linux/fs/nfs/direct.c

731 lines
20 KiB
C
Raw Normal View History

/*
* linux/fs/nfs/direct.c
*
* Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
*
* High-performance uncached I/O for the Linux NFS client
*
* There are important applications whose performance or correctness
* depends on uncached access to file data. Database clusters
* (multiple copies of the same instance running on separate hosts)
* implement their own cache coherency protocol that subsumes file
* system cache protocols. Applications that process datasets
* considerably larger than the client's memory do not always benefit
* from a local cache. A streaming video server, for instance, has no
* need to cache the contents of a file.
*
* When an application requests uncached I/O, all read and write requests
* are made directly to the server; data stored or fetched via these
* requests is not cached in the Linux page cache. The client does not
* correct unaligned requests from applications. All requested bytes are
* held on permanent storage before a direct write system call returns to
* an application.
*
* Solaris implements an uncached I/O facility called directio() that
* is used for backups and sequential I/O to very large files. Solaris
* also supports uncaching whole NFS partitions with "-o forcedirectio,"
* an undocumented mount option.
*
* Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
* help from Andrew Morton.
*
* 18 Dec 2001 Initial implementation for 2.4 --cel
* 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
* 08 Jun 2003 Port to 2.5 APIs --cel
* 31 Mar 2004 Handle direct I/O without VFS support --cel
* 15 Sep 2004 Parallel async reads --cel
* 04 May 2005 support O_DIRECT with aio --cel
*
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/smp_lock.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/kref.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/sunrpc/clnt.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>
#include "iostat.h"
#define NFSDBG_FACILITY NFSDBG_VFS
#define MAX_DIRECTIO_SIZE (4096UL << PAGE_SHIFT)
[PATCH] NFS: Fix a potential panic in O_DIRECT Based on an original patch by Mike O'Connor and Greg Banks of SGI. Mike states: A normal user can panic an NFS client and cause a local DoS with 'judicious'(?) use of O_DIRECT. Any O_DIRECT write to an NFS file where the user buffer starts with a valid mapped page and contains an unmapped page, will crash in this way. I haven't followed the code, but O_DIRECT reads with similar user buffers will probably also crash albeit in different ways. Details: when nfs_get_user_pages() calls get_user_pages(), it detects and correctly handles get_user_pages() returning an error, which happens if the first page covered by the user buffer's address range is unmapped. However, if the first page is mapped but some subsequent page isn't, get_user_pages() will return a positive number which is less than the number of pages requested (this behaviour is sort of analagous to a short write() call and appears to be intentional). nfs_get_user_pages() doesn't detect this and hands off the array of pages (whose last few elements are random rubbish from the newly allocated array memory) to it's caller, whence they go to nfs_direct_write_seg(), which then totally ignores the nr_pages it's given, and calculates its own idea of how many pages are in the array from the user buffer length. Needless to say, when it comes to transmit those uninitialised page* pointers, we see a crash in the network stack. Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-14 08:20:46 +03:00
static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
static kmem_cache_t *nfs_direct_cachep;
/*
* This represents a set of asynchronous requests that we're waiting on
*/
struct nfs_direct_req {
struct kref kref; /* release manager */
struct list_head list; /* nfs_read/write_data structs */
struct file * filp; /* file descriptor */
struct kiocb * iocb; /* controlling i/o request */
wait_queue_head_t wait; /* wait for i/o completion */
struct inode * inode; /* target file of i/o */
struct page ** pages; /* pages in our buffer */
unsigned int npages; /* count of pages */
atomic_t complete, /* i/os we're waiting for */
count, /* bytes actually processed */
error; /* any reported error */
};
/**
* nfs_direct_IO - NFS address space operation for direct I/O
* @rw: direction (read or write)
* @iocb: target I/O control block
* @iov: array of vectors that define I/O buffer
* @pos: offset in file to begin the operation
* @nr_segs: size of iovec array
*
* The presence of this routine in the address space ops vector means
* the NFS client supports direct I/O. However, we shunt off direct
* read and write requests before the VFS gets them, so this method
* should never be called.
*/
ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
{
struct dentry *dentry = iocb->ki_filp->f_dentry;
dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
dentry->d_name.name, (long long) pos, nr_segs);
return -EINVAL;
}
static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
{
int result = -ENOMEM;
unsigned long page_count;
size_t array_size;
/* set an arbitrary limit to prevent type overflow */
if (size > MAX_DIRECTIO_SIZE) {
*pages = NULL;
return -EFBIG;
}
page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
page_count -= user_addr >> PAGE_SHIFT;
array_size = (page_count * sizeof(struct page *));
*pages = kmalloc(array_size, GFP_KERNEL);
if (*pages) {
down_read(&current->mm->mmap_sem);
result = get_user_pages(current, current->mm, user_addr,
page_count, (rw == READ), 0,
*pages, NULL);
up_read(&current->mm->mmap_sem);
[PATCH] NFS: Fix a potential panic in O_DIRECT Based on an original patch by Mike O'Connor and Greg Banks of SGI. Mike states: A normal user can panic an NFS client and cause a local DoS with 'judicious'(?) use of O_DIRECT. Any O_DIRECT write to an NFS file where the user buffer starts with a valid mapped page and contains an unmapped page, will crash in this way. I haven't followed the code, but O_DIRECT reads with similar user buffers will probably also crash albeit in different ways. Details: when nfs_get_user_pages() calls get_user_pages(), it detects and correctly handles get_user_pages() returning an error, which happens if the first page covered by the user buffer's address range is unmapped. However, if the first page is mapped but some subsequent page isn't, get_user_pages() will return a positive number which is less than the number of pages requested (this behaviour is sort of analagous to a short write() call and appears to be intentional). nfs_get_user_pages() doesn't detect this and hands off the array of pages (whose last few elements are random rubbish from the newly allocated array memory) to it's caller, whence they go to nfs_direct_write_seg(), which then totally ignores the nr_pages it's given, and calculates its own idea of how many pages are in the array from the user buffer length. Needless to say, when it comes to transmit those uninitialised page* pointers, we see a crash in the network stack. Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-14 08:20:46 +03:00
/*
* If we got fewer pages than expected from get_user_pages(),
* the user buffer runs off the end of a mapping; return EFAULT.
*/
if (result >= 0 && result < page_count) {
nfs_free_user_pages(*pages, result, 0);
*pages = NULL;
result = -EFAULT;
}
}
return result;
}
static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
{
int i;
for (i = 0; i < npages; i++) {
struct page *page = pages[i];
if (do_dirty && !PageCompound(page))
set_page_dirty_lock(page);
page_cache_release(page);
}
kfree(pages);
}
static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
{
struct nfs_direct_req *dreq;
dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
if (!dreq)
return NULL;
kref_init(&dreq->kref);
init_waitqueue_head(&dreq->wait);
INIT_LIST_HEAD(&dreq->list);
dreq->iocb = NULL;
atomic_set(&dreq->count, 0);
atomic_set(&dreq->error, 0);
return dreq;
}
static void nfs_direct_req_release(struct kref *kref)
{
struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
kmem_cache_free(nfs_direct_cachep, dreq);
}
/*
* Collects and returns the final error value/byte-count.
*/
static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
{
int result = -EIOCBQUEUED;
/* Async requests don't wait here */
if (dreq->iocb)
goto out;
result = wait_event_interruptible(dreq->wait,
(atomic_read(&dreq->complete) == 0));
if (!result)
result = atomic_read(&dreq->error);
if (!result)
result = atomic_read(&dreq->count);
out:
kref_put(&dreq->kref, nfs_direct_req_release);
return (ssize_t) result;
}
/*
* We must hold a reference to all the pages in this direct read request
* until the RPCs complete. This could be long *after* we are woken up in
* nfs_direct_wait (for instance, if someone hits ^C on a slow server).
*
* In addition, synchronous I/O uses a stack-allocated iocb. Thus we
* can't trust the iocb is still valid here if this is a synchronous
* request. If the waiter is woken prematurely, the iocb is long gone.
*/
static void nfs_direct_complete(struct nfs_direct_req *dreq)
{
nfs_free_user_pages(dreq->pages, dreq->npages, 1);
if (dreq->iocb) {
long res = atomic_read(&dreq->error);
if (!res)
res = atomic_read(&dreq->count);
aio_complete(dreq->iocb, res, 0);
} else
wake_up(&dreq->wait);
kref_put(&dreq->kref, nfs_direct_req_release);
}
/*
* Note we also set the number of requests we have in the dreq when we are
* done. This prevents races with I/O completion so we will always wait
* until all requests have been dispatched and completed.
*/
static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
{
struct list_head *list;
struct nfs_direct_req *dreq;
unsigned int reads = 0;
unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
dreq = nfs_direct_req_alloc();
if (!dreq)
return NULL;
list = &dreq->list;
for(;;) {
struct nfs_read_data *data = nfs_readdata_alloc(rpages);
if (unlikely(!data)) {
while (!list_empty(list)) {
data = list_entry(list->next,
struct nfs_read_data, pages);
list_del(&data->pages);
nfs_readdata_free(data);
}
kref_put(&dreq->kref, nfs_direct_req_release);
return NULL;
}
INIT_LIST_HEAD(&data->pages);
list_add(&data->pages, list);
data->req = (struct nfs_page *) dreq;
reads++;
if (nbytes <= rsize)
break;
nbytes -= rsize;
}
kref_get(&dreq->kref);
atomic_set(&dreq->complete, reads);
return dreq;
}
static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
{
struct nfs_read_data *data = calldata;
struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
if (nfs_readpage_result(task, data) != 0)
return;
if (likely(task->tk_status >= 0))
atomic_add(data->res.count, &dreq->count);
else
atomic_set(&dreq->error, task->tk_status);
if (unlikely(atomic_dec_and_test(&dreq->complete)))
nfs_direct_complete(dreq);
}
static const struct rpc_call_ops nfs_read_direct_ops = {
.rpc_call_done = nfs_direct_read_result,
.rpc_release = nfs_readdata_release,
};
/*
* For each nfs_read_data struct that was allocated on the list, dispatch
* an NFS READ operation
*/
static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos)
{
struct file *file = dreq->filp;
struct inode *inode = file->f_mapping->host;
struct nfs_open_context *ctx = (struct nfs_open_context *)
file->private_data;
struct list_head *list = &dreq->list;
struct page **pages = dreq->pages;
size_t rsize = NFS_SERVER(inode)->rsize;
unsigned int curpage, pgbase;
curpage = 0;
pgbase = user_addr & ~PAGE_MASK;
do {
struct nfs_read_data *data;
size_t bytes;
bytes = rsize;
if (count < rsize)
bytes = count;
data = list_entry(list->next, struct nfs_read_data, pages);
list_del_init(&data->pages);
data->inode = inode;
data->cred = ctx->cred;
data->args.fh = NFS_FH(inode);
data->args.context = ctx;
data->args.offset = pos;
data->args.pgbase = pgbase;
data->args.pages = &pages[curpage];
data->args.count = bytes;
data->res.fattr = &data->fattr;
data->res.eof = 0;
data->res.count = bytes;
rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
&nfs_read_direct_ops, data);
NFS_PROTO(inode)->read_setup(data);
data->task.tk_cookie = (unsigned long) inode;
lock_kernel();
rpc_execute(&data->task);
unlock_kernel();
dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
data->task.tk_pid,
inode->i_sb->s_id,
(long long)NFS_FILEID(inode),
bytes,
(unsigned long long)data->args.offset);
pos += bytes;
pgbase += bytes;
curpage += pgbase >> PAGE_SHIFT;
pgbase &= ~PAGE_MASK;
count -= bytes;
} while (count != 0);
}
static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages)
{
ssize_t result;
sigset_t oldset;
struct inode *inode = iocb->ki_filp->f_mapping->host;
struct rpc_clnt *clnt = NFS_CLIENT(inode);
struct nfs_direct_req *dreq;
dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
if (!dreq)
return -ENOMEM;
dreq->pages = pages;
dreq->npages = nr_pages;
dreq->inode = inode;
dreq->filp = iocb->ki_filp;
if (!is_sync_kiocb(iocb))
dreq->iocb = iocb;
nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
rpc_clnt_sigmask(clnt, &oldset);
nfs_direct_read_schedule(dreq, user_addr, count, pos);
result = nfs_direct_wait(dreq);
rpc_clnt_sigunmask(clnt, &oldset);
return result;
}
static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
{
struct list_head *list;
struct nfs_direct_req *dreq;
unsigned int writes = 0;
unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
dreq = nfs_direct_req_alloc();
if (!dreq)
return NULL;
list = &dreq->list;
for(;;) {
struct nfs_write_data *data = nfs_writedata_alloc(wpages);
if (unlikely(!data)) {
while (!list_empty(list)) {
data = list_entry(list->next,
struct nfs_write_data, pages);
list_del(&data->pages);
nfs_writedata_free(data);
}
kref_put(&dreq->kref, nfs_direct_req_release);
return NULL;
}
INIT_LIST_HEAD(&data->pages);
list_add(&data->pages, list);
data->req = (struct nfs_page *) dreq;
writes++;
if (nbytes <= wsize)
break;
nbytes -= wsize;
}
kref_get(&dreq->kref);
atomic_set(&dreq->complete, writes);
return dreq;
}
static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
{
struct nfs_write_data *data = calldata;
struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
int status = task->tk_status;
if (nfs_writeback_done(task, data) != 0)
return;
/* If the server fell back to an UNSTABLE write, it's an error. */
if (unlikely(data->res.verf->committed != NFS_FILE_SYNC))
status = -EIO;
if (likely(status >= 0))
atomic_add(data->res.count, &dreq->count);
else
atomic_set(&dreq->error, status);
if (unlikely(atomic_dec_and_test(&dreq->complete))) {
nfs_end_data_update(data->inode);
nfs_direct_complete(dreq);
}
}
static const struct rpc_call_ops nfs_write_direct_ops = {
.rpc_call_done = nfs_direct_write_result,
.rpc_release = nfs_writedata_release,
};
/*
* For each nfs_write_data struct that was allocated on the list, dispatch
* an NFS WRITE operation
*
* XXX: For now, support only FILE_SYNC writes. Later we may add
* support for UNSTABLE + COMMIT.
*/
static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos)
{
struct file *file = dreq->filp;
struct inode *inode = file->f_mapping->host;
struct nfs_open_context *ctx = (struct nfs_open_context *)
file->private_data;
struct list_head *list = &dreq->list;
struct page **pages = dreq->pages;
size_t wsize = NFS_SERVER(inode)->wsize;
unsigned int curpage, pgbase;
curpage = 0;
pgbase = user_addr & ~PAGE_MASK;
do {
struct nfs_write_data *data;
size_t bytes;
bytes = wsize;
if (count < wsize)
bytes = count;
data = list_entry(list->next, struct nfs_write_data, pages);
list_del_init(&data->pages);
data->inode = inode;
data->cred = ctx->cred;
data->args.fh = NFS_FH(inode);
data->args.context = ctx;
data->args.offset = pos;
data->args.pgbase = pgbase;
data->args.pages = &pages[curpage];
data->args.count = bytes;
data->res.fattr = &data->fattr;
data->res.count = bytes;
data->res.verf = &data->verf;
rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
&nfs_write_direct_ops, data);
NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
data->task.tk_priority = RPC_PRIORITY_NORMAL;
data->task.tk_cookie = (unsigned long) inode;
lock_kernel();
rpc_execute(&data->task);
unlock_kernel();
dfprintk(VFS, "NFS: %4d initiated direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
data->task.tk_pid,
inode->i_sb->s_id,
(long long)NFS_FILEID(inode),
bytes,
(unsigned long long)data->args.offset);
pos += bytes;
pgbase += bytes;
curpage += pgbase >> PAGE_SHIFT;
pgbase &= ~PAGE_MASK;
count -= bytes;
} while (count != 0);
}
static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages)
{
ssize_t result;
sigset_t oldset;
struct inode *inode = iocb->ki_filp->f_mapping->host;
struct rpc_clnt *clnt = NFS_CLIENT(inode);
struct nfs_direct_req *dreq;
dreq = nfs_direct_write_alloc(count, NFS_SERVER(inode)->wsize);
if (!dreq)
return -ENOMEM;
dreq->pages = pages;
dreq->npages = nr_pages;
dreq->inode = inode;
dreq->filp = iocb->ki_filp;
if (!is_sync_kiocb(iocb))
dreq->iocb = iocb;
nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
nfs_begin_data_update(inode);
rpc_clnt_sigmask(clnt, &oldset);
nfs_direct_write_schedule(dreq, user_addr, count, pos);
result = nfs_direct_wait(dreq);
rpc_clnt_sigunmask(clnt, &oldset);
return result;
}
/**
* nfs_file_direct_read - file direct read operation for NFS files
* @iocb: target I/O control block
* @buf: user's buffer into which to read data
* @count: number of bytes to read
* @pos: byte offset in file where reading starts
*
* We use this function for direct reads instead of calling
* generic_file_aio_read() in order to avoid gfar's check to see if
* the request starts before the end of the file. For that check
* to work, we must generate a GETATTR before each direct read, and
* even then there is a window between the GETATTR and the subsequent
* READ where the file size could change. Our preference is simply
* to do all reads the application wants, and the server will take
* care of managing the end of file boundary.
*
* This function also eliminates unnecessarily updating the file's
* atime locally, as the NFS server sets the file's atime, and this
* client must read the updated atime from the server back into its
* cache.
*/
ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
{
ssize_t retval = -EINVAL;
int page_count;
struct page **pages;
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
file->f_dentry->d_parent->d_name.name,
file->f_dentry->d_name.name,
(unsigned long) count, (long long) pos);
if (count < 0)
goto out;
retval = -EFAULT;
if (!access_ok(VERIFY_WRITE, buf, count))
goto out;
retval = 0;
if (!count)
goto out;
retval = nfs_sync_mapping(mapping);
if (retval)
goto out;
page_count = nfs_get_user_pages(READ, (unsigned long) buf,
count, &pages);
if (page_count < 0) {
nfs_free_user_pages(pages, 0, 0);
retval = page_count;
goto out;
}
retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
pages, page_count);
if (retval > 0)
iocb->ki_pos = pos + retval;
out:
return retval;
}
/**
* nfs_file_direct_write - file direct write operation for NFS files
* @iocb: target I/O control block
* @buf: user's buffer from which to write data
* @count: number of bytes to write
* @pos: byte offset in file where writing starts
*
* We use this function for direct writes instead of calling
* generic_file_aio_write() in order to avoid taking the inode
* semaphore and updating the i_size. The NFS server will set
* the new i_size and this client must read the updated size
* back into its cache. We let the server do generic write
* parameter checking and report problems.
*
* We also avoid an unnecessary invocation of generic_osync_inode(),
* as it is fairly meaningless to sync the metadata of an NFS file.
*
* We eliminate local atime updates, see direct read above.
*
* We avoid unnecessary page cache invalidations for normal cached
* readers of this file.
*
* Note that O_APPEND is not supported for NFS direct writes, as there
* is no atomic O_APPEND write facility in the NFS protocol.
*/
ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
{
ssize_t retval;
int page_count;
struct page **pages;
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
file->f_dentry->d_parent->d_name.name,
file->f_dentry->d_name.name,
(unsigned long) count, (long long) pos);
retval = generic_write_checks(file, &pos, &count, 0);
if (retval)
goto out;
retval = -EINVAL;
if ((ssize_t) count < 0)
goto out;
retval = 0;
if (!count)
goto out;
retval = -EFAULT;
if (!access_ok(VERIFY_READ, buf, count))
goto out;
retval = nfs_sync_mapping(mapping);
if (retval)
goto out;
page_count = nfs_get_user_pages(WRITE, (unsigned long) buf,
count, &pages);
if (page_count < 0) {
nfs_free_user_pages(pages, 0, 0);
retval = page_count;
goto out;
}
retval = nfs_direct_write(iocb, (unsigned long) buf, count,
pos, pages, page_count);
/*
* XXX: nfs_end_data_update() already ensures this file's
* cached data is subsequently invalidated. Do we really
* need to call invalidate_inode_pages2() again here?
*
* For aio writes, this invalidation will almost certainly
* occur before the writes complete. Kind of racey.
*/
if (mapping->nrpages)
invalidate_inode_pages2(mapping);
if (retval > 0)
iocb->ki_pos = pos + retval;
out:
return retval;
}
/**
* nfs_init_directcache - create a slab cache for nfs_direct_req structures
*
*/
int nfs_init_directcache(void)
{
nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
sizeof(struct nfs_direct_req),
0, SLAB_RECLAIM_ACCOUNT,
NULL, NULL);
if (nfs_direct_cachep == NULL)
return -ENOMEM;
return 0;
}
/**
* nfs_init_directcache - destroy the slab cache for nfs_direct_req structures
*
*/
void nfs_destroy_directcache(void)
{
if (kmem_cache_destroy(nfs_direct_cachep))
printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
}