linux/drivers/media/v4l2-core/v4l2-common.c

485 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Video for Linux Two
*
* A generic video device interface for the LINUX operating system
* using a set of device structures/vectors for low level operations.
*
* This file replaces the videodev.c file that comes with the
* regular kernel distribution.
*
* Author: Bill Dirks <bill@thedirks.org>
* based on code by Alan Cox, <alan@cymru.net>
*/
/*
* Video capture interface for Linux
*
* A generic video device interface for the LINUX operating system
* using a set of device structures/vectors for low level operations.
*
* Author: Alan Cox, <alan@lxorguk.ukuu.org.uk>
*
* Fixes:
*/
/*
* Video4linux 1/2 integration by Justin Schoeman
* <justin@suntiger.ee.up.ac.za>
* 2.4 PROCFS support ported from 2.4 kernels by
* Iñaki García Etxebarria <garetxe@euskalnet.net>
* Makefile fix by "W. Michael Petullo" <mike@flyn.org>
* 2.4 devfs support ported from 2.4 kernels by
* Dan Merillat <dan@merillat.org>
* Added Gerd Knorrs v4l1 enhancements (Justin Schoeman)
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/div64.h>
#include <media/v4l2-common.h>
#include <media/v4l2-device.h>
V4L/DVB: v4l2: Add new control handling framework Add a new framework to handle controls which makes life for driver developers much easier. Note that this patch moves some of the control support that used to be in v4l2-common.c to v4l2-ctrls.c. The tables were copied unchanged. The body of v4l2_ctrl_query_fill() was copied to a new v4l2_ctrl_fill() function in v4l2-ctrls.c. This new function doesn't use the v4l2_queryctrl struct anymore, which makes it more general. The remainder of v4l2-ctrls.c is all new. Highlights include: - No need to implement VIDIOC_QUERYCTRL, QUERYMENU, S_CTRL, G_CTRL, S_EXT_CTRLS, G_EXT_CTRLS or TRY_EXT_CTRLS in either bridge drivers or subdevs. New wrapper functions are provided that can just be plugged in. Once everything has been converted these wrapper functions can be removed as well. - When subdevices are added their controls can be automatically merged with the bridge driver's controls. - Most drivers just need to implement s_ctrl to set the controls. The framework handles the locking and tries to be as 'atomic' as possible. - Ready for the subdev device nodes: the same mechanism applies to subdevs and their device nodes as well. Sub-device drivers can make controls local, preventing them from being merged with bridge drivers. - Takes care of backwards compatibility handling of VIDIOC_S_CTRL and VIDIOC_G_CTRL. Handling of V4L2_CID_PRIVATE_BASE is fully transparent. CTRL_CLASS controls are automatically added. Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2010-08-01 21:32:42 +04:00
#include <media/v4l2-ctrls.h>
#include <linux/videodev2.h>
/*
*
* V 4 L 2 D R I V E R H E L P E R A P I
*
*/
/*
* Video Standard Operations (contributed by Michael Schimek)
*/
/* Helper functions for control handling */
/* Fill in a struct v4l2_queryctrl */
int v4l2_ctrl_query_fill(struct v4l2_queryctrl *qctrl, s32 _min, s32 _max, s32 _step, s32 _def)
{
V4L/DVB: v4l2: Add new control handling framework Add a new framework to handle controls which makes life for driver developers much easier. Note that this patch moves some of the control support that used to be in v4l2-common.c to v4l2-ctrls.c. The tables were copied unchanged. The body of v4l2_ctrl_query_fill() was copied to a new v4l2_ctrl_fill() function in v4l2-ctrls.c. This new function doesn't use the v4l2_queryctrl struct anymore, which makes it more general. The remainder of v4l2-ctrls.c is all new. Highlights include: - No need to implement VIDIOC_QUERYCTRL, QUERYMENU, S_CTRL, G_CTRL, S_EXT_CTRLS, G_EXT_CTRLS or TRY_EXT_CTRLS in either bridge drivers or subdevs. New wrapper functions are provided that can just be plugged in. Once everything has been converted these wrapper functions can be removed as well. - When subdevices are added their controls can be automatically merged with the bridge driver's controls. - Most drivers just need to implement s_ctrl to set the controls. The framework handles the locking and tries to be as 'atomic' as possible. - Ready for the subdev device nodes: the same mechanism applies to subdevs and their device nodes as well. Sub-device drivers can make controls local, preventing them from being merged with bridge drivers. - Takes care of backwards compatibility handling of VIDIOC_S_CTRL and VIDIOC_G_CTRL. Handling of V4L2_CID_PRIVATE_BASE is fully transparent. CTRL_CLASS controls are automatically added. Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2010-08-01 21:32:42 +04:00
const char *name;
s64 min = _min;
s64 max = _max;
u64 step = _step;
s64 def = _def;
V4L/DVB: v4l2: Add new control handling framework Add a new framework to handle controls which makes life for driver developers much easier. Note that this patch moves some of the control support that used to be in v4l2-common.c to v4l2-ctrls.c. The tables were copied unchanged. The body of v4l2_ctrl_query_fill() was copied to a new v4l2_ctrl_fill() function in v4l2-ctrls.c. This new function doesn't use the v4l2_queryctrl struct anymore, which makes it more general. The remainder of v4l2-ctrls.c is all new. Highlights include: - No need to implement VIDIOC_QUERYCTRL, QUERYMENU, S_CTRL, G_CTRL, S_EXT_CTRLS, G_EXT_CTRLS or TRY_EXT_CTRLS in either bridge drivers or subdevs. New wrapper functions are provided that can just be plugged in. Once everything has been converted these wrapper functions can be removed as well. - When subdevices are added their controls can be automatically merged with the bridge driver's controls. - Most drivers just need to implement s_ctrl to set the controls. The framework handles the locking and tries to be as 'atomic' as possible. - Ready for the subdev device nodes: the same mechanism applies to subdevs and their device nodes as well. Sub-device drivers can make controls local, preventing them from being merged with bridge drivers. - Takes care of backwards compatibility handling of VIDIOC_S_CTRL and VIDIOC_G_CTRL. Handling of V4L2_CID_PRIVATE_BASE is fully transparent. CTRL_CLASS controls are automatically added. Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2010-08-01 21:32:42 +04:00
v4l2_ctrl_fill(qctrl->id, &name, &qctrl->type,
&min, &max, &step, &def, &qctrl->flags);
if (name == NULL)
return -EINVAL;
qctrl->minimum = min;
qctrl->maximum = max;
qctrl->step = step;
qctrl->default_value = def;
qctrl->reserved[0] = qctrl->reserved[1] = 0;
strscpy(qctrl->name, name, sizeof(qctrl->name));
return 0;
}
EXPORT_SYMBOL(v4l2_ctrl_query_fill);
/* Clamp x to be between min and max, aligned to a multiple of 2^align. min
* and max don't have to be aligned, but there must be at least one valid
* value. E.g., min=17,max=31,align=4 is not allowed as there are no multiples
* of 16 between 17 and 31. */
static unsigned int clamp_align(unsigned int x, unsigned int min,
unsigned int max, unsigned int align)
{
/* Bits that must be zero to be aligned */
unsigned int mask = ~((1 << align) - 1);
/* Clamp to aligned min and max */
x = clamp(x, (min + ~mask) & mask, max & mask);
/* Round to nearest aligned value */
if (align)
x = (x + (1 << (align - 1))) & mask;
return x;
}
static unsigned int clamp_roundup(unsigned int x, unsigned int min,
unsigned int max, unsigned int alignment)
{
x = clamp(x, min, max);
if (alignment)
x = round_up(x, alignment);
return x;
}
void v4l_bound_align_image(u32 *w, unsigned int wmin, unsigned int wmax,
unsigned int walign,
u32 *h, unsigned int hmin, unsigned int hmax,
unsigned int halign, unsigned int salign)
{
*w = clamp_align(*w, wmin, wmax, walign);
*h = clamp_align(*h, hmin, hmax, halign);
/* Usually we don't need to align the size and are done now. */
if (!salign)
return;
/* How much alignment do we have? */
walign = __ffs(*w);
halign = __ffs(*h);
/* Enough to satisfy the image alignment? */
if (walign + halign < salign) {
/* Max walign where there is still a valid width */
unsigned int wmaxa = __fls(wmax ^ (wmin - 1));
/* Max halign where there is still a valid height */
unsigned int hmaxa = __fls(hmax ^ (hmin - 1));
/* up the smaller alignment until we have enough */
do {
if (halign >= hmaxa ||
(walign <= halign && walign < wmaxa)) {
*w = clamp_align(*w, wmin, wmax, walign + 1);
walign = __ffs(*w);
} else {
*h = clamp_align(*h, hmin, hmax, halign + 1);
halign = __ffs(*h);
}
} while (halign + walign < salign);
}
}
EXPORT_SYMBOL_GPL(v4l_bound_align_image);
const void *
__v4l2_find_nearest_size(const void *array, size_t array_size,
size_t entry_size, size_t width_offset,
size_t height_offset, s32 width, s32 height)
{
u32 error, min_error = U32_MAX;
const void *best = NULL;
unsigned int i;
if (!array)
return NULL;
for (i = 0; i < array_size; i++, array += entry_size) {
const u32 *entry_width = array + width_offset;
const u32 *entry_height = array + height_offset;
error = abs(*entry_width - width) + abs(*entry_height - height);
if (error > min_error)
continue;
min_error = error;
best = array;
if (!error)
break;
}
return best;
}
EXPORT_SYMBOL_GPL(__v4l2_find_nearest_size);
int v4l2_g_parm_cap(struct video_device *vdev,
struct v4l2_subdev *sd, struct v4l2_streamparm *a)
{
struct v4l2_subdev_frame_interval ival = { 0 };
int ret;
if (a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE &&
a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
return -EINVAL;
if (vdev->device_caps & V4L2_CAP_READWRITE)
a->parm.capture.readbuffers = 2;
if (v4l2_subdev_has_op(sd, video, g_frame_interval))
a->parm.capture.capability = V4L2_CAP_TIMEPERFRAME;
ret = v4l2_subdev_call(sd, video, g_frame_interval, &ival);
if (!ret)
a->parm.capture.timeperframe = ival.interval;
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_g_parm_cap);
int v4l2_s_parm_cap(struct video_device *vdev,
struct v4l2_subdev *sd, struct v4l2_streamparm *a)
{
struct v4l2_subdev_frame_interval ival = {
.interval = a->parm.capture.timeperframe
};
int ret;
if (a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE &&
a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
return -EINVAL;
memset(&a->parm, 0, sizeof(a->parm));
if (vdev->device_caps & V4L2_CAP_READWRITE)
a->parm.capture.readbuffers = 2;
else
a->parm.capture.readbuffers = 0;
if (v4l2_subdev_has_op(sd, video, g_frame_interval))
a->parm.capture.capability = V4L2_CAP_TIMEPERFRAME;
ret = v4l2_subdev_call(sd, video, s_frame_interval, &ival);
if (!ret)
a->parm.capture.timeperframe = ival.interval;
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_s_parm_cap);
const struct v4l2_format_info *v4l2_format_info(u32 format)
{
static const struct v4l2_format_info formats[] = {
/* RGB formats */
{ .format = V4L2_PIX_FMT_BGR24, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 3, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_RGB24, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 3, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_HSV24, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 3, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_BGR32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_XBGR32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_BGRX32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_RGB32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_XRGB32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_RGBX32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_HSV32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_ARGB32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_RGBA32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_ABGR32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_BGRA32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_RGB565, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_RGB555, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_BGR666, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
/* YUV packed formats */
{ .format = V4L2_PIX_FMT_YUYV, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_YVYU, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_UYVY, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_VYUY, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 2, .vdiv = 1 },
/* YUV planar formats */
{ .format = V4L2_PIX_FMT_NV12, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_NV21, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_NV16, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_NV61, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_NV24, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_NV42, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_YUV410, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 4, .vdiv = 4 },
{ .format = V4L2_PIX_FMT_YVU410, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 4, .vdiv = 4 },
{ .format = V4L2_PIX_FMT_YUV411P, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 4, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_YUV420, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_YVU420, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_YUV422P, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_GREY, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
/* Tiled YUV formats */
{ .format = V4L2_PIX_FMT_NV12_4L4, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 2 },
/* YUV planar formats, non contiguous variant */
{ .format = V4L2_PIX_FMT_YUV420M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_YVU420M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_YUV422M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_YVU422M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_YUV444M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_YVU444M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_NV12M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_NV21M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 2 },
{ .format = V4L2_PIX_FMT_NV16M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_NV61M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .hdiv = 2, .vdiv = 1 },
/* Bayer RGB formats */
{ .format = V4L2_PIX_FMT_SBGGR8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGBRG8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGRBG8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SRGGB8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SBGGR10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGBRG10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGRBG10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SRGGB10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SBGGR10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGBRG10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGRBG10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SRGGB10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SBGGR10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGBRG10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGRBG10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SRGGB10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SBGGR12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGBRG12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SGRBG12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
{ .format = V4L2_PIX_FMT_SRGGB12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .hdiv = 1, .vdiv = 1 },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(formats); ++i)
if (formats[i].format == format)
return &formats[i];
return NULL;
}
EXPORT_SYMBOL(v4l2_format_info);
static inline unsigned int v4l2_format_block_width(const struct v4l2_format_info *info, int plane)
{
if (!info->block_w[plane])
return 1;
return info->block_w[plane];
}
static inline unsigned int v4l2_format_block_height(const struct v4l2_format_info *info, int plane)
{
if (!info->block_h[plane])
return 1;
return info->block_h[plane];
}
void v4l2_apply_frmsize_constraints(u32 *width, u32 *height,
const struct v4l2_frmsize_stepwise *frmsize)
{
if (!frmsize)
return;
/*
* Clamp width/height to meet min/max constraints and round it up to
* macroblock alignment.
*/
*width = clamp_roundup(*width, frmsize->min_width, frmsize->max_width,
frmsize->step_width);
*height = clamp_roundup(*height, frmsize->min_height, frmsize->max_height,
frmsize->step_height);
}
EXPORT_SYMBOL_GPL(v4l2_apply_frmsize_constraints);
int v4l2_fill_pixfmt_mp(struct v4l2_pix_format_mplane *pixfmt,
u32 pixelformat, u32 width, u32 height)
{
const struct v4l2_format_info *info;
struct v4l2_plane_pix_format *plane;
int i;
info = v4l2_format_info(pixelformat);
if (!info)
return -EINVAL;
pixfmt->width = width;
pixfmt->height = height;
pixfmt->pixelformat = pixelformat;
pixfmt->num_planes = info->mem_planes;
if (info->mem_planes == 1) {
plane = &pixfmt->plane_fmt[0];
plane->bytesperline = ALIGN(width, v4l2_format_block_width(info, 0)) * info->bpp[0];
plane->sizeimage = 0;
for (i = 0; i < info->comp_planes; i++) {
unsigned int hdiv = (i == 0) ? 1 : info->hdiv;
unsigned int vdiv = (i == 0) ? 1 : info->vdiv;
unsigned int aligned_width;
unsigned int aligned_height;
aligned_width = ALIGN(width, v4l2_format_block_width(info, i));
aligned_height = ALIGN(height, v4l2_format_block_height(info, i));
plane->sizeimage += info->bpp[i] *
DIV_ROUND_UP(aligned_width, hdiv) *
DIV_ROUND_UP(aligned_height, vdiv);
}
} else {
for (i = 0; i < info->comp_planes; i++) {
unsigned int hdiv = (i == 0) ? 1 : info->hdiv;
unsigned int vdiv = (i == 0) ? 1 : info->vdiv;
unsigned int aligned_width;
unsigned int aligned_height;
aligned_width = ALIGN(width, v4l2_format_block_width(info, i));
aligned_height = ALIGN(height, v4l2_format_block_height(info, i));
plane = &pixfmt->plane_fmt[i];
plane->bytesperline =
info->bpp[i] * DIV_ROUND_UP(aligned_width, hdiv);
plane->sizeimage =
plane->bytesperline * DIV_ROUND_UP(aligned_height, vdiv);
}
}
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_fill_pixfmt_mp);
int v4l2_fill_pixfmt(struct v4l2_pix_format *pixfmt, u32 pixelformat,
u32 width, u32 height)
{
const struct v4l2_format_info *info;
int i;
info = v4l2_format_info(pixelformat);
if (!info)
return -EINVAL;
/* Single planar API cannot be used for multi plane formats. */
if (info->mem_planes > 1)
return -EINVAL;
pixfmt->width = width;
pixfmt->height = height;
pixfmt->pixelformat = pixelformat;
pixfmt->bytesperline = ALIGN(width, v4l2_format_block_width(info, 0)) * info->bpp[0];
pixfmt->sizeimage = 0;
for (i = 0; i < info->comp_planes; i++) {
unsigned int hdiv = (i == 0) ? 1 : info->hdiv;
unsigned int vdiv = (i == 0) ? 1 : info->vdiv;
unsigned int aligned_width;
unsigned int aligned_height;
aligned_width = ALIGN(width, v4l2_format_block_width(info, i));
aligned_height = ALIGN(height, v4l2_format_block_height(info, i));
pixfmt->sizeimage += info->bpp[i] *
DIV_ROUND_UP(aligned_width, hdiv) *
DIV_ROUND_UP(aligned_height, vdiv);
}
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_fill_pixfmt);
s64 v4l2_get_link_freq(struct v4l2_ctrl_handler *handler, unsigned int mul,
unsigned int div)
{
struct v4l2_ctrl *ctrl;
s64 freq;
ctrl = v4l2_ctrl_find(handler, V4L2_CID_LINK_FREQ);
if (ctrl) {
struct v4l2_querymenu qm = { .id = V4L2_CID_LINK_FREQ };
int ret;
qm.index = v4l2_ctrl_g_ctrl(ctrl);
ret = v4l2_querymenu(handler, &qm);
if (ret)
return -ENOENT;
freq = qm.value;
} else {
if (!mul || !div)
return -ENOENT;
ctrl = v4l2_ctrl_find(handler, V4L2_CID_PIXEL_RATE);
if (!ctrl)
return -ENOENT;
freq = div_u64(v4l2_ctrl_g_ctrl_int64(ctrl) * mul, div);
pr_warn("%s: Link frequency estimated using pixel rate: result might be inaccurate\n",
__func__);
pr_warn("%s: Consider implementing support for V4L2_CID_LINK_FREQ in the transmitter driver\n",
__func__);
}
return freq > 0 ? freq : -EINVAL;
}
EXPORT_SYMBOL_GPL(v4l2_get_link_freq);