* Return a negative dentry, but leave it "pending" */
return 1;
}
status = autofs_wait(sbi, &dentry->d_name);
} while (!(ent = autofs_hash_lookup(&sbi->dirhash, &dentry->d_name)));
}
/* Abuse this field as a pointer to the directory entry, used to
find the expire list pointers */
dentry->d_time = (unsigned long) ent;
if (!dentry->d_inode) {
inode = autofs_iget(sb, ent->ino);
if (IS_ERR(inode)) {
/* Failed, but leave pending for next time */
return 1;
}
dentry->d_inode = inode;
}
/* If this is a directory that isn't a mount point, bitch at the
daemon and fix it in user space */
if (S_ISDIR(dentry->d_inode->i_mode) && !d_mountpoint(dentry)) {
return !autofs_wait(sbi, &dentry->d_name);
}
/* We don't update the usages for the autofs daemon itself, this
is necessary for recursive autofs mounts */
if (!autofs_oz_mode(sbi)) {
autofs_update_usage(&sbi->dirhash,ent);
}
dentry->d_flags &= ~DCACHE_AUTOFS_PENDING;
return 1;
}
/*
* Revalidate is called on every cache lookup. Some of those
* cache lookups may actually happen while the dentry is not
* yet completely filled in, and revalidate has to delay such
* lookups..
*/
static int autofs_revalidate(struct dentry * dentry, struct nameidata *nd)
{
struct inode * dir;
struct autofs_sb_info *sbi;
struct autofs_dir_ent *ent;
int res;
lock_kernel();
dir = dentry->d_parent->d_inode;
sbi = autofs_sbi(dir->i_sb);
/* Pending dentry */
if (dentry->d_flags & DCACHE_AUTOFS_PENDING) {
if (autofs_oz_mode(sbi))
res = 1;
else
res = try_to_fill_dentry(dentry, dir->i_sb, sbi);
unlock_kernel();
return res;
}
/* Negative dentry.. invalidate if "old" */
if (!dentry->d_inode) {
unlock_kernel();
return (dentry->d_time - jiffies <= AUTOFS_NEGATIVE_TIMEOUT);
}
/* Check for a non-mountpoint directory */
if (S_ISDIR(dentry->d_inode->i_mode) && !d_mountpoint(dentry)) {
if (autofs_oz_mode(sbi))
res = 1;
else
res = try_to_fill_dentry(dentry, dir->i_sb, sbi);
unlock_kernel();
return res;
}
/* Update the usage list */
if (!autofs_oz_mode(sbi)) {
ent = (struct autofs_dir_ent *) dentry->d_time;
if (ent)
autofs_update_usage(&sbi->dirhash,ent);
}
unlock_kernel();
return 1;
}
static const struct dentry_operations autofs_dentry_operations = {
.d_revalidate = autofs_revalidate,
};
static struct dentry *autofs_root_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
struct autofs_sb_info *sbi;
int oz_mode;
DPRINTK(("autofs_root_lookup: name = "));
lock_kernel();
autofs_say(dentry->d_name.name,dentry->d_name.len);
if (dentry->d_name.len > NAME_MAX) {
unlock_kernel();
return ERR_PTR(-ENAMETOOLONG);/* File name too long to exist */
}
sbi = autofs_sbi(dir->i_sb);
oz_mode = autofs_oz_mode(sbi);
DPRINTK(("autofs_lookup: pid = %u, pgrp = %u, catatonic = %d, "
"oz_mode = %d\n", task_pid_nr(current),
task_pgrp_nr(current), sbi->catatonic,
oz_mode));
/*
* Mark the dentry incomplete, but add it. This is needed so
* that the VFS layer knows about the dentry, and we can count
* on catching any lookups through the revalidate.
*
* Let all the hard work be done by the revalidate function that
* needs to be able to do this anyway..
*
* We need to do this before we release the directory semaphore.
*/
dentry->d_op = &autofs_dentry_operations;
dentry->d_flags |= DCACHE_AUTOFS_PENDING;
d_add(dentry, NULL);
mutex_unlock(&dir->i_mutex);
autofs_revalidate(dentry, nd);
mutex_lock(&dir->i_mutex);
/*
* If we are still pending, check if we had to handle
* a signal. If so we can force a restart..
*/
if (dentry->d_flags & DCACHE_AUTOFS_PENDING) {
/* See if we were interrupted */
if (signal_pending(current)) {
sigset_t *sigset = &current->pending.signal;
if (sigismember (sigset, SIGKILL) ||
sigismember (sigset, SIGQUIT) ||
sigismember (sigset, SIGINT)) {
unlock_kernel();
return ERR_PTR(-ERESTARTNOINTR);
}
}
}
unlock_kernel();
/*
* If this dentry is unhashed, then we shouldn't honour this
* lookup even if the dentry is positive. Returning ENOENT here
* doesn't do the right thing for all system calls, but it should
* be OK for the operations we permit from an autofs.
*/
if (dentry->d_inode && d_unhashed(dentry))
return ERR_PTR(-ENOENT);
return NULL;
}
static int autofs_root_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
{
struct autofs_sb_info *sbi = autofs_sbi(dir->i_sb);
struct autofs_dirhash *dh = &sbi->dirhash;
struct autofs_dir_ent *ent;
unsigned int n;
int slsize;
struct autofs_symlink *sl;
struct inode *inode;
DPRINTK(("autofs_root_symlink: %s <- ", symname));
autofs_say(dentry->d_name.name,dentry->d_name.len);
lock_kernel();
if (!autofs_oz_mode(sbi)) {
unlock_kernel();
return -EACCES;
}
if (autofs_hash_lookup(dh, &dentry->d_name)) {
unlock_kernel();
return -EEXIST;
}
n = find_first_zero_bit(sbi->symlink_bitmap,AUTOFS_MAX_SYMLINKS);
if (n >= AUTOFS_MAX_SYMLINKS) {
unlock_kernel();
return -ENOSPC;
}
set_bit(n,sbi->symlink_bitmap);
sl = &sbi->symlink[n];
sl->len = strlen(symname);
sl->data = kmalloc(slsize = sl->len+1, GFP_KERNEL);
if (!sl->data) {
clear_bit(n,sbi->symlink_bitmap);
unlock_kernel();
return -ENOSPC;
}
ent = kmalloc(sizeof(struct autofs_dir_ent), GFP_KERNEL);
if (!ent) {
kfree(sl->data);
clear_bit(n,sbi->symlink_bitmap);
unlock_kernel();
return -ENOSPC;
}
ent->name = kmalloc(dentry->d_name.len+1, GFP_KERNEL);
if (!ent->name) {
kfree(sl->data);
kfree(ent);
clear_bit(n,sbi->symlink_bitmap);
unlock_kernel();
return -ENOSPC;
}
memcpy(sl->data,symname,slsize);
sl->mtime = get_seconds();
ent->ino = AUTOFS_FIRST_SYMLINK + n;
ent->hash = dentry->d_name.hash;
memcpy(ent->name, dentry->d_name.name, 1+(ent->len = dentry->d_name.len));
ent->dentry = NULL; /* We don't keep the dentry for symlinks */
autofs_hash_insert(dh,ent);
inode = autofs_iget(dir->i_sb, ent->ino);
if (IS_ERR(inode))
return PTR_ERR(inode);
d_instantiate(dentry, inode);
unlock_kernel();
return 0;
}
/*
* NOTE!
*
* Normal filesystems would do a "d_delete()" to tell the VFS dcache
* that the file no longer exists. However, doing that means that the
* VFS layer can turn the dentry into a negative dentry, which we
* obviously do not want (we're dropping the entry not because it
* doesn't exist, but because it has timed out).
*
* Also see autofs_root_rmdir()..
*/
static int autofs_root_unlink(struct inode *dir, struct dentry *dentry)
{
struct autofs_sb_info *sbi = autofs_sbi(dir->i_sb);
struct autofs_dirhash *dh = &sbi->dirhash;
struct autofs_dir_ent *ent;
unsigned int n;
/* This allows root to remove symlinks */
lock_kernel();
if (!autofs_oz_mode(sbi) && !capable(CAP_SYS_ADMIN)) {
unlock_kernel();
return -EACCES;
}
ent = autofs_hash_lookup(dh, &dentry->d_name);
if (!ent) {
unlock_kernel();
return -ENOENT;
}
n = ent->ino - AUTOFS_FIRST_SYMLINK;
if (n >= AUTOFS_MAX_SYMLINKS) {
unlock_kernel();
return -EISDIR; /* It's a directory, dummy */
}
if (!test_bit(n,sbi->symlink_bitmap)) {
unlock_kernel();
return -EINVAL; /* Nonexistent symlink? Shouldn't happen */
}
dentry->d_time = (unsigned long)(struct autofs_dirhash *)NULL;
autofs_hash_delete(ent);
clear_bit(n,sbi->symlink_bitmap);
kfree(sbi->symlink[n].data);
d_drop(dentry);
unlock_kernel();
return 0;
}
static int autofs_root_rmdir(struct inode *dir, struct dentry *dentry)
{
struct autofs_sb_info *sbi = autofs_sbi(dir->i_sb);
struct autofs_dirhash *dh = &sbi->dirhash;
struct autofs_dir_ent *ent;
lock_kernel();
if (!autofs_oz_mode(sbi)) {
unlock_kernel();
return -EACCES;
}
ent = autofs_hash_lookup(dh, &dentry->d_name);
if (!ent) {
unlock_kernel();
return -ENOENT;
}
if ((unsigned int)ent->ino < AUTOFS_FIRST_DIR_INO) {
unlock_kernel();
return -ENOTDIR; /* Not a directory */
}
if (ent->dentry != dentry) {
printk("autofs_rmdir: odentry != dentry for entry %s\n", dentry->d_name.name);
}
dentry->d_time = (unsigned long)(struct autofs_dir_ent *)NULL;
autofs_hash_delete(ent);
drop_nlink(dir);
d_drop(dentry);
unlock_kernel();
return 0;
}
static int autofs_root_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
struct autofs_sb_info *sbi = autofs_sbi(dir->i_sb);
struct autofs_dirhash *dh = &sbi->dirhash;
struct autofs_dir_ent *ent;
struct inode *inode;
ino_t ino;
lock_kernel();
if (!autofs_oz_mode(sbi)) {
unlock_kernel();
return -EACCES;
}
ent = autofs_hash_lookup(dh, &dentry->d_name);
if (ent) {
unlock_kernel();
return -EEXIST;
}
if (sbi->next_dir_ino < AUTOFS_FIRST_DIR_INO) {
printk("autofs: Out of inode numbers -- what the heck did you do??\n");
unlock_kernel();
return -ENOSPC;
}
ino = sbi->next_dir_ino++;
ent = kmalloc(sizeof(struct autofs_dir_ent), GFP_KERNEL);
if (!ent) {
unlock_kernel();
return -ENOSPC;
}
ent->name = kmalloc(dentry->d_name.len+1, GFP_KERNEL);
if (!ent->name) {
kfree(ent);
unlock_kernel();
return -ENOSPC;
}
ent->hash = dentry->d_name.hash;
memcpy(ent->name, dentry->d_name.name, 1+(ent->len = dentry->d_name.len));
ent->ino = ino;
ent->dentry = dentry;
autofs_hash_insert(dh,ent);
inc_nlink(dir);
inode = autofs_iget(dir->i_sb, ino);
if (IS_ERR(inode)) {
drop_nlink(dir);
return PTR_ERR(inode);
}
d_instantiate(dentry, inode);
unlock_kernel();
return 0;
}
/* Get/set timeout ioctl() operation */
static inline int autofs_get_set_timeout(struct autofs_sb_info *sbi,
unsigned long __user *p)
{
unsigned long ntimeout;
if (get_user(ntimeout, p) ||
put_user(sbi->exp_timeout / HZ, p))
return -EFAULT;
if (ntimeout > ULONG_MAX/HZ)
sbi->exp_timeout = 0;
else
sbi->exp_timeout = ntimeout * HZ;
return 0;
}
/* Return protocol version */
static inline int autofs_get_protover(int __user *p)
{
return put_user(AUTOFS_PROTO_VERSION, p);
}
/* Perform an expiry operation */
static inline int autofs_expire_run(struct super_block *sb,
struct autofs_sb_info *sbi,
struct vfsmount *mnt,
struct autofs_packet_expire __user *pkt_p)
{
struct autofs_dir_ent *ent;
struct autofs_packet_expire pkt;
memset(&pkt,0,sizeof pkt);
pkt.hdr.proto_version = AUTOFS_PROTO_VERSION;
pkt.hdr.type = autofs_ptype_expire;
if (!sbi->exp_timeout || !(ent = autofs_expire(sb,sbi,mnt)))
return -EAGAIN;
pkt.len = ent->len;
memcpy(pkt.name, ent->name, pkt.len);
pkt.name[pkt.len] = '\0';
if (copy_to_user(pkt_p, &pkt, sizeof(struct autofs_packet_expire)))
return -EFAULT;
return 0;
}
/*
* ioctl()'s on the root directory is the chief method for the daemon to
* generate kernel reactions
*/
static int autofs_root_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct autofs_sb_info *sbi = autofs_sbi(inode->i_sb);
void __user *argp = (void __user *)arg;
DPRINTK(("autofs_ioctl: cmd = 0x%08x, arg = 0x%08lx, sbi = %p, pgrp = %u\n",cmd,arg,sbi,task_pgrp_nr(current)));
if (_IOC_TYPE(cmd) != _IOC_TYPE(AUTOFS_IOC_FIRST) ||
_IOC_NR(cmd) - _IOC_NR(AUTOFS_IOC_FIRST) >= AUTOFS_IOC_COUNT)
return -ENOTTY;
if (!autofs_oz_mode(sbi) && !capable(CAP_SYS_ADMIN))
return -EPERM;
switch(cmd) {
case AUTOFS_IOC_READY: /* Wait queue: go ahead and retry */
return autofs_wait_release(sbi,(autofs_wqt_t)arg,0);
case AUTOFS_IOC_FAIL: /* Wait queue: fail with ENOENT */
return autofs_wait_release(sbi,(autofs_wqt_t)arg,-ENOENT);
case AUTOFS_IOC_CATATONIC: /* Enter catatonic mode (daemon shutdown) */
autofs_catatonic_mode(sbi);
return 0;
case AUTOFS_IOC_PROTOVER: /* Get protocol version */
return autofs_get_protover(argp);
case AUTOFS_IOC_SETTIMEOUT:
return autofs_get_set_timeout(sbi, argp);
case AUTOFS_IOC_EXPIRE:
return autofs_expire_run(inode->i_sb, sbi, filp->f_path.mnt,
argp);
default:
return -ENOSYS;
}
}