2019-10-18 13:50:53 +09:00
/* SPDX-License-Identifier: GPL-2.0-only */
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# ifndef __ASM_GENERIC_EXPORT_H
# define __ASM_GENERIC_EXPORT_H
# ifndef KSYM_FUNC
# define KSYM_FUNC(x) x
# endif
export: explicitly align struct kernel_symbol
This change allows growing struct kernel_symbol without wasting bytes to
alignment. It also concretized the alignment of ksymtab entries if
relative references are used for ksymtab entries.
struct kernel_symbol was already implicitly being aligned to the word
size, except on x86_64 and m68k, where it is aligned to 16 and 2 bytes,
respectively.
As far as I can tell there is no requirement for aligning struct
kernel_symbol to 16 bytes on x86_64, but gcc aligns structs to their
size, and the linker aligns the custom __ksymtab sections to the largest
data type contained within, so setting KSYM_ALIGN to 16 was necessary to
stay consistent with the code generated for non-ASM EXPORT_SYMBOL(). Now
that non-ASM EXPORT_SYMBOL() explicitly aligns to word size (8),
KSYM_ALIGN is no longer necessary.
In case of relative references, the alignment has been changed
accordingly to not waste space when adding new struct members.
As for m68k, struct kernel_symbol is aligned to 2 bytes even though the
structure itself is 8 bytes; using a 4-byte alignment shouldn't hurt.
I manually verified the output of the __ksymtab sections didn't change
on x86, x86_64, arm, arm64 and m68k. As expected, the section contents
didn't change, and the ELF section alignment only changed on x86_64 and
m68k. Feedback from other archs more than welcome.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 11:32:26 +01:00
# ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
# define KSYM_ALIGN 4
# elif defined(CONFIG_64BIT)
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# define KSYM_ALIGN 8
# else
# define KSYM_ALIGN 4
# endif
# ifndef KCRC_ALIGN
# define KCRC_ALIGN 4
# endif
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-21 21:56:09 -07:00
. macro __put , val , name
# ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
2019-09-11 13:26:46 +01:00
. long \ val - . , \ name - . , 0
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-21 21:56:09 -07:00
# elif defined(CONFIG_64BIT)
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 11:32:27 +01:00
. quad \ val , \ name , 0
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-21 21:56:09 -07:00
# else
module: add support for symbol namespaces.
The EXPORT_SYMBOL_NS() and EXPORT_SYMBOL_NS_GPL() macros can be used to
export a symbol to a specific namespace. There are no _GPL_FUTURE and
_UNUSED variants because these are currently unused, and I'm not sure
they are necessary.
I didn't add EXPORT_SYMBOL_NS() for ASM exports; this patch sets the
namespace of ASM exports to NULL by default. In case of relative
references, it will be relocatable to NULL. If there's a need, this
should be pretty easy to add.
A module that wants to use a symbol exported to a namespace must add a
MODULE_IMPORT_NS() statement to their module code; otherwise, modpost
will complain when building the module, and the kernel module loader
will emit an error and fail when loading the module.
MODULE_IMPORT_NS() adds a modinfo tag 'import_ns' to the module. That
tag can be observed by the modinfo command, modpost and kernel/module.c
at the time of loading the module.
The ELF symbols are renamed to include the namespace with an asm label;
for example, symbol 'usb_stor_suspend' in namespace USB_STORAGE becomes
'usb_stor_suspend.USB_STORAGE'. This allows modpost to do namespace
checking, without having to go through all the effort of parsing ELF and
relocation records just to get to the struct kernel_symbols.
On x86_64 I saw no difference in binary size (compression), but at
runtime this will require a word of memory per export to hold the
namespace. An alternative could be to store namespaced symbols in their
own section and use a separate 'struct namespaced_kernel_symbol' for
that section, at the cost of making the module loader more complex.
Co-developed-by: Martijn Coenen <maco@android.com>
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-09-06 11:32:27 +01:00
. long \ val , \ name , 0
module: use relative references for __ksymtab entries
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-21 21:56:09 -07:00
# endif
. endm
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
/*
export.h: reduce __ksymtab_strings string duplication by using "MS" section flags
Commit c3a6cf19e695 ("export: avoid code duplication in
include/linux/export.h") refactors export.h quite nicely, but introduces
a slight increase in memory usage due to using the empty string ""
instead of NULL to indicate that an exported symbol has no namespace. As
mentioned in that commit, this meant an increase of 1 byte per exported
symbol without a namespace. For example, if a kernel configuration has
about 10k exported symbols, this would mean that the size of
__ksymtab_strings would increase by roughly 10kB.
We can alleviate this situation by utilizing the SHF_MERGE and
SHF_STRING section flags. SHF_MERGE|SHF_STRING indicate to the linker
that the data in the section are null-terminated strings that can be
merged to eliminate duplication. More specifically, from the binutils
documentation - "for sections with both M and S, a string which is a
suffix of a larger string is considered a duplicate. Thus "def" will be
merged with "abcdef"; A reference to the first "def" will be changed to
a reference to "abcdef"+3". Thus, all the empty strings would be merged
as well as any strings that can be merged according to the cited method
above. For example, "memset" and "__memset" would be merged to just
"__memset" in __ksymtab_strings.
As of v5.4-rc5, the following statistics were gathered with x86
defconfig with approximately 10.7k exported symbols.
Size of __ksymtab_strings in vmlinux:
-------------------------------------
v5.4-rc5: 213834 bytes
v5.4-rc5 with commit c3a6cf19e695: 224455 bytes
v5.4-rc5 with this patch: 205759 bytes
So, we already see memory savings of ~8kB compared to vanilla -rc5 and
savings of nearly 18.7kB compared to -rc5 with commit c3a6cf19e695 on top.
Unfortunately, as of this writing, strings will not get deduplicated for
kernel modules, as ld does not do the deduplication for
SHF_MERGE|SHF_STRINGS sections for relocatable files (ld -r), which
kernel modules are. A patch for ld is currently being worked on to
hopefully allow for string deduplication in relocatable files in the
future.
Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-11-12 12:35:59 +01:00
* note on . section use : we specify progbits since usage of the " M " ( SHF_MERGE )
* section flag requires it . Use ' % progbits ' instead of ' @ progbits ' since the
* former apparently works on all arches according to the binutils source .
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
*/
export.h: reduce __ksymtab_strings string duplication by using "MS" section flags
Commit c3a6cf19e695 ("export: avoid code duplication in
include/linux/export.h") refactors export.h quite nicely, but introduces
a slight increase in memory usage due to using the empty string ""
instead of NULL to indicate that an exported symbol has no namespace. As
mentioned in that commit, this meant an increase of 1 byte per exported
symbol without a namespace. For example, if a kernel configuration has
about 10k exported symbols, this would mean that the size of
__ksymtab_strings would increase by roughly 10kB.
We can alleviate this situation by utilizing the SHF_MERGE and
SHF_STRING section flags. SHF_MERGE|SHF_STRING indicate to the linker
that the data in the section are null-terminated strings that can be
merged to eliminate duplication. More specifically, from the binutils
documentation - "for sections with both M and S, a string which is a
suffix of a larger string is considered a duplicate. Thus "def" will be
merged with "abcdef"; A reference to the first "def" will be changed to
a reference to "abcdef"+3". Thus, all the empty strings would be merged
as well as any strings that can be merged according to the cited method
above. For example, "memset" and "__memset" would be merged to just
"__memset" in __ksymtab_strings.
As of v5.4-rc5, the following statistics were gathered with x86
defconfig with approximately 10.7k exported symbols.
Size of __ksymtab_strings in vmlinux:
-------------------------------------
v5.4-rc5: 213834 bytes
v5.4-rc5 with commit c3a6cf19e695: 224455 bytes
v5.4-rc5 with this patch: 205759 bytes
So, we already see memory savings of ~8kB compared to vanilla -rc5 and
savings of nearly 18.7kB compared to -rc5 with commit c3a6cf19e695 on top.
Unfortunately, as of this writing, strings will not get deduplicated for
kernel modules, as ld does not do the deduplication for
SHF_MERGE|SHF_STRINGS sections for relocatable files (ld -r), which
kernel modules are. A patch for ld is currently being worked on to
hopefully allow for string deduplication in relocatable files in the
future.
Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-11-12 12:35:59 +01:00
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
. macro ___EXPORT_SYMBOL name , val , sec
2021-02-03 14:19:30 +00:00
# if defined(CONFIG_MODULES) && !defined(__DISABLE_EXPORTS)
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
. section ___ksymtab \ sec + \ name , " a "
. balign KSYM_ALIGN
2018-05-09 16:23:49 +09:00
__ksymtab_ \ name :
__put \ val , __kstrtab_ \ name
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
. previous
export.h: reduce __ksymtab_strings string duplication by using "MS" section flags
Commit c3a6cf19e695 ("export: avoid code duplication in
include/linux/export.h") refactors export.h quite nicely, but introduces
a slight increase in memory usage due to using the empty string ""
instead of NULL to indicate that an exported symbol has no namespace. As
mentioned in that commit, this meant an increase of 1 byte per exported
symbol without a namespace. For example, if a kernel configuration has
about 10k exported symbols, this would mean that the size of
__ksymtab_strings would increase by roughly 10kB.
We can alleviate this situation by utilizing the SHF_MERGE and
SHF_STRING section flags. SHF_MERGE|SHF_STRING indicate to the linker
that the data in the section are null-terminated strings that can be
merged to eliminate duplication. More specifically, from the binutils
documentation - "for sections with both M and S, a string which is a
suffix of a larger string is considered a duplicate. Thus "def" will be
merged with "abcdef"; A reference to the first "def" will be changed to
a reference to "abcdef"+3". Thus, all the empty strings would be merged
as well as any strings that can be merged according to the cited method
above. For example, "memset" and "__memset" would be merged to just
"__memset" in __ksymtab_strings.
As of v5.4-rc5, the following statistics were gathered with x86
defconfig with approximately 10.7k exported symbols.
Size of __ksymtab_strings in vmlinux:
-------------------------------------
v5.4-rc5: 213834 bytes
v5.4-rc5 with commit c3a6cf19e695: 224455 bytes
v5.4-rc5 with this patch: 205759 bytes
So, we already see memory savings of ~8kB compared to vanilla -rc5 and
savings of nearly 18.7kB compared to -rc5 with commit c3a6cf19e695 on top.
Unfortunately, as of this writing, strings will not get deduplicated for
kernel modules, as ld does not do the deduplication for
SHF_MERGE|SHF_STRINGS sections for relocatable files (ld -r), which
kernel modules are. A patch for ld is currently being worked on to
hopefully allow for string deduplication in relocatable files in the
future.
Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-11-12 12:35:59 +01:00
. section __ksymtab_strings , " aMS " , % progbits , 1
2018-05-09 16:23:49 +09:00
__kstrtab_ \ name :
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
. asciz " \n ame "
. previous
# ifdef CONFIG_MODVERSIONS
. section ___kcrctab \ sec + \ name , " a "
. balign KCRC_ALIGN
modversions: treat symbol CRCs as 32 bit quantities
The modversion symbol CRCs are emitted as ELF symbols, which allows us
to easily populate the kcrctab sections by relying on the linker to
associate each kcrctab slot with the correct value.
This has a couple of downsides:
- Given that the CRCs are treated as memory addresses, we waste 4 bytes
for each CRC on 64 bit architectures,
- On architectures that support runtime relocation, a R_<arch>_RELATIVE
relocation entry is emitted for each CRC value, which identifies it
as a quantity that requires fixing up based on the actual runtime
load offset of the kernel. This results in corrupted CRCs unless we
explicitly undo the fixup (and this is currently being handled in the
core module code)
- Such runtime relocation entries take up 24 bytes of __init space
each, resulting in a x8 overhead in [uncompressed] kernel size for
CRCs.
Switching to explicit 32 bit values on 64 bit architectures fixes most
of these issues, given that 32 bit values are not treated as quantities
that require fixing up based on the actual runtime load offset. Note
that on some ELF64 architectures [such as PPC64], these 32-bit values
are still emitted as [absolute] runtime relocatable quantities, even if
the value resolves to a build time constant. Since relative relocations
are always resolved at build time, this patch enables MODULE_REL_CRCS on
powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC
references into relative references into .rodata where the actual CRC
value is stored.
So redefine all CRC fields and variables as u32, and redefine the
__CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using
inline assembler (which is necessary since 64-bit C code cannot use
32-bit types to hold memory addresses, even if they are ultimately
resolved using values that do not exceed 0xffffffff). To avoid
potential problems with legacy 32-bit architectures using legacy
toolchains, the equivalent C definition of the kcrctab entry is retained
for 32-bit architectures.
Note that this mostly reverts commit d4703aefdbc8 ("module: handle ppc64
relocating kcrctabs when CONFIG_RELOCATABLE=y")
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 09:54:06 +00:00
# if defined(CONFIG_MODULE_REL_CRCS)
2018-05-09 16:23:49 +09:00
. long __crc_ \ name - .
modversions: treat symbol CRCs as 32 bit quantities
The modversion symbol CRCs are emitted as ELF symbols, which allows us
to easily populate the kcrctab sections by relying on the linker to
associate each kcrctab slot with the correct value.
This has a couple of downsides:
- Given that the CRCs are treated as memory addresses, we waste 4 bytes
for each CRC on 64 bit architectures,
- On architectures that support runtime relocation, a R_<arch>_RELATIVE
relocation entry is emitted for each CRC value, which identifies it
as a quantity that requires fixing up based on the actual runtime
load offset of the kernel. This results in corrupted CRCs unless we
explicitly undo the fixup (and this is currently being handled in the
core module code)
- Such runtime relocation entries take up 24 bytes of __init space
each, resulting in a x8 overhead in [uncompressed] kernel size for
CRCs.
Switching to explicit 32 bit values on 64 bit architectures fixes most
of these issues, given that 32 bit values are not treated as quantities
that require fixing up based on the actual runtime load offset. Note
that on some ELF64 architectures [such as PPC64], these 32-bit values
are still emitted as [absolute] runtime relocatable quantities, even if
the value resolves to a build time constant. Since relative relocations
are always resolved at build time, this patch enables MODULE_REL_CRCS on
powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC
references into relative references into .rodata where the actual CRC
value is stored.
So redefine all CRC fields and variables as u32, and redefine the
__CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using
inline assembler (which is necessary since 64-bit C code cannot use
32-bit types to hold memory addresses, even if they are ultimately
resolved using values that do not exceed 0xffffffff). To avoid
potential problems with legacy 32-bit architectures using legacy
toolchains, the equivalent C definition of the kcrctab entry is retained
for 32-bit architectures.
Note that this mostly reverts commit d4703aefdbc8 ("module: handle ppc64
relocating kcrctabs when CONFIG_RELOCATABLE=y")
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 09:54:06 +00:00
# else
2018-05-09 16:23:49 +09:00
. long __crc_ \ name
modversions: treat symbol CRCs as 32 bit quantities
The modversion symbol CRCs are emitted as ELF symbols, which allows us
to easily populate the kcrctab sections by relying on the linker to
associate each kcrctab slot with the correct value.
This has a couple of downsides:
- Given that the CRCs are treated as memory addresses, we waste 4 bytes
for each CRC on 64 bit architectures,
- On architectures that support runtime relocation, a R_<arch>_RELATIVE
relocation entry is emitted for each CRC value, which identifies it
as a quantity that requires fixing up based on the actual runtime
load offset of the kernel. This results in corrupted CRCs unless we
explicitly undo the fixup (and this is currently being handled in the
core module code)
- Such runtime relocation entries take up 24 bytes of __init space
each, resulting in a x8 overhead in [uncompressed] kernel size for
CRCs.
Switching to explicit 32 bit values on 64 bit architectures fixes most
of these issues, given that 32 bit values are not treated as quantities
that require fixing up based on the actual runtime load offset. Note
that on some ELF64 architectures [such as PPC64], these 32-bit values
are still emitted as [absolute] runtime relocatable quantities, even if
the value resolves to a build time constant. Since relative relocations
are always resolved at build time, this patch enables MODULE_REL_CRCS on
powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC
references into relative references into .rodata where the actual CRC
value is stored.
So redefine all CRC fields and variables as u32, and redefine the
__CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using
inline assembler (which is necessary since 64-bit C code cannot use
32-bit types to hold memory addresses, even if they are ultimately
resolved using values that do not exceed 0xffffffff). To avoid
potential problems with legacy 32-bit architectures using legacy
toolchains, the equivalent C definition of the kcrctab entry is retained
for 32-bit architectures.
Note that this mostly reverts commit d4703aefdbc8 ("module: handle ppc64
relocating kcrctabs when CONFIG_RELOCATABLE=y")
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 09:54:06 +00:00
# endif
2018-05-09 16:23:49 +09:00
. weak __crc_ \ name
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
. previous
# endif
# endif
. endm
2018-11-30 10:05:26 +09:00
# if defined(CONFIG_TRIM_UNUSED_KSYMS)
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# include <linux/kconfig.h>
# include <generated/autoksyms.h>
2018-11-30 10:05:26 +09:00
. macro __ksym_marker sym
. section " .discard.ksym " , " a "
__ksym_marker_ \ sym :
. previous
. endm
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# define __EXPORT_SYMBOL(sym, val, sec) \
2018-11-30 10:05:26 +09:00
__ksym_marker sym ; \
kconfig.h: remove config_enabled() macro
The use of config_enabled() is ambiguous. For config options,
IS_ENABLED(), IS_REACHABLE(), etc. will make intention clearer.
Sometimes config_enabled() has been used for non-config options because
it is useful to check whether the given symbol is defined or not.
I have been tackling on deprecating config_enabled(), and now is the
time to finish this work.
Some new users have appeared for v4.9-rc1, but it is trivial to replace
them:
- arch/x86/mm/kaslr.c
replace config_enabled() with IS_ENABLED() because
CONFIG_X86_ESPFIX64 and CONFIG_EFI are boolean.
- include/asm-generic/export.h
replace config_enabled() with __is_defined().
Then, config_enabled() can be removed now.
Going forward, please use IS_ENABLED(), IS_REACHABLE(), etc. for config
options, and __is_defined() for non-config symbols.
Link: http://lkml.kernel.org/r/1476616078-32252-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michal Marek <mmarek@suse.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 17:46:38 -07:00
__cond_export_sym ( sym , val , sec , __is_defined ( __KSYM_ # # sym ) )
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# define __cond_export_sym(sym, val, sec, conf) \
___cond_export_sym ( sym , val , sec , conf )
# define ___cond_export_sym(sym, val, sec, enabled) \
__cond_export_sym_ # # enabled ( sym , val , sec )
# define __cond_export_sym_1(sym, val, sec) ___EXPORT_SYMBOL sym, val, sec
# define __cond_export_sym_0(sym, val, sec) /* nothing */
# else
# define __EXPORT_SYMBOL(sym, val, sec) ___EXPORT_SYMBOL sym, val, sec
# endif
# define EXPORT_SYMBOL(name) \
2018-05-09 16:23:49 +09:00
__EXPORT_SYMBOL ( name , KSYM_FUNC ( name ) , )
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# define EXPORT_SYMBOL_GPL(name) \
2018-05-09 16:23:49 +09:00
__EXPORT_SYMBOL ( name , KSYM_FUNC ( name ) , _gpl )
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# define EXPORT_DATA_SYMBOL(name) \
2018-05-09 16:23:49 +09:00
__EXPORT_SYMBOL ( name , name , )
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# define EXPORT_DATA_SYMBOL_GPL(name) \
2018-05-09 16:23:49 +09:00
__EXPORT_SYMBOL ( name , name , _gpl )
EXPORT_SYMBOL() for asm
Add asm-usable variants of EXPORT_SYMBOL/EXPORT_SYMBOL_GPL. This
commit just adds the default implementation; most of the architectures
can simply add export.h to asm/Kbuild and start using <asm/export.h>
from assembler. The rest needs to have their <asm/export.h> define
everal macros and then explicitly include <asm-generic/export.h>
One area where the things might diverge from default is the alignment;
normally it's 8 bytes on 64bit targets and 4 on 32bit ones, both for
unsigned long and for struct kernel_symbol. Unfortunately, amd64 and
m68k are unusual - m68k aligns to 2 bytes (for both) and amd64 aligns
struct kernel_symbol to 16 bytes. For those we'll need asm/export.h to
override the constants used by generic version - KSYM_ALIGN and KCRC_ALIGN
for kernel_symbol and unsigned long resp. And no, __alignof__ would not
do the trick - on amd64 __alignof__ of struct kernel_symbol is 8, not 16.
More serious source of unpleasantness is treatment of function
descriptors on architectures that have those. Things like ppc64,
parisc, ia64, etc. need more than the address of the first insn to
call an arbitrary function. As the result, their representation of
pointers to functions is not the typical "address of the entry point" -
it's an address of a small static structure containing all the required
information (including the entry point, of course). Sadly, the asm-side
conventions differ in what the function name refers to - entry point or
the function descriptor. On ppc64 we do the latter;
bar: .quad foo
is what void (*bar)(void) = foo; turns into and the rare places where
we need to explicitly work with the label of entry point are dealt with
as DOTSYM(foo). For our purposes it's ideal - generic macros are usable.
However, parisc would have foo and P%foo used for label of entry point
and address of the function descriptor and
bar: .long P%foo
woudl be used instead. ia64 goes similar to parisc in that respect,
except that there it's @fptr(foo) rather than P%foo. Such architectures
need to define KSYM_FUNC that would turn a function name into whatever
is needed to refer to function descriptor.
What's more, on such architectures we need to know whether we are exporting
a function or an object - in assembler we have to tell that explicitly, to
decide whether we want EXPORT_SYMBOL(foo) produce e.g.
__ksymtab_foo: .quad foo
or
__ksymtab_foo: .quad @fptr(foo)
For that reason we introduce EXPORT_DATA_SYMBOL{,_GPL}(), to be used for
exports of data objects. On normal architectures it's the same thing
as EXPORT_SYMBOL{,_GPL}(), but on parisc-like ones they differ and the
right one needs to be used. Most of the exports are functions, so we
keep EXPORT_SYMBOL for those...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-11 10:54:54 -05:00
# endif