2010-09-30 07:12:08 +04:00
/*
* Driver for Lineage Compact Power Line series of power entry modules .
*
* Copyright ( C ) 2010 , 2011 Ericsson AB .
*
* Documentation :
* http : //www.lineagepower.com/oem/pdf/CPLI2C.pdf
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 675 Mass Ave , Cambridge , MA 0213 9 , USA .
*/
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/init.h>
# include <linux/err.h>
# include <linux/slab.h>
# include <linux/i2c.h>
# include <linux/hwmon.h>
# include <linux/hwmon-sysfs.h>
2012-10-10 17:25:56 +04:00
# include <linux/jiffies.h>
2010-09-30 07:12:08 +04:00
/*
* This driver supports various Lineage Compact Power Line DC / DC and AC / DC
* converters such as CP1800 , CP2000AC , CP2000DC , CP2100DC , and others .
*
* The devices are nominally PMBus compliant . However , most standard PMBus
* commands are not supported . Specifically , all hardware monitoring and
* status reporting commands are non - standard . For this reason , a standard
* PMBus driver can not be used .
*
* All Lineage CPL devices have a built - in I2C bus master selector ( PCA9541 ) .
* To ensure device access , this driver should only be used as client driver
* to the pca9541 I2C master selector driver .
*/
/* Command codes */
# define PEM_OPERATION 0x01
# define PEM_CLEAR_INFO_FLAGS 0x03
# define PEM_VOUT_COMMAND 0x21
# define PEM_VOUT_OV_FAULT_LIMIT 0x40
# define PEM_READ_DATA_STRING 0xd0
# define PEM_READ_INPUT_STRING 0xdc
# define PEM_READ_FIRMWARE_REV 0xdd
# define PEM_READ_RUN_TIMER 0xde
# define PEM_FAN_HI_SPEED 0xdf
# define PEM_FAN_NORMAL_SPEED 0xe0
# define PEM_READ_FAN_SPEED 0xe1
/* offsets in data string */
# define PEM_DATA_STATUS_2 0
# define PEM_DATA_STATUS_1 1
# define PEM_DATA_ALARM_2 2
# define PEM_DATA_ALARM_1 3
# define PEM_DATA_VOUT_LSB 4
# define PEM_DATA_VOUT_MSB 5
# define PEM_DATA_CURRENT 6
# define PEM_DATA_TEMP 7
/* Virtual entries, to report constants */
# define PEM_DATA_TEMP_MAX 10
# define PEM_DATA_TEMP_CRIT 11
/* offsets in input string */
# define PEM_INPUT_VOLTAGE 0
# define PEM_INPUT_POWER_LSB 1
# define PEM_INPUT_POWER_MSB 2
/* offsets in fan data */
# define PEM_FAN_ADJUSTMENT 0
# define PEM_FAN_FAN1 1
# define PEM_FAN_FAN2 2
# define PEM_FAN_FAN3 3
/* Status register bits */
# define STS1_OUTPUT_ON (1 << 0)
# define STS1_LEDS_FLASHING (1 << 1)
# define STS1_EXT_FAULT (1 << 2)
# define STS1_SERVICE_LED_ON (1 << 3)
# define STS1_SHUTDOWN_OCCURRED (1 << 4)
# define STS1_INT_FAULT (1 << 5)
# define STS1_ISOLATION_TEST_OK (1 << 6)
# define STS2_ENABLE_PIN_HI (1 << 0)
# define STS2_DATA_OUT_RANGE (1 << 1)
# define STS2_RESTARTED_OK (1 << 1)
# define STS2_ISOLATION_TEST_FAIL (1 << 3)
# define STS2_HIGH_POWER_CAP (1 << 4)
# define STS2_INVALID_INSTR (1 << 5)
# define STS2_WILL_RESTART (1 << 6)
# define STS2_PEC_ERR (1 << 7)
/* Alarm register bits */
# define ALRM1_VIN_OUT_LIMIT (1 << 0)
# define ALRM1_VOUT_OUT_LIMIT (1 << 1)
# define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
# define ALRM1_VIN_OVERCURRENT (1 << 3)
# define ALRM1_TEMP_WARNING (1 << 4)
# define ALRM1_TEMP_SHUTDOWN (1 << 5)
# define ALRM1_PRIMARY_FAULT (1 << 6)
# define ALRM1_POWER_LIMIT (1 << 7)
# define ALRM2_5V_OUT_LIMIT (1 << 1)
# define ALRM2_TEMP_FAULT (1 << 2)
# define ALRM2_OV_LOW (1 << 3)
# define ALRM2_DCDC_TEMP_HIGH (1 << 4)
# define ALRM2_PRI_TEMP_HIGH (1 << 5)
# define ALRM2_NO_PRIMARY (1 << 6)
# define ALRM2_FAN_FAULT (1 << 7)
# define FIRMWARE_REV_LEN 4
# define DATA_STRING_LEN 9
# define INPUT_STRING_LEN 5 /* 4 for most devices */
# define FAN_SPEED_LEN 5
struct pem_data {
struct device * hwmon_dev ;
struct mutex update_lock ;
bool valid ;
bool fans_supported ;
int input_length ;
unsigned long last_updated ; /* in jiffies */
u8 firmware_rev [ FIRMWARE_REV_LEN ] ;
u8 data_string [ DATA_STRING_LEN ] ;
u8 input_string [ INPUT_STRING_LEN ] ;
u8 fan_speed [ FAN_SPEED_LEN ] ;
} ;
static int pem_read_block ( struct i2c_client * client , u8 command , u8 * data ,
int data_len )
{
u8 block_buffer [ I2C_SMBUS_BLOCK_MAX ] ;
int result ;
result = i2c_smbus_read_block_data ( client , command , block_buffer ) ;
if ( unlikely ( result < 0 ) )
goto abort ;
if ( unlikely ( result = = 0xff | | result ! = data_len ) ) {
result = - EIO ;
goto abort ;
}
memcpy ( data , block_buffer , data_len ) ;
result = 0 ;
abort :
return result ;
}
static struct pem_data * pem_update_device ( struct device * dev )
{
struct i2c_client * client = to_i2c_client ( dev ) ;
struct pem_data * data = i2c_get_clientdata ( client ) ;
struct pem_data * ret = data ;
mutex_lock ( & data - > update_lock ) ;
if ( time_after ( jiffies , data - > last_updated + HZ ) | | ! data - > valid ) {
int result ;
/* Read data string */
result = pem_read_block ( client , PEM_READ_DATA_STRING ,
data - > data_string ,
sizeof ( data - > data_string ) ) ;
if ( unlikely ( result < 0 ) ) {
ret = ERR_PTR ( result ) ;
goto abort ;
}
/* Read input string */
if ( data - > input_length ) {
result = pem_read_block ( client , PEM_READ_INPUT_STRING ,
data - > input_string ,
data - > input_length ) ;
if ( unlikely ( result < 0 ) ) {
ret = ERR_PTR ( result ) ;
goto abort ;
}
}
/* Read fan speeds */
if ( data - > fans_supported ) {
result = pem_read_block ( client , PEM_READ_FAN_SPEED ,
data - > fan_speed ,
sizeof ( data - > fan_speed ) ) ;
if ( unlikely ( result < 0 ) ) {
ret = ERR_PTR ( result ) ;
goto abort ;
}
}
i2c_smbus_write_byte ( client , PEM_CLEAR_INFO_FLAGS ) ;
data - > last_updated = jiffies ;
data - > valid = 1 ;
}
abort :
mutex_unlock ( & data - > update_lock ) ;
return ret ;
}
static long pem_get_data ( u8 * data , int len , int index )
{
long val ;
switch ( index ) {
case PEM_DATA_VOUT_LSB :
val = ( data [ index ] + ( data [ index + 1 ] < < 8 ) ) * 5 / 2 ;
break ;
case PEM_DATA_CURRENT :
val = data [ index ] * 200 ;
break ;
case PEM_DATA_TEMP :
val = data [ index ] * 1000 ;
break ;
case PEM_DATA_TEMP_MAX :
val = 97 * 1000 ; /* 97 degrees C per datasheet */
break ;
case PEM_DATA_TEMP_CRIT :
val = 107 * 1000 ; /* 107 degrees C per datasheet */
break ;
default :
WARN_ON_ONCE ( 1 ) ;
val = 0 ;
}
return val ;
}
static long pem_get_input ( u8 * data , int len , int index )
{
long val ;
switch ( index ) {
case PEM_INPUT_VOLTAGE :
if ( len = = INPUT_STRING_LEN )
val = ( data [ index ] + ( data [ index + 1 ] < < 8 ) - 75 ) * 1000 ;
else
val = ( data [ index ] - 75 ) * 1000 ;
break ;
case PEM_INPUT_POWER_LSB :
if ( len = = INPUT_STRING_LEN )
index + + ;
val = ( data [ index ] + ( data [ index + 1 ] < < 8 ) ) * 1000000L ;
break ;
default :
WARN_ON_ONCE ( 1 ) ;
val = 0 ;
}
return val ;
}
static long pem_get_fan ( u8 * data , int len , int index )
{
long val ;
switch ( index ) {
case PEM_FAN_FAN1 :
case PEM_FAN_FAN2 :
case PEM_FAN_FAN3 :
val = data [ index ] * 100 ;
break ;
default :
WARN_ON_ONCE ( 1 ) ;
val = 0 ;
}
return val ;
}
/*
* Show boolean , either a fault or an alarm .
* . nr points to the register , . index is the bit mask to check
*/
static ssize_t pem_show_bool ( struct device * dev ,
struct device_attribute * da , char * buf )
{
struct sensor_device_attribute_2 * attr = to_sensor_dev_attr_2 ( da ) ;
struct pem_data * data = pem_update_device ( dev ) ;
u8 status ;
if ( IS_ERR ( data ) )
return PTR_ERR ( data ) ;
status = data - > data_string [ attr - > nr ] & attr - > index ;
return snprintf ( buf , PAGE_SIZE , " %d \n " , ! ! status ) ;
}
static ssize_t pem_show_data ( struct device * dev , struct device_attribute * da ,
char * buf )
{
struct sensor_device_attribute * attr = to_sensor_dev_attr ( da ) ;
struct pem_data * data = pem_update_device ( dev ) ;
long value ;
if ( IS_ERR ( data ) )
return PTR_ERR ( data ) ;
value = pem_get_data ( data - > data_string , sizeof ( data - > data_string ) ,
attr - > index ) ;
return snprintf ( buf , PAGE_SIZE , " %ld \n " , value ) ;
}
static ssize_t pem_show_input ( struct device * dev , struct device_attribute * da ,
char * buf )
{
struct sensor_device_attribute * attr = to_sensor_dev_attr ( da ) ;
struct pem_data * data = pem_update_device ( dev ) ;
long value ;
if ( IS_ERR ( data ) )
return PTR_ERR ( data ) ;
value = pem_get_input ( data - > input_string , sizeof ( data - > input_string ) ,
attr - > index ) ;
return snprintf ( buf , PAGE_SIZE , " %ld \n " , value ) ;
}
static ssize_t pem_show_fan ( struct device * dev , struct device_attribute * da ,
char * buf )
{
struct sensor_device_attribute * attr = to_sensor_dev_attr ( da ) ;
struct pem_data * data = pem_update_device ( dev ) ;
long value ;
if ( IS_ERR ( data ) )
return PTR_ERR ( data ) ;
value = pem_get_fan ( data - > fan_speed , sizeof ( data - > fan_speed ) ,
attr - > index ) ;
return snprintf ( buf , PAGE_SIZE , " %ld \n " , value ) ;
}
/* Voltages */
static SENSOR_DEVICE_ATTR ( in1_input , S_IRUGO , pem_show_data , NULL ,
PEM_DATA_VOUT_LSB ) ;
2011-03-16 02:34:07 +03:00
static SENSOR_DEVICE_ATTR_2 ( in1_alarm , S_IRUGO , pem_show_bool , NULL ,
2010-09-30 07:12:08 +04:00
PEM_DATA_ALARM_1 , ALRM1_VOUT_OUT_LIMIT ) ;
static SENSOR_DEVICE_ATTR_2 ( in1_crit_alarm , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_1 , ALRM1_OV_VOLT_SHUTDOWN ) ;
static SENSOR_DEVICE_ATTR ( in2_input , S_IRUGO , pem_show_input , NULL ,
PEM_INPUT_VOLTAGE ) ;
static SENSOR_DEVICE_ATTR_2 ( in2_alarm , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_1 ,
ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT ) ;
/* Currents */
static SENSOR_DEVICE_ATTR ( curr1_input , S_IRUGO , pem_show_data , NULL ,
PEM_DATA_CURRENT ) ;
static SENSOR_DEVICE_ATTR_2 ( curr1_alarm , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_1 , ALRM1_VIN_OVERCURRENT ) ;
/* Power */
static SENSOR_DEVICE_ATTR ( power1_input , S_IRUGO , pem_show_input , NULL ,
PEM_INPUT_POWER_LSB ) ;
static SENSOR_DEVICE_ATTR_2 ( power1_alarm , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_1 , ALRM1_POWER_LIMIT ) ;
/* Fans */
static SENSOR_DEVICE_ATTR ( fan1_input , S_IRUGO , pem_show_fan , NULL ,
PEM_FAN_FAN1 ) ;
static SENSOR_DEVICE_ATTR ( fan2_input , S_IRUGO , pem_show_fan , NULL ,
PEM_FAN_FAN2 ) ;
static SENSOR_DEVICE_ATTR ( fan3_input , S_IRUGO , pem_show_fan , NULL ,
PEM_FAN_FAN3 ) ;
static SENSOR_DEVICE_ATTR_2 ( fan1_alarm , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_2 , ALRM2_FAN_FAULT ) ;
/* Temperatures */
static SENSOR_DEVICE_ATTR ( temp1_input , S_IRUGO , pem_show_data , NULL ,
PEM_DATA_TEMP ) ;
static SENSOR_DEVICE_ATTR ( temp1_max , S_IRUGO , pem_show_data , NULL ,
PEM_DATA_TEMP_MAX ) ;
static SENSOR_DEVICE_ATTR ( temp1_crit , S_IRUGO , pem_show_data , NULL ,
PEM_DATA_TEMP_CRIT ) ;
static SENSOR_DEVICE_ATTR_2 ( temp1_alarm , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_1 , ALRM1_TEMP_WARNING ) ;
static SENSOR_DEVICE_ATTR_2 ( temp1_crit_alarm , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_1 , ALRM1_TEMP_SHUTDOWN ) ;
static SENSOR_DEVICE_ATTR_2 ( temp1_fault , S_IRUGO , pem_show_bool , NULL ,
PEM_DATA_ALARM_2 , ALRM2_TEMP_FAULT ) ;
static struct attribute * pem_attributes [ ] = {
& sensor_dev_attr_in1_input . dev_attr . attr ,
2011-03-16 02:34:07 +03:00
& sensor_dev_attr_in1_alarm . dev_attr . attr ,
2010-09-30 07:12:08 +04:00
& sensor_dev_attr_in1_crit_alarm . dev_attr . attr ,
& sensor_dev_attr_in2_alarm . dev_attr . attr ,
& sensor_dev_attr_curr1_alarm . dev_attr . attr ,
& sensor_dev_attr_power1_alarm . dev_attr . attr ,
& sensor_dev_attr_fan1_alarm . dev_attr . attr ,
& sensor_dev_attr_temp1_input . dev_attr . attr ,
& sensor_dev_attr_temp1_max . dev_attr . attr ,
& sensor_dev_attr_temp1_crit . dev_attr . attr ,
& sensor_dev_attr_temp1_alarm . dev_attr . attr ,
& sensor_dev_attr_temp1_crit_alarm . dev_attr . attr ,
& sensor_dev_attr_temp1_fault . dev_attr . attr ,
NULL ,
} ;
static const struct attribute_group pem_group = {
. attrs = pem_attributes ,
} ;
static struct attribute * pem_input_attributes [ ] = {
& sensor_dev_attr_in2_input . dev_attr . attr ,
& sensor_dev_attr_curr1_input . dev_attr . attr ,
& sensor_dev_attr_power1_input . dev_attr . attr ,
2013-03-14 12:27:18 +04:00
NULL
2010-09-30 07:12:08 +04:00
} ;
static const struct attribute_group pem_input_group = {
. attrs = pem_input_attributes ,
} ;
static struct attribute * pem_fan_attributes [ ] = {
& sensor_dev_attr_fan1_input . dev_attr . attr ,
& sensor_dev_attr_fan2_input . dev_attr . attr ,
& sensor_dev_attr_fan3_input . dev_attr . attr ,
2013-03-14 12:27:18 +04:00
NULL
2010-09-30 07:12:08 +04:00
} ;
static const struct attribute_group pem_fan_group = {
. attrs = pem_fan_attributes ,
} ;
static int pem_probe ( struct i2c_client * client ,
const struct i2c_device_id * id )
{
struct i2c_adapter * adapter = client - > adapter ;
struct pem_data * data ;
int ret ;
if ( ! i2c_check_functionality ( adapter , I2C_FUNC_SMBUS_BLOCK_DATA
| I2C_FUNC_SMBUS_WRITE_BYTE ) )
return - ENODEV ;
2012-02-22 20:56:45 +04:00
data = devm_kzalloc ( & client - > dev , sizeof ( * data ) , GFP_KERNEL ) ;
2010-09-30 07:12:08 +04:00
if ( ! data )
return - ENOMEM ;
i2c_set_clientdata ( client , data ) ;
mutex_init ( & data - > update_lock ) ;
/*
* We use the next two commands to determine if the device is really
* there .
*/
ret = pem_read_block ( client , PEM_READ_FIRMWARE_REV ,
data - > firmware_rev , sizeof ( data - > firmware_rev ) ) ;
if ( ret < 0 )
2012-02-22 20:56:45 +04:00
return ret ;
2010-09-30 07:12:08 +04:00
ret = i2c_smbus_write_byte ( client , PEM_CLEAR_INFO_FLAGS ) ;
if ( ret < 0 )
2012-02-22 20:56:45 +04:00
return ret ;
2010-09-30 07:12:08 +04:00
dev_info ( & client - > dev , " Firmware revision %d.%d.%d \n " ,
data - > firmware_rev [ 0 ] , data - > firmware_rev [ 1 ] ,
data - > firmware_rev [ 2 ] ) ;
/* Register sysfs hooks */
ret = sysfs_create_group ( & client - > dev . kobj , & pem_group ) ;
if ( ret )
2012-02-22 20:56:45 +04:00
return ret ;
2010-09-30 07:12:08 +04:00
/*
* Check if input readings are supported .
* This is the case if we can read input data ,
* and if the returned data is not all zeros .
* Note that input alarms are always supported .
*/
ret = pem_read_block ( client , PEM_READ_INPUT_STRING ,
data - > input_string ,
sizeof ( data - > input_string ) - 1 ) ;
if ( ! ret & & ( data - > input_string [ 0 ] | | data - > input_string [ 1 ] | |
data - > input_string [ 2 ] ) )
data - > input_length = sizeof ( data - > input_string ) - 1 ;
else if ( ret < 0 ) {
/* Input string is one byte longer for some devices */
ret = pem_read_block ( client , PEM_READ_INPUT_STRING ,
data - > input_string ,
sizeof ( data - > input_string ) ) ;
if ( ! ret & & ( data - > input_string [ 0 ] | | data - > input_string [ 1 ] | |
data - > input_string [ 2 ] | | data - > input_string [ 3 ] ) )
data - > input_length = sizeof ( data - > input_string ) ;
}
ret = 0 ;
if ( data - > input_length ) {
ret = sysfs_create_group ( & client - > dev . kobj , & pem_input_group ) ;
if ( ret )
goto out_remove_groups ;
}
/*
* Check if fan speed readings are supported .
* This is the case if we can read fan speed data ,
* and if the returned data is not all zeros .
* Note that the fan alarm is always supported .
*/
ret = pem_read_block ( client , PEM_READ_FAN_SPEED ,
data - > fan_speed ,
sizeof ( data - > fan_speed ) ) ;
if ( ! ret & & ( data - > fan_speed [ 0 ] | | data - > fan_speed [ 1 ] | |
data - > fan_speed [ 2 ] | | data - > fan_speed [ 3 ] ) ) {
data - > fans_supported = true ;
ret = sysfs_create_group ( & client - > dev . kobj , & pem_fan_group ) ;
if ( ret )
goto out_remove_groups ;
}
data - > hwmon_dev = hwmon_device_register ( & client - > dev ) ;
if ( IS_ERR ( data - > hwmon_dev ) ) {
ret = PTR_ERR ( data - > hwmon_dev ) ;
goto out_remove_groups ;
}
return 0 ;
out_remove_groups :
sysfs_remove_group ( & client - > dev . kobj , & pem_input_group ) ;
sysfs_remove_group ( & client - > dev . kobj , & pem_fan_group ) ;
sysfs_remove_group ( & client - > dev . kobj , & pem_group ) ;
return ret ;
}
static int pem_remove ( struct i2c_client * client )
{
struct pem_data * data = i2c_get_clientdata ( client ) ;
hwmon_device_unregister ( data - > hwmon_dev ) ;
sysfs_remove_group ( & client - > dev . kobj , & pem_input_group ) ;
sysfs_remove_group ( & client - > dev . kobj , & pem_fan_group ) ;
sysfs_remove_group ( & client - > dev . kobj , & pem_group ) ;
return 0 ;
}
static const struct i2c_device_id pem_id [ ] = {
{ " lineage_pem " , 0 } ,
{ }
} ;
MODULE_DEVICE_TABLE ( i2c , pem_id ) ;
static struct i2c_driver pem_driver = {
. driver = {
. name = " lineage_pem " ,
} ,
. probe = pem_probe ,
. remove = pem_remove ,
. id_table = pem_id ,
} ;
2012-01-20 11:38:18 +04:00
module_i2c_driver ( pem_driver ) ;
2010-09-30 07:12:08 +04:00
2012-06-22 23:07:25 +04:00
MODULE_AUTHOR ( " Guenter Roeck <linux@roeck-us.net> " ) ;
2010-09-30 07:12:08 +04:00
MODULE_DESCRIPTION ( " Lineage CPL PEM hardware monitoring driver " ) ;
MODULE_LICENSE ( " GPL " ) ;