96 lines
2.9 KiB
C
Raw Normal View History

iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef BME680_H_
#define BME680_H_
#define BME680_REG_CHIP_I2C_ID 0xD0
#define BME680_REG_CHIP_SPI_ID 0x50
#define BME680_CHIP_ID_VAL 0x61
iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
#define BME680_REG_SOFT_RESET_I2C 0xE0
#define BME680_REG_SOFT_RESET_SPI 0x60
#define BME680_CMD_SOFTRESET 0xB6
iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
#define BME680_REG_STATUS 0x73
#define BME680_SPI_MEM_PAGE_BIT BIT(4)
#define BME680_SPI_MEM_PAGE_1_VAL 1
#define BME680_REG_TEMP_MSB 0x22
#define BME680_REG_PRESS_MSB 0x1F
#define BM6880_REG_HUMIDITY_MSB 0x25
#define BME680_REG_GAS_MSB 0x2A
#define BME680_REG_GAS_R_LSB 0x2B
#define BME680_GAS_STAB_BIT BIT(4)
#define BME680_GAS_RANGE_MASK GENMASK(3, 0)
iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
#define BME680_REG_CTRL_HUMIDITY 0x72
#define BME680_OSRS_HUMIDITY_MASK GENMASK(2, 0)
#define BME680_REG_CTRL_MEAS 0x74
#define BME680_OSRS_TEMP_MASK GENMASK(7, 5)
#define BME680_OSRS_PRESS_MASK GENMASK(4, 2)
#define BME680_MODE_MASK GENMASK(1, 0)
#define BME680_MODE_FORCED 1
#define BME680_MODE_SLEEP 0
iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
#define BME680_REG_CONFIG 0x75
#define BME680_FILTER_MASK GENMASK(4, 2)
#define BME680_FILTER_COEFF_VAL BIT(1)
/* TEMP/PRESS/HUMID reading skipped */
#define BME680_MEAS_SKIPPED 0x8000
#define BME680_MAX_OVERFLOW_VAL 0x40000000
#define BME680_HUM_REG_SHIFT_VAL 4
#define BME680_BIT_H1_DATA_MASK GENMASK(3, 0)
iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
#define BME680_REG_RES_HEAT_RANGE 0x02
#define BME680_RHRANGE_MASK GENMASK(5, 4)
iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
#define BME680_REG_RES_HEAT_VAL 0x00
#define BME680_REG_RANGE_SW_ERR 0x04
#define BME680_RSERROR_MASK GENMASK(7, 4)
iio: chemical: Add support for Bosch BME680 sensor Bosch BME680 is a 4-in-1 sensor with temperature, pressure, humidity and gas sensing capability. It supports both I2C and SPI communication protocol for effective data communication. The device supports two modes: 1. Sleep mode 2. Forced mode The measurements only takes place when forced mode is triggered and a single TPHG cycle is performed by the sensor. The sensor automatically goes to sleep after afterwards. The device has various calibration constants/parameters programmed into devices' non-volatile memory(NVM) during production and can't be altered by the user. These constants are used in the compensation functions to get the required compensated readings along with the raw data. The compensation functions/algorithms are provided by Bosch Sensortec GmbH via their API[1]. As these don't change during the measurement cycle, therefore we read and store them at the probe. The default configs supplied by Bosch are also set at probe. 0-day tested with build success. GSoC-2018: https://summerofcode.withgoogle.com/projects/#6691473790074880 Mentor: Daniel Baluta [1] https://github.com/BoschSensortec/BME680_driver Datasheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf Note from Jonathan: The compensation functions are 'interesting' and could do with a tidy up in future. However, they work so we can leave that for another day. Cc: Daniel Baluta <daniel.baluta@nxp.com> Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-07-26 17:05:10 +05:30
#define BME680_REG_RES_HEAT_0 0x5A
#define BME680_REG_GAS_WAIT_0 0x64
#define BME680_ADC_GAS_RES_SHIFT 6
#define BME680_AMB_TEMP 25
#define BME680_REG_CTRL_GAS_1 0x71
#define BME680_RUN_GAS_MASK BIT(4)
#define BME680_NB_CONV_MASK GENMASK(3, 0)
#define BME680_RUN_GAS_EN_BIT BIT(4)
#define BME680_NB_CONV_0_VAL 0
#define BME680_REG_MEAS_STAT_0 0x1D
#define BME680_GAS_MEAS_BIT BIT(6)
/* Calibration Parameters */
#define BME680_T2_LSB_REG 0x8A
#define BME680_T3_REG 0x8C
#define BME680_P1_LSB_REG 0x8E
#define BME680_P2_LSB_REG 0x90
#define BME680_P3_REG 0x92
#define BME680_P4_LSB_REG 0x94
#define BME680_P5_LSB_REG 0x96
#define BME680_P7_REG 0x98
#define BME680_P6_REG 0x99
#define BME680_P8_LSB_REG 0x9C
#define BME680_P9_LSB_REG 0x9E
#define BME680_P10_REG 0xA0
#define BME680_H2_LSB_REG 0xE2
#define BME680_H2_MSB_REG 0xE1
#define BME680_H1_MSB_REG 0xE3
#define BME680_H1_LSB_REG 0xE2
#define BME680_H3_REG 0xE4
#define BME680_H4_REG 0xE5
#define BME680_H5_REG 0xE6
#define BME680_H6_REG 0xE7
#define BME680_H7_REG 0xE8
#define BME680_T1_LSB_REG 0xE9
#define BME680_GH2_LSB_REG 0xEB
#define BME680_GH1_REG 0xED
#define BME680_GH3_REG 0xEE
extern const struct regmap_config bme680_regmap_config;
int bme680_core_probe(struct device *dev, struct regmap *regmap,
const char *name);
#endif /* BME680_H_ */