linux/tools/perf/bench/sched-messaging.c

333 lines
7.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
*
perf bench: Add "all" pseudo subsystem and "all" pseudo suite This patch adds a new "all" pseudo subsystem and an "all" pseudo suite. These are for testing all subsystem and its all suite, or all suite of one subsystem. (This patch also contains a few trivial comment fixes for bench/* and output style fixes. I judged that there are no necessity to make them into individual patch.) Example of use: | % ./perf bench sched all # Test all suites of sched subsystem | # Running sched/messaging benchmark... | # 20 sender and receiver processes per group | # 10 groups == 400 processes run | | Total time: 0.414 [sec] | | # Running sched/pipe benchmark... | # Extecuted 1000000 pipe operations between two tasks | | Total time: 10.999 [sec] | | 10.999317 usecs/op | 90914 ops/sec | | % ./perf bench all # Test all suites of all subsystems | # Running sched/messaging benchmark... | # 20 sender and receiver processes per group | # 10 groups == 400 processes run | | Total time: 0.420 [sec] | | # Running sched/pipe benchmark... | # Extecuted 1000000 pipe operations between two tasks | | Total time: 11.741 [sec] | | 11.741346 usecs/op | 85169 ops/sec | | # Running mem/memcpy benchmark... | # Copying 1MB Bytes from 0x7ff33e920010 to 0x7ff3401ae010 ... | | 808.407437 MB/Sec Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1260691319-4683-1-git-send-email-mitake@dcl.info.waseda.ac.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-13 11:01:59 +03:00
* sched-messaging.c
*
* messaging: Benchmark for scheduler and IPC mechanisms
*
* Based on hackbench by Rusty Russell <rusty@rustcorp.com.au>
* Ported to perf by Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
*
*/
#include "../perf.h"
#include "../util/util.h"
#include <subcmd/parse-options.h>
#include "../builtin.h"
#include "bench.h"
/* Test groups of 20 processes spraying to 20 receivers */
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <poll.h>
#include <limits.h>
#include <err.h>
#include <linux/time64.h>
#define DATASIZE 100
perf: Fix endianness argument compatibility with OPT_BOOLEAN() and introduce OPT_INCR() Parsing an option from the command line with OPT_BOOLEAN on a bool data type would not work on a big-endian machine due to the manner in which the boolean was being cast into an int and incremented. For example, running 'perf probe --list' on a PowerPC machine would fail to properly set the list_events bool and would therefore print out the usage information and terminate. This patch makes OPT_BOOLEAN work as expected with a bool datatype. For cases where the original OPT_BOOLEAN was intentionally being used to increment an int each time it was passed in on the command line, this patch introduces OPT_INCR with the old behaviour of OPT_BOOLEAN (the verbose variable is currently the only such example of this). I have reviewed every use of OPT_BOOLEAN to verify that a true C99 bool was passed. Where integers were used, I verified that they were only being used for boolean logic and changed them to bools to ensure that they would not be mistakenly used as ints. The major exception was the verbose variable which now uses OPT_INCR instead of OPT_BOOLEAN. Signed-off-by: Ian Munsie <imunsie@au.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: <stable@kernel.org> # NOTE: wont apply to .3[34].x cleanly, please backport Cc: Git development list <git@vger.kernel.org> Cc: Ian Munsie <imunsie@au1.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Valdis.Kletnieks@vt.edu Cc: WANG Cong <amwang@redhat.com> Cc: Thiago Farina <tfransosi@gmail.com> Cc: Masami Hiramatsu <mhiramat@redhat.com> Cc: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com> Cc: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Mike Galbraith <efault@gmx.de> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: John Kacur <jkacur@redhat.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> LKML-Reference: <1271147857-11604-1-git-send-email-imunsie@au.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-04-13 12:37:33 +04:00
static bool use_pipes = false;
static unsigned int nr_loops = 100;
perf: Fix endianness argument compatibility with OPT_BOOLEAN() and introduce OPT_INCR() Parsing an option from the command line with OPT_BOOLEAN on a bool data type would not work on a big-endian machine due to the manner in which the boolean was being cast into an int and incremented. For example, running 'perf probe --list' on a PowerPC machine would fail to properly set the list_events bool and would therefore print out the usage information and terminate. This patch makes OPT_BOOLEAN work as expected with a bool datatype. For cases where the original OPT_BOOLEAN was intentionally being used to increment an int each time it was passed in on the command line, this patch introduces OPT_INCR with the old behaviour of OPT_BOOLEAN (the verbose variable is currently the only such example of this). I have reviewed every use of OPT_BOOLEAN to verify that a true C99 bool was passed. Where integers were used, I verified that they were only being used for boolean logic and changed them to bools to ensure that they would not be mistakenly used as ints. The major exception was the verbose variable which now uses OPT_INCR instead of OPT_BOOLEAN. Signed-off-by: Ian Munsie <imunsie@au.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: <stable@kernel.org> # NOTE: wont apply to .3[34].x cleanly, please backport Cc: Git development list <git@vger.kernel.org> Cc: Ian Munsie <imunsie@au1.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Valdis.Kletnieks@vt.edu Cc: WANG Cong <amwang@redhat.com> Cc: Thiago Farina <tfransosi@gmail.com> Cc: Masami Hiramatsu <mhiramat@redhat.com> Cc: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com> Cc: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Mike Galbraith <efault@gmx.de> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: John Kacur <jkacur@redhat.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> LKML-Reference: <1271147857-11604-1-git-send-email-imunsie@au.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-04-13 12:37:33 +04:00
static bool thread_mode = false;
static unsigned int num_groups = 10;
struct sender_context {
unsigned int num_fds;
int ready_out;
int wakefd;
int out_fds[0];
};
struct receiver_context {
unsigned int num_packets;
int in_fds[2];
int ready_out;
int wakefd;
};
static void fdpair(int fds[2])
{
if (use_pipes) {
if (pipe(fds) == 0)
return;
} else {
if (socketpair(AF_UNIX, SOCK_STREAM, 0, fds) == 0)
return;
}
err(EXIT_FAILURE, use_pipes ? "pipe()" : "socketpair()");
}
/* Block until we're ready to go */
static void ready(int ready_out, int wakefd)
{
char dummy;
struct pollfd pollfd = { .fd = wakefd, .events = POLLIN };
/* Tell them we're ready. */
if (write(ready_out, &dummy, 1) != 1)
err(EXIT_FAILURE, "CLIENT: ready write");
/* Wait for "GO" signal */
if (poll(&pollfd, 1, -1) != 1)
err(EXIT_FAILURE, "poll");
}
/* Sender sprays nr_loops messages down each file descriptor */
static void *sender(struct sender_context *ctx)
{
char data[DATASIZE];
unsigned int i, j;
ready(ctx->ready_out, ctx->wakefd);
/* Now pump to every receiver. */
for (i = 0; i < nr_loops; i++) {
for (j = 0; j < ctx->num_fds; j++) {
int ret, done = 0;
again:
ret = write(ctx->out_fds[j], data + done,
sizeof(data)-done);
if (ret < 0)
err(EXIT_FAILURE, "SENDER: write");
done += ret;
if (done < DATASIZE)
goto again;
}
}
return NULL;
}
/* One receiver per fd */
static void *receiver(struct receiver_context* ctx)
{
unsigned int i;
if (!thread_mode)
close(ctx->in_fds[1]);
/* Wait for start... */
ready(ctx->ready_out, ctx->wakefd);
/* Receive them all */
for (i = 0; i < ctx->num_packets; i++) {
char data[DATASIZE];
int ret, done = 0;
again:
ret = read(ctx->in_fds[0], data + done, DATASIZE - done);
if (ret < 0)
err(EXIT_FAILURE, "SERVER: read");
done += ret;
if (done < DATASIZE)
goto again;
}
return NULL;
}
static pthread_t create_worker(void *ctx, void *(*func)(void *))
{
pthread_attr_t attr;
pthread_t childid;
int ret;
if (!thread_mode) {
/* process mode */
/* Fork the receiver. */
switch (fork()) {
case -1:
err(EXIT_FAILURE, "fork()");
break;
case 0:
(*func) (ctx);
exit(0);
break;
default:
break;
}
return (pthread_t)0;
}
if (pthread_attr_init(&attr) != 0)
err(EXIT_FAILURE, "pthread_attr_init:");
#ifndef __ia64__
if (pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN) != 0)
err(EXIT_FAILURE, "pthread_attr_setstacksize");
#endif
ret = pthread_create(&childid, &attr, func, ctx);
if (ret != 0)
err(EXIT_FAILURE, "pthread_create failed");
return childid;
}
static void reap_worker(pthread_t id)
{
int proc_status;
void *thread_status;
if (!thread_mode) {
/* process mode */
wait(&proc_status);
if (!WIFEXITED(proc_status))
exit(1);
} else {
pthread_join(id, &thread_status);
}
}
/* One group of senders and receivers */
static unsigned int group(pthread_t *pth,
unsigned int num_fds,
int ready_out,
int wakefd)
{
unsigned int i;
struct sender_context *snd_ctx = malloc(sizeof(struct sender_context)
+ num_fds * sizeof(int));
if (!snd_ctx)
err(EXIT_FAILURE, "malloc()");
for (i = 0; i < num_fds; i++) {
int fds[2];
struct receiver_context *ctx = malloc(sizeof(*ctx));
if (!ctx)
err(EXIT_FAILURE, "malloc()");
/* Create the pipe between client and server */
fdpair(fds);
ctx->num_packets = num_fds * nr_loops;
ctx->in_fds[0] = fds[0];
ctx->in_fds[1] = fds[1];
ctx->ready_out = ready_out;
ctx->wakefd = wakefd;
pth[i] = create_worker(ctx, (void *)receiver);
snd_ctx->out_fds[i] = fds[1];
if (!thread_mode)
close(fds[0]);
}
/* Now we have all the fds, fork the senders */
for (i = 0; i < num_fds; i++) {
snd_ctx->ready_out = ready_out;
snd_ctx->wakefd = wakefd;
snd_ctx->num_fds = num_fds;
pth[num_fds+i] = create_worker(snd_ctx, (void *)sender);
}
/* Close the fds we have left */
if (!thread_mode)
for (i = 0; i < num_fds; i++)
close(snd_ctx->out_fds[i]);
/* Return number of children to reap */
return num_fds * 2;
}
static const struct option options[] = {
OPT_BOOLEAN('p', "pipe", &use_pipes,
"Use pipe() instead of socketpair()"),
OPT_BOOLEAN('t', "thread", &thread_mode,
"Be multi thread instead of multi process"),
OPT_UINTEGER('g', "group", &num_groups, "Specify number of groups"),
OPT_UINTEGER('l', "nr_loops", &nr_loops, "Specify the number of loops to run (default: 100)"),
OPT_END()
};
static const char * const bench_sched_message_usage[] = {
"perf bench sched messaging <options>",
NULL
};
int bench_sched_messaging(int argc, const char **argv)
{
unsigned int i, total_children;
struct timeval start, stop, diff;
unsigned int num_fds = 20;
int readyfds[2], wakefds[2];
char dummy;
pthread_t *pth_tab;
argc = parse_options(argc, argv, options,
bench_sched_message_usage, 0);
pth_tab = malloc(num_fds * 2 * num_groups * sizeof(pthread_t));
if (!pth_tab)
err(EXIT_FAILURE, "main:malloc()");
fdpair(readyfds);
fdpair(wakefds);
total_children = 0;
for (i = 0; i < num_groups; i++)
total_children += group(pth_tab+total_children, num_fds,
readyfds[1], wakefds[0]);
/* Wait for everyone to be ready */
for (i = 0; i < total_children; i++)
if (read(readyfds[0], &dummy, 1) != 1)
err(EXIT_FAILURE, "Reading for readyfds");
gettimeofday(&start, NULL);
/* Kick them off */
if (write(wakefds[1], &dummy, 1) != 1)
err(EXIT_FAILURE, "Writing to start them");
/* Reap them all */
for (i = 0; i < total_children; i++)
reap_worker(pth_tab[i]);
gettimeofday(&stop, NULL);
timersub(&stop, &start, &diff);
switch (bench_format) {
case BENCH_FORMAT_DEFAULT:
printf("# %d sender and receiver %s per group\n",
num_fds, thread_mode ? "threads" : "processes");
printf("# %d groups == %d %s run\n\n",
num_groups, num_groups * 2 * num_fds,
thread_mode ? "threads" : "processes");
printf(" %14s: %lu.%03lu [sec]\n", "Total time",
diff.tv_sec,
(unsigned long) (diff.tv_usec / USEC_PER_MSEC));
break;
case BENCH_FORMAT_SIMPLE:
printf("%lu.%03lu\n", diff.tv_sec,
(unsigned long) (diff.tv_usec / USEC_PER_MSEC));
break;
default:
/* reaching here is something disaster */
fprintf(stderr, "Unknown format:%d\n", bench_format);
exit(1);
break;
}
free(pth_tab);
return 0;
}