627 lines
19 KiB
C
627 lines
19 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/bug.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/preempt.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
|
||
|
#include "atomic.h"
|
||
|
#include "encoding.h"
|
||
|
#include "kcsan.h"
|
||
|
|
||
|
bool kcsan_enabled;
|
||
|
|
||
|
/* Per-CPU kcsan_ctx for interrupts */
|
||
|
static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
|
||
|
.disable_count = 0,
|
||
|
.atomic_next = 0,
|
||
|
.atomic_nest_count = 0,
|
||
|
.in_flat_atomic = false,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Helper macros to index into adjacent slots slots, starting from address slot
|
||
|
* itself, followed by the right and left slots.
|
||
|
*
|
||
|
* The purpose is 2-fold:
|
||
|
*
|
||
|
* 1. if during insertion the address slot is already occupied, check if
|
||
|
* any adjacent slots are free;
|
||
|
* 2. accesses that straddle a slot boundary due to size that exceeds a
|
||
|
* slot's range may check adjacent slots if any watchpoint matches.
|
||
|
*
|
||
|
* Note that accesses with very large size may still miss a watchpoint; however,
|
||
|
* given this should be rare, this is a reasonable trade-off to make, since this
|
||
|
* will avoid:
|
||
|
*
|
||
|
* 1. excessive contention between watchpoint checks and setup;
|
||
|
* 2. larger number of simultaneous watchpoints without sacrificing
|
||
|
* performance.
|
||
|
*
|
||
|
* Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
|
||
|
*
|
||
|
* slot=0: [ 1, 2, 0]
|
||
|
* slot=9: [10, 11, 9]
|
||
|
* slot=63: [64, 65, 63]
|
||
|
*/
|
||
|
#define NUM_SLOTS (1 + 2 * KCSAN_CHECK_ADJACENT)
|
||
|
#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
|
||
|
|
||
|
/*
|
||
|
* SLOT_IDX_FAST is used in fast-path. Not first checking the address's primary
|
||
|
* slot (middle) is fine if we assume that data races occur rarely. The set of
|
||
|
* indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
|
||
|
* {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
|
||
|
*/
|
||
|
#define SLOT_IDX_FAST(slot, i) (slot + i)
|
||
|
|
||
|
/*
|
||
|
* Watchpoints, with each entry encoded as defined in encoding.h: in order to be
|
||
|
* able to safely update and access a watchpoint without introducing locking
|
||
|
* overhead, we encode each watchpoint as a single atomic long. The initial
|
||
|
* zero-initialized state matches INVALID_WATCHPOINT.
|
||
|
*
|
||
|
* Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
|
||
|
* use more complicated SLOT_IDX_FAST calculation with modulo in fast-path.
|
||
|
*/
|
||
|
static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS - 1];
|
||
|
|
||
|
/*
|
||
|
* Instructions to skip watching counter, used in should_watch(). We use a
|
||
|
* per-CPU counter to avoid excessive contention.
|
||
|
*/
|
||
|
static DEFINE_PER_CPU(long, kcsan_skip);
|
||
|
|
||
|
static inline atomic_long_t *find_watchpoint(unsigned long addr, size_t size,
|
||
|
bool expect_write,
|
||
|
long *encoded_watchpoint)
|
||
|
{
|
||
|
const int slot = watchpoint_slot(addr);
|
||
|
const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
|
||
|
atomic_long_t *watchpoint;
|
||
|
unsigned long wp_addr_masked;
|
||
|
size_t wp_size;
|
||
|
bool is_write;
|
||
|
int i;
|
||
|
|
||
|
BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
|
||
|
|
||
|
for (i = 0; i < NUM_SLOTS; ++i) {
|
||
|
watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
|
||
|
*encoded_watchpoint = atomic_long_read(watchpoint);
|
||
|
if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
|
||
|
&wp_size, &is_write))
|
||
|
continue;
|
||
|
|
||
|
if (expect_write && !is_write)
|
||
|
continue;
|
||
|
|
||
|
/* Check if the watchpoint matches the access. */
|
||
|
if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
|
||
|
return watchpoint;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static inline atomic_long_t *insert_watchpoint(unsigned long addr, size_t size,
|
||
|
bool is_write)
|
||
|
{
|
||
|
const int slot = watchpoint_slot(addr);
|
||
|
const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
|
||
|
atomic_long_t *watchpoint;
|
||
|
int i;
|
||
|
|
||
|
/* Check slot index logic, ensuring we stay within array bounds. */
|
||
|
BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
|
||
|
BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT + 1) != 0);
|
||
|
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS - 1,
|
||
|
KCSAN_CHECK_ADJACENT) !=
|
||
|
ARRAY_SIZE(watchpoints) - 1);
|
||
|
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS - 1,
|
||
|
KCSAN_CHECK_ADJACENT + 1) !=
|
||
|
ARRAY_SIZE(watchpoints) - NUM_SLOTS);
|
||
|
|
||
|
for (i = 0; i < NUM_SLOTS; ++i) {
|
||
|
long expect_val = INVALID_WATCHPOINT;
|
||
|
|
||
|
/* Try to acquire this slot. */
|
||
|
watchpoint = &watchpoints[SLOT_IDX(slot, i)];
|
||
|
if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val,
|
||
|
encoded_watchpoint))
|
||
|
return watchpoint;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return true if watchpoint was successfully consumed, false otherwise.
|
||
|
*
|
||
|
* This may return false if:
|
||
|
*
|
||
|
* 1. another thread already consumed the watchpoint;
|
||
|
* 2. the thread that set up the watchpoint already removed it;
|
||
|
* 3. the watchpoint was removed and then re-used.
|
||
|
*/
|
||
|
static inline bool try_consume_watchpoint(atomic_long_t *watchpoint,
|
||
|
long encoded_watchpoint)
|
||
|
{
|
||
|
return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint,
|
||
|
CONSUMED_WATCHPOINT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return true if watchpoint was not touched, false if consumed.
|
||
|
*/
|
||
|
static inline bool remove_watchpoint(atomic_long_t *watchpoint)
|
||
|
{
|
||
|
return atomic_long_xchg_relaxed(watchpoint, INVALID_WATCHPOINT) !=
|
||
|
CONSUMED_WATCHPOINT;
|
||
|
}
|
||
|
|
||
|
static inline struct kcsan_ctx *get_ctx(void)
|
||
|
{
|
||
|
/*
|
||
|
* In interrupt, use raw_cpu_ptr to avoid unnecessary checks, that would
|
||
|
* also result in calls that generate warnings in uaccess regions.
|
||
|
*/
|
||
|
return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
|
||
|
}
|
||
|
|
||
|
static inline bool is_atomic(const volatile void *ptr)
|
||
|
{
|
||
|
struct kcsan_ctx *ctx = get_ctx();
|
||
|
|
||
|
if (unlikely(ctx->atomic_next > 0)) {
|
||
|
/*
|
||
|
* Because we do not have separate contexts for nested
|
||
|
* interrupts, in case atomic_next is set, we simply assume that
|
||
|
* the outer interrupt set atomic_next. In the worst case, we
|
||
|
* will conservatively consider operations as atomic. This is a
|
||
|
* reasonable trade-off to make, since this case should be
|
||
|
* extremely rare; however, even if extremely rare, it could
|
||
|
* lead to false positives otherwise.
|
||
|
*/
|
||
|
if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
|
||
|
--ctx->atomic_next; /* in task, or outer interrupt */
|
||
|
return true;
|
||
|
}
|
||
|
if (unlikely(ctx->atomic_nest_count > 0 || ctx->in_flat_atomic))
|
||
|
return true;
|
||
|
|
||
|
return kcsan_is_atomic(ptr);
|
||
|
}
|
||
|
|
||
|
static inline bool should_watch(const volatile void *ptr, int type)
|
||
|
{
|
||
|
/*
|
||
|
* Never set up watchpoints when memory operations are atomic.
|
||
|
*
|
||
|
* Need to check this first, before kcsan_skip check below: (1) atomics
|
||
|
* should not count towards skipped instructions, and (2) to actually
|
||
|
* decrement kcsan_atomic_next for consecutive instruction stream.
|
||
|
*/
|
||
|
if ((type & KCSAN_ACCESS_ATOMIC) != 0 || is_atomic(ptr))
|
||
|
return false;
|
||
|
|
||
|
if (this_cpu_dec_return(kcsan_skip) >= 0)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* NOTE: If we get here, kcsan_skip must always be reset in slow path
|
||
|
* via reset_kcsan_skip() to avoid underflow.
|
||
|
*/
|
||
|
|
||
|
/* this operation should be watched */
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static inline void reset_kcsan_skip(void)
|
||
|
{
|
||
|
long skip_count = CONFIG_KCSAN_SKIP_WATCH -
|
||
|
(IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
|
||
|
prandom_u32_max(CONFIG_KCSAN_SKIP_WATCH) :
|
||
|
0);
|
||
|
this_cpu_write(kcsan_skip, skip_count);
|
||
|
}
|
||
|
|
||
|
static inline bool kcsan_is_enabled(void)
|
||
|
{
|
||
|
return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
|
||
|
}
|
||
|
|
||
|
static inline unsigned int get_delay(void)
|
||
|
{
|
||
|
unsigned int delay = in_task() ? CONFIG_KCSAN_UDELAY_TASK :
|
||
|
CONFIG_KCSAN_UDELAY_INTERRUPT;
|
||
|
return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
|
||
|
prandom_u32_max(delay) :
|
||
|
0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pull everything together: check_access() below contains the performance
|
||
|
* critical operations; the fast-path (including check_access) functions should
|
||
|
* all be inlinable by the instrumentation functions.
|
||
|
*
|
||
|
* The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
|
||
|
* non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
|
||
|
* be filtered from the stacktrace, as well as give them unique names for the
|
||
|
* UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
|
||
|
* since they do not access any user memory, but instrumentation is still
|
||
|
* emitted in UACCESS regions.
|
||
|
*/
|
||
|
|
||
|
static noinline void kcsan_found_watchpoint(const volatile void *ptr,
|
||
|
size_t size, bool is_write,
|
||
|
atomic_long_t *watchpoint,
|
||
|
long encoded_watchpoint)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
bool consumed;
|
||
|
|
||
|
if (!kcsan_is_enabled())
|
||
|
return;
|
||
|
/*
|
||
|
* Consume the watchpoint as soon as possible, to minimize the chances
|
||
|
* of !consumed. Consuming the watchpoint must always be guarded by
|
||
|
* kcsan_is_enabled() check, as otherwise we might erroneously
|
||
|
* triggering reports when disabled.
|
||
|
*/
|
||
|
consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
|
||
|
|
||
|
/* keep this after try_consume_watchpoint */
|
||
|
flags = user_access_save();
|
||
|
|
||
|
if (consumed) {
|
||
|
kcsan_report(ptr, size, is_write, true, raw_smp_processor_id(),
|
||
|
KCSAN_REPORT_CONSUMED_WATCHPOINT);
|
||
|
} else {
|
||
|
/*
|
||
|
* The other thread may not print any diagnostics, as it has
|
||
|
* already removed the watchpoint, or another thread consumed
|
||
|
* the watchpoint before this thread.
|
||
|
*/
|
||
|
kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
|
||
|
}
|
||
|
kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
|
||
|
|
||
|
user_access_restore(flags);
|
||
|
}
|
||
|
|
||
|
static noinline void kcsan_setup_watchpoint(const volatile void *ptr,
|
||
|
size_t size, bool is_write)
|
||
|
{
|
||
|
atomic_long_t *watchpoint;
|
||
|
union {
|
||
|
u8 _1;
|
||
|
u16 _2;
|
||
|
u32 _4;
|
||
|
u64 _8;
|
||
|
} expect_value;
|
||
|
bool value_change = false;
|
||
|
unsigned long ua_flags = user_access_save();
|
||
|
unsigned long irq_flags;
|
||
|
|
||
|
/*
|
||
|
* Always reset kcsan_skip counter in slow-path to avoid underflow; see
|
||
|
* should_watch().
|
||
|
*/
|
||
|
reset_kcsan_skip();
|
||
|
|
||
|
if (!kcsan_is_enabled())
|
||
|
goto out;
|
||
|
|
||
|
if (!check_encodable((unsigned long)ptr, size)) {
|
||
|
kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Disable interrupts & preemptions to avoid another thread on the same
|
||
|
* CPU accessing memory locations for the set up watchpoint; this is to
|
||
|
* avoid reporting races to e.g. CPU-local data.
|
||
|
*
|
||
|
* An alternative would be adding the source CPU to the watchpoint
|
||
|
* encoding, and checking that watchpoint-CPU != this-CPU. There are
|
||
|
* several problems with this:
|
||
|
* 1. we should avoid stealing more bits from the watchpoint encoding
|
||
|
* as it would affect accuracy, as well as increase performance
|
||
|
* overhead in the fast-path;
|
||
|
* 2. if we are preempted, but there *is* a genuine data race, we
|
||
|
* would *not* report it -- since this is the common case (vs.
|
||
|
* CPU-local data accesses), it makes more sense (from a data race
|
||
|
* detection point of view) to simply disable preemptions to ensure
|
||
|
* as many tasks as possible run on other CPUs.
|
||
|
*/
|
||
|
local_irq_save(irq_flags);
|
||
|
|
||
|
watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
|
||
|
if (watchpoint == NULL) {
|
||
|
/*
|
||
|
* Out of capacity: the size of `watchpoints`, and the frequency
|
||
|
* with which `should_watch()` returns true should be tweaked so
|
||
|
* that this case happens very rarely.
|
||
|
*/
|
||
|
kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
|
||
|
kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
|
||
|
|
||
|
/*
|
||
|
* Read the current value, to later check and infer a race if the data
|
||
|
* was modified via a non-instrumented access, e.g. from a device.
|
||
|
*/
|
||
|
switch (size) {
|
||
|
case 1:
|
||
|
expect_value._1 = READ_ONCE(*(const u8 *)ptr);
|
||
|
break;
|
||
|
case 2:
|
||
|
expect_value._2 = READ_ONCE(*(const u16 *)ptr);
|
||
|
break;
|
||
|
case 4:
|
||
|
expect_value._4 = READ_ONCE(*(const u32 *)ptr);
|
||
|
break;
|
||
|
case 8:
|
||
|
expect_value._8 = READ_ONCE(*(const u64 *)ptr);
|
||
|
break;
|
||
|
default:
|
||
|
break; /* ignore; we do not diff the values */
|
||
|
}
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
|
||
|
kcsan_disable_current();
|
||
|
pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
|
||
|
is_write ? "write" : "read", size, ptr,
|
||
|
watchpoint_slot((unsigned long)ptr),
|
||
|
encode_watchpoint((unsigned long)ptr, size, is_write));
|
||
|
kcsan_enable_current();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Delay this thread, to increase probability of observing a racy
|
||
|
* conflicting access.
|
||
|
*/
|
||
|
udelay(get_delay());
|
||
|
|
||
|
/*
|
||
|
* Re-read value, and check if it is as expected; if not, we infer a
|
||
|
* racy access.
|
||
|
*/
|
||
|
switch (size) {
|
||
|
case 1:
|
||
|
value_change = expect_value._1 != READ_ONCE(*(const u8 *)ptr);
|
||
|
break;
|
||
|
case 2:
|
||
|
value_change = expect_value._2 != READ_ONCE(*(const u16 *)ptr);
|
||
|
break;
|
||
|
case 4:
|
||
|
value_change = expect_value._4 != READ_ONCE(*(const u32 *)ptr);
|
||
|
break;
|
||
|
case 8:
|
||
|
value_change = expect_value._8 != READ_ONCE(*(const u64 *)ptr);
|
||
|
break;
|
||
|
default:
|
||
|
break; /* ignore; we do not diff the values */
|
||
|
}
|
||
|
|
||
|
/* Check if this access raced with another. */
|
||
|
if (!remove_watchpoint(watchpoint)) {
|
||
|
/*
|
||
|
* No need to increment 'data_races' counter, as the racing
|
||
|
* thread already did.
|
||
|
*/
|
||
|
kcsan_report(ptr, size, is_write, size > 8 || value_change,
|
||
|
smp_processor_id(), KCSAN_REPORT_RACE_SIGNAL);
|
||
|
} else if (value_change) {
|
||
|
/* Inferring a race, since the value should not have changed. */
|
||
|
kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
|
||
|
if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN))
|
||
|
kcsan_report(ptr, size, is_write, true,
|
||
|
smp_processor_id(),
|
||
|
KCSAN_REPORT_RACE_UNKNOWN_ORIGIN);
|
||
|
}
|
||
|
|
||
|
kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
|
||
|
out_unlock:
|
||
|
local_irq_restore(irq_flags);
|
||
|
out:
|
||
|
user_access_restore(ua_flags);
|
||
|
}
|
||
|
|
||
|
static __always_inline void check_access(const volatile void *ptr, size_t size,
|
||
|
int type)
|
||
|
{
|
||
|
const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
|
||
|
atomic_long_t *watchpoint;
|
||
|
long encoded_watchpoint;
|
||
|
|
||
|
/*
|
||
|
* Avoid user_access_save in fast-path: find_watchpoint is safe without
|
||
|
* user_access_save, as the address that ptr points to is only used to
|
||
|
* check if a watchpoint exists; ptr is never dereferenced.
|
||
|
*/
|
||
|
watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
|
||
|
&encoded_watchpoint);
|
||
|
/*
|
||
|
* It is safe to check kcsan_is_enabled() after find_watchpoint in the
|
||
|
* slow-path, as long as no state changes that cause a data race to be
|
||
|
* detected and reported have occurred until kcsan_is_enabled() is
|
||
|
* checked.
|
||
|
*/
|
||
|
|
||
|
if (unlikely(watchpoint != NULL))
|
||
|
kcsan_found_watchpoint(ptr, size, is_write, watchpoint,
|
||
|
encoded_watchpoint);
|
||
|
else if (unlikely(should_watch(ptr, type)))
|
||
|
kcsan_setup_watchpoint(ptr, size, is_write);
|
||
|
}
|
||
|
|
||
|
/* === Public interface ===================================================== */
|
||
|
|
||
|
void __init kcsan_init(void)
|
||
|
{
|
||
|
BUG_ON(!in_task());
|
||
|
|
||
|
kcsan_debugfs_init();
|
||
|
|
||
|
/*
|
||
|
* We are in the init task, and no other tasks should be running;
|
||
|
* WRITE_ONCE without memory barrier is sufficient.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE))
|
||
|
WRITE_ONCE(kcsan_enabled, true);
|
||
|
}
|
||
|
|
||
|
/* === Exported interface =================================================== */
|
||
|
|
||
|
void kcsan_disable_current(void)
|
||
|
{
|
||
|
++get_ctx()->disable_count;
|
||
|
}
|
||
|
EXPORT_SYMBOL(kcsan_disable_current);
|
||
|
|
||
|
void kcsan_enable_current(void)
|
||
|
{
|
||
|
if (get_ctx()->disable_count-- == 0) {
|
||
|
/*
|
||
|
* Warn if kcsan_enable_current() calls are unbalanced with
|
||
|
* kcsan_disable_current() calls, which causes disable_count to
|
||
|
* become negative and should not happen.
|
||
|
*/
|
||
|
kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
|
||
|
kcsan_disable_current(); /* disable to generate warning */
|
||
|
WARN(1, "Unbalanced %s()", __func__);
|
||
|
kcsan_enable_current();
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(kcsan_enable_current);
|
||
|
|
||
|
void kcsan_nestable_atomic_begin(void)
|
||
|
{
|
||
|
/*
|
||
|
* Do *not* check and warn if we are in a flat atomic region: nestable
|
||
|
* and flat atomic regions are independent from each other.
|
||
|
* See include/linux/kcsan.h: struct kcsan_ctx comments for more
|
||
|
* comments.
|
||
|
*/
|
||
|
|
||
|
++get_ctx()->atomic_nest_count;
|
||
|
}
|
||
|
EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
|
||
|
|
||
|
void kcsan_nestable_atomic_end(void)
|
||
|
{
|
||
|
if (get_ctx()->atomic_nest_count-- == 0) {
|
||
|
/*
|
||
|
* Warn if kcsan_nestable_atomic_end() calls are unbalanced with
|
||
|
* kcsan_nestable_atomic_begin() calls, which causes
|
||
|
* atomic_nest_count to become negative and should not happen.
|
||
|
*/
|
||
|
kcsan_nestable_atomic_begin(); /* restore to 0 */
|
||
|
kcsan_disable_current(); /* disable to generate warning */
|
||
|
WARN(1, "Unbalanced %s()", __func__);
|
||
|
kcsan_enable_current();
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(kcsan_nestable_atomic_end);
|
||
|
|
||
|
void kcsan_flat_atomic_begin(void)
|
||
|
{
|
||
|
get_ctx()->in_flat_atomic = true;
|
||
|
}
|
||
|
EXPORT_SYMBOL(kcsan_flat_atomic_begin);
|
||
|
|
||
|
void kcsan_flat_atomic_end(void)
|
||
|
{
|
||
|
get_ctx()->in_flat_atomic = false;
|
||
|
}
|
||
|
EXPORT_SYMBOL(kcsan_flat_atomic_end);
|
||
|
|
||
|
void kcsan_atomic_next(int n)
|
||
|
{
|
||
|
get_ctx()->atomic_next = n;
|
||
|
}
|
||
|
EXPORT_SYMBOL(kcsan_atomic_next);
|
||
|
|
||
|
void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
|
||
|
{
|
||
|
check_access(ptr, size, type);
|
||
|
}
|
||
|
EXPORT_SYMBOL(__kcsan_check_access);
|
||
|
|
||
|
/*
|
||
|
* KCSAN uses the same instrumentation that is emitted by supported compilers
|
||
|
* for ThreadSanitizer (TSAN).
|
||
|
*
|
||
|
* When enabled, the compiler emits instrumentation calls (the functions
|
||
|
* prefixed with "__tsan" below) for all loads and stores that it generated;
|
||
|
* inline asm is not instrumented.
|
||
|
*
|
||
|
* Note that, not all supported compiler versions distinguish aligned/unaligned
|
||
|
* accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
|
||
|
* version to the generic version, which can handle both.
|
||
|
*/
|
||
|
|
||
|
#define DEFINE_TSAN_READ_WRITE(size) \
|
||
|
void __tsan_read##size(void *ptr) \
|
||
|
{ \
|
||
|
check_access(ptr, size, 0); \
|
||
|
} \
|
||
|
EXPORT_SYMBOL(__tsan_read##size); \
|
||
|
void __tsan_unaligned_read##size(void *ptr) \
|
||
|
__alias(__tsan_read##size); \
|
||
|
EXPORT_SYMBOL(__tsan_unaligned_read##size); \
|
||
|
void __tsan_write##size(void *ptr) \
|
||
|
{ \
|
||
|
check_access(ptr, size, KCSAN_ACCESS_WRITE); \
|
||
|
} \
|
||
|
EXPORT_SYMBOL(__tsan_write##size); \
|
||
|
void __tsan_unaligned_write##size(void *ptr) \
|
||
|
__alias(__tsan_write##size); \
|
||
|
EXPORT_SYMBOL(__tsan_unaligned_write##size)
|
||
|
|
||
|
DEFINE_TSAN_READ_WRITE(1);
|
||
|
DEFINE_TSAN_READ_WRITE(2);
|
||
|
DEFINE_TSAN_READ_WRITE(4);
|
||
|
DEFINE_TSAN_READ_WRITE(8);
|
||
|
DEFINE_TSAN_READ_WRITE(16);
|
||
|
|
||
|
void __tsan_read_range(void *ptr, size_t size)
|
||
|
{
|
||
|
check_access(ptr, size, 0);
|
||
|
}
|
||
|
EXPORT_SYMBOL(__tsan_read_range);
|
||
|
|
||
|
void __tsan_write_range(void *ptr, size_t size)
|
||
|
{
|
||
|
check_access(ptr, size, KCSAN_ACCESS_WRITE);
|
||
|
}
|
||
|
EXPORT_SYMBOL(__tsan_write_range);
|
||
|
|
||
|
/*
|
||
|
* The below are not required by KCSAN, but can still be emitted by the
|
||
|
* compiler.
|
||
|
*/
|
||
|
void __tsan_func_entry(void *call_pc)
|
||
|
{
|
||
|
}
|
||
|
EXPORT_SYMBOL(__tsan_func_entry);
|
||
|
void __tsan_func_exit(void)
|
||
|
{
|
||
|
}
|
||
|
EXPORT_SYMBOL(__tsan_func_exit);
|
||
|
void __tsan_init(void)
|
||
|
{
|
||
|
}
|
||
|
EXPORT_SYMBOL(__tsan_init);
|