2017-11-14 18:38:01 +01:00
// SPDX-License-Identifier: GPL-2.0+
2006-09-20 15:58:32 +02:00
/*
2018-10-04 15:30:24 +02:00
* Copyright IBM Corp . 2001 , 2018
2006-09-20 15:58:32 +02:00
* Author ( s ) : Robert Burroughs
* Eric Rossman ( edrossma @ us . ibm . com )
*
* Hotplug & misc device support : Jochen Roehrig ( roehrig @ de . ibm . com )
* Major cleanup & driver split : Martin Schwidefsky < schwidefsky @ de . ibm . com >
* Ralph Wuerthner < rwuerthn @ de . ibm . com >
2012-08-28 16:45:36 +02:00
* MSGTYPE restruct : Holger Dengler < hd @ linux . vnet . ibm . com >
2006-09-20 15:58:32 +02:00
*/
# include <linux/module.h>
# include <linux/init.h>
# include <linux/err.h>
# include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
# include <linux/slab.h>
2011-07-26 16:09:06 -07:00
# include <linux/atomic.h>
2016-12-24 11:46:01 -08:00
# include <linux/uaccess.h>
2016-08-25 11:16:03 +02:00
# include <linux/mod_devicetable.h>
2006-09-20 15:58:32 +02:00
# include "ap_bus.h"
# include "zcrypt_api.h"
# include "zcrypt_error.h"
2012-08-28 16:45:36 +02:00
# include "zcrypt_msgtype6.h"
2018-10-04 15:30:24 +02:00
# include "zcrypt_cex2c.h"
2006-09-20 15:58:32 +02:00
# include "zcrypt_cca_key.h"
2018-10-04 15:30:24 +02:00
# define CEX2C_MIN_MOD_SIZE 16 /* 128 bits */
# define CEX2C_MAX_MOD_SIZE 256 /* 2048 bits */
# define CEX3C_MIN_MOD_SIZE 16 /* 128 bits */
2011-01-05 12:47:46 +01:00
# define CEX3C_MAX_MOD_SIZE 512 /* 4096 bits */
2018-10-04 15:30:24 +02:00
# define CEX2C_MAX_XCRB_MESSAGE_SIZE (12*1024)
# define CEX2C_CLEANUP_TIME (15*HZ)
2006-09-20 15:58:36 +02:00
2006-09-20 15:58:32 +02:00
MODULE_AUTHOR ( " IBM Corporation " ) ;
2018-10-04 15:30:24 +02:00
MODULE_DESCRIPTION ( " CEX2C/CEX3C Cryptographic Coprocessor device driver, " \
" Copyright IBM Corp. 2001, 2018 " ) ;
2006-09-20 15:58:32 +02:00
MODULE_LICENSE ( " GPL " ) ;
2018-10-04 15:30:24 +02:00
static struct ap_device_id zcrypt_cex2c_card_ids [ ] = {
2016-08-25 11:16:03 +02:00
{ . dev_type = AP_DEVICE_TYPE_CEX2C ,
. match_flags = AP_DEVICE_ID_MATCH_CARD_TYPE } ,
{ . dev_type = AP_DEVICE_TYPE_CEX3C ,
. match_flags = AP_DEVICE_ID_MATCH_CARD_TYPE } ,
{ /* end of list */ } ,
2006-09-20 15:58:32 +02:00
} ;
2018-10-04 15:30:24 +02:00
MODULE_DEVICE_TABLE ( ap , zcrypt_cex2c_card_ids ) ;
2006-09-20 15:58:32 +02:00
2018-10-04 15:30:24 +02:00
static struct ap_device_id zcrypt_cex2c_queue_ids [ ] = {
2016-08-25 11:16:03 +02:00
{ . dev_type = AP_DEVICE_TYPE_CEX2C ,
. match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE } ,
{ . dev_type = AP_DEVICE_TYPE_CEX3C ,
. match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE } ,
{ /* end of list */ } ,
} ;
2006-09-20 15:58:32 +02:00
2018-10-04 15:30:24 +02:00
MODULE_DEVICE_TABLE ( ap , zcrypt_cex2c_queue_ids ) ;
2006-09-20 15:58:32 +02:00
2008-04-17 07:46:15 +02:00
/**
2018-10-04 15:30:24 +02:00
* Large random number detection function . Its sends a message to a CEX2C / CEX3C
2008-04-17 07:46:15 +02:00
* card to find out if large random numbers are supported .
* @ ap_dev : pointer to the AP device .
*
* Returns 1 if large random numbers are supported , 0 if not and < 0 on error .
*/
2018-10-04 15:30:24 +02:00
static int zcrypt_cex2c_rng_supported ( struct ap_queue * aq )
2008-04-17 07:46:15 +02:00
{
struct ap_message ap_msg ;
unsigned long long psmid ;
2016-08-25 11:16:03 +02:00
unsigned int domain ;
2008-04-17 07:46:15 +02:00
struct {
struct type86_hdr hdr ;
struct type86_fmt2_ext fmt2 ;
struct CPRBX cprbx ;
2018-08-17 12:36:01 +02:00
} __packed * reply ;
2016-08-25 11:14:15 +02:00
struct {
struct type6_hdr hdr ;
struct CPRBX cprbx ;
char function_code [ 2 ] ;
short int rule_length ;
char rule [ 8 ] ;
short int verb_length ;
short int key_length ;
2018-08-17 12:36:01 +02:00
} __packed * msg ;
2008-04-17 07:46:15 +02:00
int rc , i ;
2009-12-07 12:51:54 +01:00
ap_init_message ( & ap_msg ) ;
2008-04-17 07:46:15 +02:00
ap_msg . message = ( void * ) get_zeroed_page ( GFP_KERNEL ) ;
if ( ! ap_msg . message )
return - ENOMEM ;
2016-08-25 11:16:03 +02:00
rng_type6CPRB_msgX ( & ap_msg , 4 , & domain ) ;
2016-08-25 11:14:15 +02:00
msg = ap_msg . message ;
2016-08-25 11:16:03 +02:00
msg - > cprbx . domain = AP_QID_QUEUE ( aq - > qid ) ;
2016-08-25 11:14:15 +02:00
2016-08-25 11:16:03 +02:00
rc = ap_send ( aq - > qid , 0x0102030405060708ULL , ap_msg . message ,
2008-04-17 07:46:15 +02:00
ap_msg . length ) ;
if ( rc )
goto out_free ;
/* Wait for the test message to complete. */
for ( i = 0 ; i < 2 * HZ ; i + + ) {
msleep ( 1000 / HZ ) ;
2016-08-25 11:16:03 +02:00
rc = ap_recv ( aq - > qid , & psmid , ap_msg . message , 4096 ) ;
2008-04-17 07:46:15 +02:00
if ( rc = = 0 & & psmid = = 0x0102030405060708ULL )
break ;
}
if ( i > = 2 * HZ ) {
/* Got no answer. */
rc = - ENODEV ;
goto out_free ;
}
reply = ap_msg . message ;
if ( reply - > cprbx . ccp_rtcode = = 0 & & reply - > cprbx . ccp_rscode = = 0 )
rc = 1 ;
else
rc = 0 ;
out_free :
free_page ( ( unsigned long ) ap_msg . message ) ;
return rc ;
}
2006-09-20 15:58:32 +02:00
/**
2018-10-04 15:30:24 +02:00
* Probe function for CEX2C / CEX3C card devices . It always accepts the
* AP device since the bus_match already checked the hardware type .
2016-08-25 11:16:03 +02:00
* @ ap_dev : pointer to the AP card device .
2006-09-20 15:58:32 +02:00
*/
2018-10-04 15:30:24 +02:00
static int zcrypt_cex2c_card_probe ( struct ap_device * ap_dev )
2006-09-20 15:58:32 +02:00
{
2016-08-25 11:14:15 +02:00
/*
* Normalized speed ratings per crypto adapter
* MEX_1k , MEX_2k , MEX_4k , CRT_1k , CRT_2k , CRT_4k , RNG , SECKEY
*/
2016-08-25 11:16:03 +02:00
static const int CEX2C_SPEED_IDX [ ] = {
1000 , 1400 , 2400 , 1100 , 1500 , 2600 , 100 , 12 } ;
static const int CEX3C_SPEED_IDX [ ] = {
500 , 700 , 1400 , 550 , 800 , 1500 , 80 , 10 } ;
struct ap_card * ac = to_ap_card ( & ap_dev - > device ) ;
struct zcrypt_card * zc ;
2009-12-07 12:51:57 +01:00
int rc = 0 ;
2006-09-20 15:58:32 +02:00
2016-08-25 11:16:03 +02:00
zc = zcrypt_card_alloc ( ) ;
if ( ! zc )
2006-09-20 15:58:32 +02:00
return - ENOMEM ;
2016-08-25 11:16:03 +02:00
zc - > card = ac ;
ac - > private = zc ;
switch ( ac - > ap_dev . device_type ) {
2009-12-07 12:51:57 +01:00
case AP_DEVICE_TYPE_CEX2C :
2016-08-25 11:16:03 +02:00
zc - > user_space_type = ZCRYPT_CEX2C ;
zc - > type_string = " CEX2C " ;
memcpy ( zc - > speed_rating , CEX2C_SPEED_IDX ,
2016-08-25 11:14:15 +02:00
sizeof ( CEX2C_SPEED_IDX ) ) ;
2018-10-04 15:30:24 +02:00
zc - > min_mod_size = CEX2C_MIN_MOD_SIZE ;
zc - > max_mod_size = CEX2C_MAX_MOD_SIZE ;
zc - > max_exp_bit_length = CEX2C_MAX_MOD_SIZE ;
2009-12-07 12:51:57 +01:00
break ;
case AP_DEVICE_TYPE_CEX3C :
2016-08-25 11:16:03 +02:00
zc - > user_space_type = ZCRYPT_CEX3C ;
zc - > type_string = " CEX3C " ;
memcpy ( zc - > speed_rating , CEX3C_SPEED_IDX ,
2016-08-25 11:14:15 +02:00
sizeof ( CEX3C_SPEED_IDX ) ) ;
2016-08-25 11:16:03 +02:00
zc - > min_mod_size = CEX3C_MIN_MOD_SIZE ;
zc - > max_mod_size = CEX3C_MAX_MOD_SIZE ;
zc - > max_exp_bit_length = CEX3C_MAX_MOD_SIZE ;
2009-12-07 12:51:57 +01:00
break ;
default :
2016-08-25 11:16:03 +02:00
zcrypt_card_free ( zc ) ;
return - ENODEV ;
2006-09-20 15:58:32 +02:00
}
2016-08-25 11:16:03 +02:00
zc - > online = 1 ;
2009-12-07 12:51:57 +01:00
2016-08-25 11:16:03 +02:00
rc = zcrypt_card_register ( zc ) ;
if ( rc ) {
ac - > private = NULL ;
zcrypt_card_free ( zc ) ;
}
return rc ;
}
/**
2018-10-04 15:30:24 +02:00
* This is called to remove the CEX2C / CEX3C card driver information
2016-08-25 11:16:03 +02:00
* if an AP card device is removed .
*/
2018-10-04 15:30:24 +02:00
static void zcrypt_cex2c_card_remove ( struct ap_device * ap_dev )
2016-08-25 11:16:03 +02:00
{
struct zcrypt_card * zc = to_ap_card ( & ap_dev - > device ) - > private ;
if ( zc )
zcrypt_card_unregister ( zc ) ;
}
2018-10-04 15:30:24 +02:00
static struct ap_driver zcrypt_cex2c_card_driver = {
. probe = zcrypt_cex2c_card_probe ,
. remove = zcrypt_cex2c_card_remove ,
. ids = zcrypt_cex2c_card_ids ,
s390/zcrypt: AP bus support for alternate driver(s)
The current AP bus, AP devices and AP device drivers implementation
uses a clearly defined mapping for binding AP devices to AP device
drivers. So for example a CEX6C queue will always be bound to the
cex4queue device driver.
The Linux Device Driver model has no sensitivity for more than one
device driver eligible for one device type. If there exist more than
one drivers matching to the device type, simple all drivers are tried
consecutively. There is no way to determine and influence the probing
order of the drivers.
With KVM there is a need to provide additional device drivers matching
to the very same type of AP devices. With a simple implementation the
KVM drivers run in competition to the regular drivers. Whichever
'wins' a device depends on build order and implementation details
within the common Linux Device Driver Model and is not
deterministic. However, a userspace process could figure out which
device should be bound to which driver and sort out the correct
binding by manipulating attributes in the sysfs.
If for security reasons a AP device must not get bound to the 'wrong'
device driver the sorting out has to be done within the Linux kernel
by the AP bus code. This patch modifies the behavior of the AP bus
for probing drivers for devices in a way that two sets of drivers are
usable. Two new bitmasks 'apmask' and 'aqmask' are used to mark a
subset of the APQN range for 'usable by the ap bus and the default
drivers' or 'not usable by the default drivers and thus available for
alternate drivers like vfio-xxx'. So an APQN which is addressed by
this masking only the default drivers will be probed. In contrary an
APQN which is not addressed by the masks will never be probed and
bound to default drivers but onny to alternate drivers.
Eventually the two masks give a way to divide the range of APQNs into
two pools: one pool of APQNs used by the AP bus and the default
drivers and thus via zcrypt drivers available to the userspace of the
system. And another pool where no zcrypt drivers are bound to and
which can be used by alternate drivers (like vfio-xxx) for their
needs. This division is hot-plug save and makes sure a APQN assigned
to an alternate driver is at no time somehow exploitable by the wrong
party.
The two masks are located in sysfs at /sys/bus/ap/apmask and
/sys/bus/ap/aqmask. The mask syntax is exactly the same as the
already existing mask attributes in the /sys/bus/ap directory (for
example ap_usage_domain_mask and ap_control_domain_mask).
By default all APQNs belong to the ap bus and the default drivers:
cat /sys/bus/ap/apmask
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
cat /sys/bus/ap/aqmask
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
The masks can be changed at boot time with the kernel command line
like this:
... ap.apmask=0xffff ap.aqmask=0x40
This would give these two pools:
default drivers pool: adapter 0 - 15, domain 1
alternate drivers pool: adapter 0 - 15, all but domain 1
adapter 16-255, all domains
The sysfs attributes for this two masks are writeable and an
administrator is able to reconfigure the assignements on the fly by
writing new mask values into. With changing the mask(s) a revision of
the existing queue to driver bindings is done. So all APQNs which are
bound to the 'wrong' driver are reprobed via kernel function
device_reprobe() and thus the new correct driver will be assigned with
respect of the changed apmask and aqmask bits.
The mask values are bitmaps in big endian order starting with bit 0.
So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs
attributes accept 2 different formats:
- Absolute hex string starting with 0x like "0x12345678" does set
the mask starting from left to right. If the given string is shorter
than the mask it is padded with 0s on the right. If the string is
longer than the mask an error comes back (EINVAL).
- '+' or '-' followed by a numerical value. Valid examples are "+1",
"-13", "+0x41", "-0xff" and even "+0" and "-0". Only the addressed
bit in the mask is switched on ('+') or off ('-').
This patch will also be the base for an upcoming extension to the
zcrypt drivers to be able to provide additional zcrypt device nodes
with filtering based on ap and aq masks.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-07-20 08:36:53 +02:00
. flags = AP_DRIVER_FLAG_DEFAULT ,
2016-08-25 11:16:03 +02:00
} ;
/**
2018-10-04 15:30:24 +02:00
* Probe function for CEX2C / CEX3C queue devices . It always accepts the
* AP device since the bus_match already checked the hardware type .
2016-08-25 11:16:03 +02:00
* @ ap_dev : pointer to the AP card device .
*/
2018-10-04 15:30:24 +02:00
static int zcrypt_cex2c_queue_probe ( struct ap_device * ap_dev )
2016-08-25 11:16:03 +02:00
{
struct ap_queue * aq = to_ap_queue ( & ap_dev - > device ) ;
struct zcrypt_queue * zq ;
int rc ;
2018-10-04 15:30:24 +02:00
zq = zcrypt_queue_alloc ( CEX2C_MAX_XCRB_MESSAGE_SIZE ) ;
2016-08-25 11:16:03 +02:00
if ( ! zq )
return - ENOMEM ;
zq - > queue = aq ;
zq - > online = 1 ;
atomic_set ( & zq - > load , 0 ) ;
2018-10-04 15:30:24 +02:00
rc = zcrypt_cex2c_rng_supported ( aq ) ;
2008-04-17 07:46:15 +02:00
if ( rc < 0 ) {
2016-08-25 11:16:03 +02:00
zcrypt_queue_free ( zq ) ;
2008-04-17 07:46:15 +02:00
return rc ;
}
if ( rc )
2016-08-25 11:16:03 +02:00
zq - > ops = zcrypt_msgtype ( MSGTYPE06_NAME ,
MSGTYPE06_VARIANT_DEFAULT ) ;
2008-04-17 07:46:15 +02:00
else
2016-08-25 11:16:03 +02:00
zq - > ops = zcrypt_msgtype ( MSGTYPE06_NAME ,
MSGTYPE06_VARIANT_NORNG ) ;
ap_queue_init_reply ( aq , & zq - > reply ) ;
2018-10-04 15:30:24 +02:00
aq - > request_timeout = CEX2C_CLEANUP_TIME ;
2016-08-25 11:16:03 +02:00
aq - > private = zq ;
rc = zcrypt_queue_register ( zq ) ;
if ( rc ) {
aq - > private = NULL ;
zcrypt_queue_free ( zq ) ;
}
2006-09-20 15:58:32 +02:00
return rc ;
}
/**
2018-10-04 15:30:24 +02:00
* This is called to remove the CEX2C / CEX3C queue driver information
2016-08-25 11:16:03 +02:00
* if an AP queue device is removed .
2006-09-20 15:58:32 +02:00
*/
2018-10-04 15:30:24 +02:00
static void zcrypt_cex2c_queue_remove ( struct ap_device * ap_dev )
2006-09-20 15:58:32 +02:00
{
2016-08-25 11:16:03 +02:00
struct ap_queue * aq = to_ap_queue ( & ap_dev - > device ) ;
struct zcrypt_queue * zq = aq - > private ;
2006-09-20 15:58:32 +02:00
2016-08-25 11:16:03 +02:00
if ( zq )
zcrypt_queue_unregister ( zq ) ;
2006-09-20 15:58:32 +02:00
}
2018-10-04 15:30:24 +02:00
static struct ap_driver zcrypt_cex2c_queue_driver = {
. probe = zcrypt_cex2c_queue_probe ,
. remove = zcrypt_cex2c_queue_remove ,
2016-08-25 11:16:03 +02:00
. suspend = ap_queue_suspend ,
. resume = ap_queue_resume ,
2018-10-04 15:30:24 +02:00
. ids = zcrypt_cex2c_queue_ids ,
s390/zcrypt: AP bus support for alternate driver(s)
The current AP bus, AP devices and AP device drivers implementation
uses a clearly defined mapping for binding AP devices to AP device
drivers. So for example a CEX6C queue will always be bound to the
cex4queue device driver.
The Linux Device Driver model has no sensitivity for more than one
device driver eligible for one device type. If there exist more than
one drivers matching to the device type, simple all drivers are tried
consecutively. There is no way to determine and influence the probing
order of the drivers.
With KVM there is a need to provide additional device drivers matching
to the very same type of AP devices. With a simple implementation the
KVM drivers run in competition to the regular drivers. Whichever
'wins' a device depends on build order and implementation details
within the common Linux Device Driver Model and is not
deterministic. However, a userspace process could figure out which
device should be bound to which driver and sort out the correct
binding by manipulating attributes in the sysfs.
If for security reasons a AP device must not get bound to the 'wrong'
device driver the sorting out has to be done within the Linux kernel
by the AP bus code. This patch modifies the behavior of the AP bus
for probing drivers for devices in a way that two sets of drivers are
usable. Two new bitmasks 'apmask' and 'aqmask' are used to mark a
subset of the APQN range for 'usable by the ap bus and the default
drivers' or 'not usable by the default drivers and thus available for
alternate drivers like vfio-xxx'. So an APQN which is addressed by
this masking only the default drivers will be probed. In contrary an
APQN which is not addressed by the masks will never be probed and
bound to default drivers but onny to alternate drivers.
Eventually the two masks give a way to divide the range of APQNs into
two pools: one pool of APQNs used by the AP bus and the default
drivers and thus via zcrypt drivers available to the userspace of the
system. And another pool where no zcrypt drivers are bound to and
which can be used by alternate drivers (like vfio-xxx) for their
needs. This division is hot-plug save and makes sure a APQN assigned
to an alternate driver is at no time somehow exploitable by the wrong
party.
The two masks are located in sysfs at /sys/bus/ap/apmask and
/sys/bus/ap/aqmask. The mask syntax is exactly the same as the
already existing mask attributes in the /sys/bus/ap directory (for
example ap_usage_domain_mask and ap_control_domain_mask).
By default all APQNs belong to the ap bus and the default drivers:
cat /sys/bus/ap/apmask
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
cat /sys/bus/ap/aqmask
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
The masks can be changed at boot time with the kernel command line
like this:
... ap.apmask=0xffff ap.aqmask=0x40
This would give these two pools:
default drivers pool: adapter 0 - 15, domain 1
alternate drivers pool: adapter 0 - 15, all but domain 1
adapter 16-255, all domains
The sysfs attributes for this two masks are writeable and an
administrator is able to reconfigure the assignements on the fly by
writing new mask values into. With changing the mask(s) a revision of
the existing queue to driver bindings is done. So all APQNs which are
bound to the 'wrong' driver are reprobed via kernel function
device_reprobe() and thus the new correct driver will be assigned with
respect of the changed apmask and aqmask bits.
The mask values are bitmaps in big endian order starting with bit 0.
So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs
attributes accept 2 different formats:
- Absolute hex string starting with 0x like "0x12345678" does set
the mask starting from left to right. If the given string is shorter
than the mask it is padded with 0s on the right. If the string is
longer than the mask an error comes back (EINVAL).
- '+' or '-' followed by a numerical value. Valid examples are "+1",
"-13", "+0x41", "-0xff" and even "+0" and "-0". Only the addressed
bit in the mask is switched on ('+') or off ('-').
This patch will also be the base for an upcoming extension to the
zcrypt drivers to be able to provide additional zcrypt device nodes
with filtering based on ap and aq masks.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-07-20 08:36:53 +02:00
. flags = AP_DRIVER_FLAG_DEFAULT ,
2016-08-25 11:16:03 +02:00
} ;
2018-10-04 15:30:24 +02:00
int __init zcrypt_cex2c_init ( void )
2006-09-20 15:58:32 +02:00
{
2016-08-25 11:16:03 +02:00
int rc ;
2018-10-04 15:30:24 +02:00
rc = ap_driver_register ( & zcrypt_cex2c_card_driver ,
THIS_MODULE , " cex2card " ) ;
2016-08-25 11:16:03 +02:00
if ( rc )
return rc ;
2018-10-04 15:30:24 +02:00
rc = ap_driver_register ( & zcrypt_cex2c_queue_driver ,
THIS_MODULE , " cex2cqueue " ) ;
2016-08-25 11:16:03 +02:00
if ( rc )
2018-10-04 15:30:24 +02:00
ap_driver_unregister ( & zcrypt_cex2c_card_driver ) ;
2016-08-25 11:16:03 +02:00
return rc ;
2006-09-20 15:58:32 +02:00
}
2018-10-04 15:30:24 +02:00
void zcrypt_cex2c_exit ( void )
2006-09-20 15:58:32 +02:00
{
2018-10-04 15:30:24 +02:00
ap_driver_unregister ( & zcrypt_cex2c_queue_driver ) ;
ap_driver_unregister ( & zcrypt_cex2c_card_driver ) ;
2006-09-20 15:58:32 +02:00
}
2018-10-04 15:30:24 +02:00
module_init ( zcrypt_cex2c_init ) ;
module_exit ( zcrypt_cex2c_exit ) ;