License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
2005-04-17 02:20:36 +04:00
/*
* linux / mm / mlock . c
*
* ( C ) Copyright 1995 Linus Torvalds
* ( C ) Copyright 2002 Christoph Hellwig
*/
2006-01-11 23:17:46 +03:00
# include <linux/capability.h>
2005-04-17 02:20:36 +04:00
# include <linux/mman.h>
# include <linux/mm.h>
2017-02-08 20:51:30 +03:00
# include <linux/sched/user.h>
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
# include <linux/swap.h>
# include <linux/swapops.h>
# include <linux/pagemap.h>
2013-09-12 01:22:29 +04:00
# include <linux/pagevec.h>
2005-04-17 02:20:36 +04:00
# include <linux/mempolicy.h>
# include <linux/syscalls.h>
Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-21 01:22:52 +04:00
# include <linux/sched.h>
2011-10-16 10:01:52 +04:00
# include <linux/export.h>
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
# include <linux/rmap.h>
# include <linux/mmzone.h>
# include <linux/hugetlb.h>
2013-09-12 01:22:29 +04:00
# include <linux/memcontrol.h>
# include <linux/mm_inline.h>
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
# include "internal.h"
2005-04-17 02:20:36 +04:00
2016-01-16 03:57:22 +03:00
bool can_do_mlock ( void )
Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-21 01:22:52 +04:00
{
2010-03-06 00:41:44 +03:00
if ( rlimit ( RLIMIT_MEMLOCK ) ! = 0 )
2016-01-16 03:57:22 +03:00
return true ;
2015-03-13 02:26:17 +03:00
if ( capable ( CAP_IPC_LOCK ) )
2016-01-16 03:57:22 +03:00
return true ;
return false ;
Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-21 01:22:52 +04:00
}
EXPORT_SYMBOL ( can_do_mlock ) ;
2005-04-17 02:20:36 +04:00
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
/*
* Mlocked pages are marked with PageMlocked ( ) flag for efficient testing
* in vmscan and , possibly , the fault path ; and to support semi - accurate
* statistics .
*
* An mlocked page [ PageMlocked ( page ) ] is unevictable . As such , it will
* be placed on the LRU " unevictable " list , rather than the [ in ] active lists .
* The unevictable list is an LRU sibling list to the [ in ] active lists .
* PageUnevictable is set to indicate the unevictable state .
*
* When lazy mlocking via vmscan , it is important to ensure that the
* vma ' s VM_LOCKED status is not concurrently being modified , otherwise we
* may have mlocked a page that is being munlocked . So lazy mlock must take
2020-06-09 07:33:54 +03:00
* the mmap_lock for read , and verify that the vma really is locked
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
* ( see mm / rmap . c ) .
*/
/*
* LRU accounting for clear_page_mlock ( )
*/
mm: use clear_page_mlock() in page_remove_rmap()
We had thought that pages could no longer get freed while still marked as
mlocked; but Johannes Weiner posted this program to demonstrate that
truncating an mlocked private file mapping containing COWed pages is still
mishandled:
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
int main(void)
{
char *map;
int fd;
system("grep mlockfreed /proc/vmstat");
fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR);
unlink("chigurh");
ftruncate(fd, 4096);
map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0);
map[0] = 11;
mlock(map, sizeof(fd));
ftruncate(fd, 0);
close(fd);
munlock(map, sizeof(fd));
munmap(map, 4096);
system("grep mlockfreed /proc/vmstat");
return 0;
}
The anon COWed pages are not caught by truncation's clear_page_mlock() of
the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to
look out for them there in page_remove_rmap(). Indeed, why should
truncation or invalidation be doing the clear_page_mlock() when removing
from pagecache? mlock is a property of mapping in userspace, not a
property of pagecache: an mlocked unmapped page is nonsensical.
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 03:33:19 +04:00
void clear_page_mlock ( struct page * page )
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
{
mm: use clear_page_mlock() in page_remove_rmap()
We had thought that pages could no longer get freed while still marked as
mlocked; but Johannes Weiner posted this program to demonstrate that
truncating an mlocked private file mapping containing COWed pages is still
mishandled:
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
int main(void)
{
char *map;
int fd;
system("grep mlockfreed /proc/vmstat");
fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR);
unlink("chigurh");
ftruncate(fd, 4096);
map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0);
map[0] = 11;
mlock(map, sizeof(fd));
ftruncate(fd, 0);
close(fd);
munlock(map, sizeof(fd));
munmap(map, 4096);
system("grep mlockfreed /proc/vmstat");
return 0;
}
The anon COWed pages are not caught by truncation's clear_page_mlock() of
the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to
look out for them there in page_remove_rmap(). Indeed, why should
truncation or invalidation be doing the clear_page_mlock() when removing
from pagecache? mlock is a property of mapping in userspace, not a
property of pagecache: an mlocked unmapped page is nonsensical.
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 03:33:19 +04:00
if ( ! TestClearPageMlocked ( page ) )
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
return ;
mm, thp: fix mlock statistics
NR_MLOCK is only accounted in single page units: there's no logic to
handle transparent hugepages. This patch checks the appropriate number of
pages to adjust the statistics by so that the correct amount of memory is
reflected.
Currently:
$ grep Mlocked /proc/meminfo
Mlocked: 19636 kB
#define MAP_SIZE (4 << 30) /* 4GB */
void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
mlock(ptr, MAP_SIZE);
$ grep Mlocked /proc/meminfo
Mlocked: 29844 kB
munlock(ptr, MAP_SIZE);
$ grep Mlocked /proc/meminfo
Mlocked: 19636 kB
And with this patch:
$ grep Mlock /proc/meminfo
Mlocked: 19636 kB
mlock(ptr, MAP_SIZE);
$ grep Mlock /proc/meminfo
Mlocked: 4213664 kB
munlock(ptr, MAP_SIZE);
$ grep Mlock /proc/meminfo
Mlocked: 19636 kB
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Hugh Dickens <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 03:34:06 +04:00
mod_zone_page_state ( page_zone ( page ) , NR_MLOCK ,
- hpage_nr_pages ( page ) ) ;
2008-10-19 07:26:51 +04:00
count_vm_event ( UNEVICTABLE_PGCLEARED ) ;
mm, mlock, vmscan: no more skipping pagevecs
When a thread mlocks an address space backed either by file pages which
are currently not present in memory or swapped out anon pages (not in
swapcache), a new page is allocated and added to the local pagevec
(lru_add_pvec), I/O is triggered and the thread then sleeps on the page.
On I/O completion, the thread can wake on a different CPU, the mlock
syscall will then sets the PageMlocked() bit of the page but will not be
able to put that page in unevictable LRU as the page is on the pagevec
of a different CPU. Even on drain, that page will go to evictable LRU
because the PageMlocked() bit is not checked on pagevec drain.
The page will eventually go to right LRU on reclaim but the LRU stats
will remain skewed for a long time.
This patch puts all the pages, even unevictable, to the pagevecs and on
the drain, the pages will be added on their LRUs correctly by checking
their evictability. This resolves the mlocked pages on pagevec of other
CPUs issue because when those pagevecs will be drained, the mlocked file
pages will go to unevictable LRU. Also this makes the race with munlock
easier to resolve because the pagevec drains happen in LRU lock.
However there is still one place which makes a page evictable and does
PageLRU check on that page without LRU lock and needs special attention.
TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock().
#0: __pagevec_lru_add_fn #1: clear_page_mlock
SetPageLRU() if (!TestClearPageMlocked())
return
smp_mb() // <--required
// inside does PageLRU
if (!PageMlocked()) if (isolate_lru_page())
move to evictable LRU putback_lru_page()
else
move to unevictable LRU
In '#1', TestClearPageMlocked() provides full memory barrier semantics
and thus the PageLRU check (inside isolate_lru_page) can not be
reordered before it.
In '#0', without explicit memory barrier, the PageMlocked() check can be
reordered before SetPageLRU(). If that happens, '#0' can put a page in
unevictable LRU and '#1' might have just cleared the Mlocked bit of that
page but fails to isolate as PageLRU fails as '#0' still hasn't set
PageLRU bit of that page. That page will be stranded on the unevictable
LRU.
There is one (good) side effect though. Without this patch, the pages
allocated for System V shared memory segment are added to evictable LRUs
even after shmctl(SHM_LOCK) on that segment. This patch will correctly
put such pages to unevictable LRU.
Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-22 01:45:28 +03:00
/*
* The previous TestClearPageMlocked ( ) corresponds to the smp_mb ( )
* in __pagevec_lru_add_fn ( ) .
*
* See __pagevec_lru_add_fn for more explanation .
*/
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
if ( ! isolate_lru_page ( page ) ) {
putback_lru_page ( page ) ;
} else {
/*
2008-11-13 00:26:53 +03:00
* We lost the race . the page already moved to evictable list .
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
*/
2008-11-13 00:26:53 +03:00
if ( PageUnevictable ( page ) )
2008-10-19 07:26:51 +04:00
count_vm_event ( UNEVICTABLE_PGSTRANDED ) ;
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
}
}
/*
* Mark page as mlocked if not already .
* If page on LRU , isolate and putback to move to unevictable list .
*/
void mlock_vma_page ( struct page * page )
{
2014-04-08 02:37:50 +04:00
/* Serialize with page migration */
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
BUG_ON ( ! PageLocked ( page ) ) ;
2016-01-16 03:54:33 +03:00
VM_BUG_ON_PAGE ( PageTail ( page ) , page ) ;
VM_BUG_ON_PAGE ( PageCompound ( page ) & & PageDoubleMap ( page ) , page ) ;
2008-10-19 07:26:51 +04:00
if ( ! TestSetPageMlocked ( page ) ) {
mm, thp: fix mlock statistics
NR_MLOCK is only accounted in single page units: there's no logic to
handle transparent hugepages. This patch checks the appropriate number of
pages to adjust the statistics by so that the correct amount of memory is
reflected.
Currently:
$ grep Mlocked /proc/meminfo
Mlocked: 19636 kB
#define MAP_SIZE (4 << 30) /* 4GB */
void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
mlock(ptr, MAP_SIZE);
$ grep Mlocked /proc/meminfo
Mlocked: 29844 kB
munlock(ptr, MAP_SIZE);
$ grep Mlocked /proc/meminfo
Mlocked: 19636 kB
And with this patch:
$ grep Mlock /proc/meminfo
Mlocked: 19636 kB
mlock(ptr, MAP_SIZE);
$ grep Mlock /proc/meminfo
Mlocked: 4213664 kB
munlock(ptr, MAP_SIZE);
$ grep Mlock /proc/meminfo
Mlocked: 19636 kB
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Hugh Dickens <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 03:34:06 +04:00
mod_zone_page_state ( page_zone ( page ) , NR_MLOCK ,
hpage_nr_pages ( page ) ) ;
2008-10-19 07:26:51 +04:00
count_vm_event ( UNEVICTABLE_PGMLOCKED ) ;
if ( ! isolate_lru_page ( page ) )
putback_lru_page ( page ) ;
}
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
}
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
/*
* Isolate a page from LRU with optional get_page ( ) pin .
* Assumes lru_lock already held and page already pinned .
*/
static bool __munlock_isolate_lru_page ( struct page * page , bool getpage )
{
if ( PageLRU ( page ) ) {
struct lruvec * lruvec ;
2016-07-29 01:45:31 +03:00
lruvec = mem_cgroup_page_lruvec ( page , page_pgdat ( page ) ) ;
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
if ( getpage )
get_page ( page ) ;
ClearPageLRU ( page ) ;
del_page_from_lru_list ( page , lruvec , page_lru ( page ) ) ;
return true ;
}
return false ;
}
2013-09-12 01:22:29 +04:00
/*
* Finish munlock after successful page isolation
*
* Page must be locked . This is a wrapper for try_to_munlock ( )
* and putback_lru_page ( ) with munlock accounting .
*/
static void __munlock_isolated_page ( struct page * page )
{
/*
* Optimization : if the page was mapped just once , that ' s our mapping
* and we don ' t need to check all the other vmas .
*/
if ( page_mapcount ( page ) > 1 )
2017-05-04 00:54:10 +03:00
try_to_munlock ( page ) ;
2013-09-12 01:22:29 +04:00
/* Did try_to_unlock() succeed or punt? */
2017-05-04 00:54:10 +03:00
if ( ! PageMlocked ( page ) )
2013-09-12 01:22:29 +04:00
count_vm_event ( UNEVICTABLE_PGMUNLOCKED ) ;
putback_lru_page ( page ) ;
}
/*
* Accounting for page isolation fail during munlock
*
* Performs accounting when page isolation fails in munlock . There is nothing
* else to do because it means some other task has already removed the page
* from the LRU . putback_lru_page ( ) will take care of removing the page from
* the unevictable list , if necessary . vmscan [ page_referenced ( ) ] will move
* the page back to the unevictable list if some other vma has it mlocked .
*/
static void __munlock_isolation_failed ( struct page * page )
{
if ( PageUnevictable ( page ) )
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
__count_vm_event ( UNEVICTABLE_PGSTRANDED ) ;
2013-09-12 01:22:29 +04:00
else
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
__count_vm_event ( UNEVICTABLE_PGMUNLOCKED ) ;
2013-09-12 01:22:29 +04:00
}
2009-12-15 04:59:55 +03:00
/**
* munlock_vma_page - munlock a vma page
2018-02-07 02:42:13 +03:00
* @ page : page to be unlocked , either a normal page or THP page head
2014-01-03 00:58:43 +04:00
*
* returns the size of the page as a page mask ( 0 for normal page ,
* HPAGE_PMD_NR - 1 for THP head page )
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
*
2009-12-15 04:59:55 +03:00
* called from munlock ( ) / munmap ( ) path with page supposedly on the LRU .
* When we munlock a page , because the vma where we found the page is being
* munlock ( ) ed or munmap ( ) ed , we want to check whether other vmas hold the
* page locked so that we can leave it on the unevictable lru list and not
* bother vmscan with it . However , to walk the page ' s rmap list in
* try_to_munlock ( ) we must isolate the page from the LRU . If some other
* task has removed the page from the LRU , we won ' t be able to do that .
* So we clear the PageMlocked as we might not get another chance . If we
* can ' t isolate the page , we leave it for putback_lru_page ( ) and vmscan
* [ page_referenced ( ) / try_to_unmap ( ) ] to deal with .
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
*/
2013-02-28 05:02:44 +04:00
unsigned int munlock_vma_page ( struct page * page )
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
{
mm: fix mlock accouting
Tetsuo Handa reported underflow of NR_MLOCK on munlock.
Testcase:
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#define BASE ((void *)0x400000000000)
#define SIZE (1UL << 21)
int main(int argc, char *argv[])
{
void *addr;
system("grep Mlocked /proc/meminfo");
addr = mmap(BASE, SIZE, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_LOCKED | MAP_FIXED,
-1, 0);
if (addr == MAP_FAILED)
printf("mmap() failed\n"), exit(1);
munmap(addr, SIZE);
system("grep Mlocked /proc/meminfo");
return 0;
}
It happens on munlock_vma_page() due to unfortunate choice of nr_pages
data type:
__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
For unsigned int nr_pages, implicitly casted to long in
__mod_zone_page_state(), it becomes something around UINT_MAX.
munlock_vma_page() usually called for THP as small pages go though
pagevec.
Let's make nr_pages signed int.
Similar fixes in 6cdb18ad98a4 ("mm/vmstat: fix overflow in
mod_zone_page_state()") used `long' type, but `int' here is OK for a
count of the number of sub-pages in a huge page.
Fixes: ff6a6da60b89 ("mm: accelerate munlock() treatment of THP pages")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Michel Lespinasse <walken@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-22 03:40:27 +03:00
int nr_pages ;
2019-03-06 02:49:39 +03:00
pg_data_t * pgdat = page_pgdat ( page ) ;
2013-02-28 05:02:44 +04:00
2014-04-08 02:37:50 +04:00
/* For try_to_munlock() and to serialize with page migration */
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
BUG_ON ( ! PageLocked ( page ) ) ;
2016-01-16 03:54:33 +03:00
VM_BUG_ON_PAGE ( PageTail ( page ) , page ) ;
2014-01-03 00:58:43 +04:00
/*
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
* Serialize with any parallel __split_huge_page_refcount ( ) which
* might otherwise copy PageMlocked to part of the tail pages before
* we clear it in the head page . It also stabilizes hpage_nr_pages ( ) .
2014-01-03 00:58:43 +04:00
*/
2019-03-06 02:49:39 +03:00
spin_lock_irq ( & pgdat - > lru_lock ) ;
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
thp: fix corner case of munlock() of PTE-mapped THPs
The following program triggers BUG() in munlock_vma_pages_range():
// autogenerated by syzkaller (http://github.com/google/syzkaller)
#include <sys/mman.h>
int main()
{
mmap((void*)0x20105000ul, 0xc00000ul, 0x2ul, 0x2172ul, -1, 0);
mremap((void*)0x201fd000ul, 0x4000ul, 0xc00000ul, 0x3ul, 0x203f0000ul);
return 0;
}
The test-case constructs the situation when munlock_vma_pages_range()
finds PTE-mapped THP-head in the middle of page table and, by mistake,
skips HPAGE_PMD_NR pages after that.
As result, on the next iteration it hits the middle of PMD-mapped THP
and gets upset seeing mlocked tail page.
The solution is only skip HPAGE_PMD_NR pages if the THP was mlocked
during munlock_vma_page(). It would guarantee that the page is
PMD-mapped as we never mlock PTE-mapeed THPs.
Fixes: e90309c9f772 ("thp: allow mlocked THP again")
Link: http://lkml.kernel.org/r/20161115132703.7s7rrgmwttegcdh4@black.fi.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-01 02:54:05 +03:00
if ( ! TestClearPageMlocked ( page ) ) {
/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
nr_pages = 1 ;
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
goto unlock_out ;
thp: fix corner case of munlock() of PTE-mapped THPs
The following program triggers BUG() in munlock_vma_pages_range():
// autogenerated by syzkaller (http://github.com/google/syzkaller)
#include <sys/mman.h>
int main()
{
mmap((void*)0x20105000ul, 0xc00000ul, 0x2ul, 0x2172ul, -1, 0);
mremap((void*)0x201fd000ul, 0x4000ul, 0xc00000ul, 0x3ul, 0x203f0000ul);
return 0;
}
The test-case constructs the situation when munlock_vma_pages_range()
finds PTE-mapped THP-head in the middle of page table and, by mistake,
skips HPAGE_PMD_NR pages after that.
As result, on the next iteration it hits the middle of PMD-mapped THP
and gets upset seeing mlocked tail page.
The solution is only skip HPAGE_PMD_NR pages if the THP was mlocked
during munlock_vma_page(). It would guarantee that the page is
PMD-mapped as we never mlock PTE-mapeed THPs.
Fixes: e90309c9f772 ("thp: allow mlocked THP again")
Link: http://lkml.kernel.org/r/20161115132703.7s7rrgmwttegcdh4@black.fi.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-01 02:54:05 +03:00
}
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
thp: fix corner case of munlock() of PTE-mapped THPs
The following program triggers BUG() in munlock_vma_pages_range():
// autogenerated by syzkaller (http://github.com/google/syzkaller)
#include <sys/mman.h>
int main()
{
mmap((void*)0x20105000ul, 0xc00000ul, 0x2ul, 0x2172ul, -1, 0);
mremap((void*)0x201fd000ul, 0x4000ul, 0xc00000ul, 0x3ul, 0x203f0000ul);
return 0;
}
The test-case constructs the situation when munlock_vma_pages_range()
finds PTE-mapped THP-head in the middle of page table and, by mistake,
skips HPAGE_PMD_NR pages after that.
As result, on the next iteration it hits the middle of PMD-mapped THP
and gets upset seeing mlocked tail page.
The solution is only skip HPAGE_PMD_NR pages if the THP was mlocked
during munlock_vma_page(). It would guarantee that the page is
PMD-mapped as we never mlock PTE-mapeed THPs.
Fixes: e90309c9f772 ("thp: allow mlocked THP again")
Link: http://lkml.kernel.org/r/20161115132703.7s7rrgmwttegcdh4@black.fi.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-01 02:54:05 +03:00
nr_pages = hpage_nr_pages ( page ) ;
2019-03-06 02:49:39 +03:00
__mod_zone_page_state ( page_zone ( page ) , NR_MLOCK , - nr_pages ) ;
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
if ( __munlock_isolate_lru_page ( page , true ) ) {
2019-03-06 02:49:39 +03:00
spin_unlock_irq ( & pgdat - > lru_lock ) ;
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
__munlock_isolated_page ( page ) ;
goto out ;
}
__munlock_isolation_failed ( page ) ;
unlock_out :
2019-03-06 02:49:39 +03:00
spin_unlock_irq ( & pgdat - > lru_lock ) ;
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
out :
2014-01-03 00:58:43 +04:00
return nr_pages - 1 ;
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
}
2008-10-19 07:26:56 +04:00
/*
* convert get_user_pages ( ) return value to posix mlock ( ) error
*/
static int __mlock_posix_error_return ( long retval )
{
if ( retval = = - EFAULT )
retval = - ENOMEM ;
else if ( retval = = - ENOMEM )
retval = - EAGAIN ;
return retval ;
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
}
2013-09-12 01:22:32 +04:00
/*
* Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec ( )
*
* The fast path is available only for evictable pages with single mapping .
* Then we can bypass the per - cpu pvec and get better performance .
* when mapcount > 1 we need try_to_munlock ( ) which can fail .
* when ! page_evictable ( ) , we need the full redo logic of putback_lru_page to
* avoid leaving evictable page in unevictable list .
*
* In case of success , @ page is added to @ pvec and @ pgrescued is incremented
* in case that the page was previously unevictable . @ page is also unlocked .
*/
static bool __putback_lru_fast_prepare ( struct page * page , struct pagevec * pvec ,
int * pgrescued )
{
2014-01-24 03:52:54 +04:00
VM_BUG_ON_PAGE ( PageLRU ( page ) , page ) ;
VM_BUG_ON_PAGE ( ! PageLocked ( page ) , page ) ;
2013-09-12 01:22:32 +04:00
if ( page_mapcount ( page ) < = 1 & & page_evictable ( page ) ) {
pagevec_add ( pvec , page ) ;
if ( TestClearPageUnevictable ( page ) )
( * pgrescued ) + + ;
unlock_page ( page ) ;
return true ;
}
return false ;
}
/*
* Putback multiple evictable pages to the LRU
*
* Batched putback of evictable pages that bypasses the per - cpu pvec . Some of
* the pages might have meanwhile become unevictable but that is OK .
*/
static void __putback_lru_fast ( struct pagevec * pvec , int pgrescued )
{
count_vm_events ( UNEVICTABLE_PGMUNLOCKED , pagevec_count ( pvec ) ) ;
/*
* __pagevec_lru_add ( ) calls release_pages ( ) so we don ' t call
* put_page ( ) explicitly
*/
__pagevec_lru_add ( pvec ) ;
count_vm_events ( UNEVICTABLE_PGRESCUED , pgrescued ) ;
}
2013-09-12 01:22:29 +04:00
/*
* Munlock a batch of pages from the same zone
*
* The work is split to two main phases . First phase clears the Mlocked flag
* and attempts to isolate the pages , all under a single zone lru lock .
* The second phase finishes the munlock only for pages where isolation
* succeeded .
*
2013-09-12 01:22:35 +04:00
* Note that the pagevec may be modified during the process .
2013-09-12 01:22:29 +04:00
*/
static void __munlock_pagevec ( struct pagevec * pvec , struct zone * zone )
{
int i ;
int nr = pagevec_count ( pvec ) ;
2017-06-03 00:46:43 +03:00
int delta_munlocked = - nr ;
2013-09-12 01:22:32 +04:00
struct pagevec pvec_putback ;
int pgrescued = 0 ;
2013-09-12 01:22:29 +04:00
2017-11-16 04:37:52 +03:00
pagevec_init ( & pvec_putback ) ;
2014-01-03 00:58:44 +04:00
2013-09-12 01:22:29 +04:00
/* Phase 1: page isolation */
2019-03-06 02:49:39 +03:00
spin_lock_irq ( & zone - > zone_pgdat - > lru_lock ) ;
2013-09-12 01:22:29 +04:00
for ( i = 0 ; i < nr ; i + + ) {
struct page * page = pvec - > pages [ i ] ;
if ( TestClearPageMlocked ( page ) ) {
/*
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
* We already have pin from follow_page_mask ( )
* so we can spare the get_page ( ) here .
2013-09-12 01:22:29 +04:00
*/
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
if ( __munlock_isolate_lru_page ( page , false ) )
continue ;
else
__munlock_isolation_failed ( page ) ;
2017-06-03 00:46:43 +03:00
} else {
delta_munlocked + + ;
2013-09-12 01:22:29 +04:00
}
mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page. There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.
First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages. Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag. As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages. Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).
Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared. The accounting might also become
inconsistent due to race with __split_huge_page_refcount()
- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
left with PageMlocked set and counted again (only possible before
ff6a6da60)
- overcount when hpage_nr_pages() sees a normal page (split has already
finished), but the parallel split has meanwhile cleared PageMlocked from
additional tail pages
This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page(). This is convenient because:
- __split_huge_page_refcount() takes lru_lock for its whole operation
- munlock_vma_page() typically takes lru_lock anyway for page isolation
As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.
[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 03:52:50 +04:00
/*
* We won ' t be munlocking this page in the next phase
* but we still need to release the follow_page_mask ( )
* pin . We cannot do it under lru_lock however . If it ' s
* the last pin , __page_cache_release ( ) would deadlock .
*/
pagevec_add ( & pvec_putback , pvec - > pages [ i ] ) ;
pvec - > pages [ i ] = NULL ;
2013-09-12 01:22:29 +04:00
}
2013-09-12 01:22:30 +04:00
__mod_zone_page_state ( zone , NR_MLOCK , delta_munlocked ) ;
2019-03-06 02:49:39 +03:00
spin_unlock_irq ( & zone - > zone_pgdat - > lru_lock ) ;
2013-09-12 01:22:29 +04:00
2014-01-03 00:58:44 +04:00
/* Now we can release pins of pages that we are not munlocking */
pagevec_release ( & pvec_putback ) ;
2013-09-12 01:22:32 +04:00
/* Phase 2: page munlock */
2013-09-12 01:22:29 +04:00
for ( i = 0 ; i < nr ; i + + ) {
struct page * page = pvec - > pages [ i ] ;
if ( page ) {
lock_page ( page ) ;
2013-09-12 01:22:32 +04:00
if ( ! __putback_lru_fast_prepare ( page , & pvec_putback ,
& pgrescued ) ) {
2013-09-12 01:22:33 +04:00
/*
* Slow path . We don ' t want to lose the last
* pin before unlock_page ( )
*/
get_page ( page ) ; /* for putback_lru_page() */
2013-09-12 01:22:32 +04:00
__munlock_isolated_page ( page ) ;
unlock_page ( page ) ;
2013-09-12 01:22:33 +04:00
put_page ( page ) ; /* from follow_page_mask() */
2013-09-12 01:22:32 +04:00
}
2013-09-12 01:22:29 +04:00
}
}
2013-09-12 01:22:32 +04:00
2013-09-12 01:22:33 +04:00
/*
* Phase 3 : page putback for pages that qualified for the fast path
* This will also call put_page ( ) to return pin from follow_page_mask ( )
*/
2013-09-12 01:22:32 +04:00
if ( pagevec_count ( & pvec_putback ) )
__putback_lru_fast ( & pvec_putback , pgrescued ) ;
2013-09-12 01:22:35 +04:00
}
/*
* Fill up pagevec for __munlock_pagevec using pte walk
*
* The function expects that the struct page corresponding to @ start address is
* a non - TPH page already pinned and in the @ pvec , and that it belongs to @ zone .
*
* The rest of @ pvec is filled by subsequent pages within the same pmd and same
* zone , as long as the pte ' s are present and vm_normal_page ( ) succeeds . These
* pages also get pinned .
*
* Returns the address of the next page that should be scanned . This equals
* @ start + PAGE_SIZE when no page could be added by the pte walk .
*/
static unsigned long __munlock_pagevec_fill ( struct pagevec * pvec ,
2017-09-09 02:12:59 +03:00
struct vm_area_struct * vma , struct zone * zone ,
unsigned long start , unsigned long end )
2013-09-12 01:22:35 +04:00
{
pte_t * pte ;
spinlock_t * ptl ;
/*
* Initialize pte walk starting at the already pinned page where we
2013-10-01 00:45:18 +04:00
* are sure that there is a pte , as it was pinned under the same
2020-06-09 07:33:54 +03:00
* mmap_lock write op .
2013-09-12 01:22:35 +04:00
*/
pte = get_locked_pte ( vma - > vm_mm , start , & ptl ) ;
2013-10-01 00:45:18 +04:00
/* Make sure we do not cross the page table boundary */
end = pgd_addr_end ( start , end ) ;
2017-03-09 17:24:07 +03:00
end = p4d_addr_end ( start , end ) ;
2013-10-01 00:45:18 +04:00
end = pud_addr_end ( start , end ) ;
end = pmd_addr_end ( start , end ) ;
2013-09-12 01:22:35 +04:00
/* The page next to the pinned page is the first we will try to get */
start + = PAGE_SIZE ;
while ( start < end ) {
struct page * page = NULL ;
pte + + ;
if ( pte_present ( * pte ) )
page = vm_normal_page ( vma , start , * pte ) ;
/*
* Break if page could not be obtained or the page ' s node + zone does not
* match
*/
2017-09-09 02:12:59 +03:00
if ( ! page | | page_zone ( page ) ! = zone )
2013-09-12 01:22:35 +04:00
break ;
2013-09-12 01:22:32 +04:00
2016-01-16 03:54:33 +03:00
/*
* Do not use pagevec for PTE - mapped THP ,
* munlock_vma_pages_range ( ) will handle them .
*/
if ( PageTransCompound ( page ) )
break ;
2013-09-12 01:22:35 +04:00
get_page ( page ) ;
/*
* Increase the address that will be returned * before * the
* eventual break due to pvec becoming full by adding the page
*/
start + = PAGE_SIZE ;
if ( pagevec_add ( pvec , page ) = = 0 )
break ;
}
pte_unmap_unlock ( pte , ptl ) ;
return start ;
2013-09-12 01:22:29 +04:00
}
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
/*
2008-10-19 07:26:50 +04:00
* munlock_vma_pages_range ( ) - munlock all pages in the vma range . '
* @ vma - vma containing range to be munlock ( ) ed .
* @ start - start address in @ vma of the range
* @ end - end of range in @ vma .
*
* For mremap ( ) , munmap ( ) and exit ( ) .
*
* Called with @ vma VM_LOCKED .
*
* Returns with VM_LOCKED cleared . Callers must be prepared to
* deal with this .
*
* We don ' t save and restore VM_LOCKED here because pages are
* still on lru . In unmap path , pages might be scanned by reclaim
* and re - mlocked by try_to_ { munlock | unmap } before we unmap and
* free them . This will result in freeing mlocked pages .
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
*/
2008-10-19 07:26:50 +04:00
void munlock_vma_pages_range ( struct vm_area_struct * vma ,
2009-09-22 04:03:23 +04:00
unsigned long start , unsigned long end )
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
{
2015-11-06 05:51:36 +03:00
vma - > vm_flags & = VM_LOCKED_CLEAR_MASK ;
2009-09-22 04:03:23 +04:00
2013-02-28 05:02:44 +04:00
while ( start < end ) {
2016-01-15 02:18:24 +03:00
struct page * page ;
thp: fix another corner case of munlock() vs. THPs
The following test case triggers BUG() in munlock_vma_pages_range():
int main(int argc, char *argv[])
{
int fd;
system("mount -t tmpfs -o huge=always none /mnt");
fd = open("/mnt/test", O_CREAT | O_RDWR);
ftruncate(fd, 4UL << 20);
mmap(NULL, 4UL << 20, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED | MAP_LOCKED, fd, 0);
mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_LOCKED, fd, 0);
munlockall();
return 0;
}
The second mmap() create PTE-mapping of the first huge page in file. It
makes kernel munlock the page as we never keep PTE-mapped page mlocked.
On munlockall() when we handle vma created by the first mmap(),
munlock_vma_page() returns page_mask == 0, as the page is not mlocked
anymore. On next iteration follow_page_mask() return tail page, but
page_mask is HPAGE_NR_PAGES - 1. It makes us skip to the first tail
page of the next huge page and step on
VM_BUG_ON_PAGE(PageMlocked(page)).
The fix is not use the page_mask from follow_page_mask() at all. It has
no use for us.
Link: http://lkml.kernel.org/r/20170302150252.34120-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-10 03:17:23 +03:00
unsigned int page_mask = 0 ;
2014-01-03 00:58:43 +04:00
unsigned long page_increm ;
2013-09-12 01:22:35 +04:00
struct pagevec pvec ;
struct zone * zone ;
2013-02-28 05:02:44 +04:00
2017-11-16 04:37:52 +03:00
pagevec_init ( & pvec ) ;
2009-09-22 04:03:32 +04:00
/*
* Although FOLL_DUMP is intended for get_dump_page ( ) ,
* it just so happens that its special treatment of the
* ZERO_PAGE ( returning an error instead of doing get_page )
* suits munlock very well ( and if somehow an abnormal page
* has sneaked into the range , we won ' t oops here : great ) .
*/
thp: fix another corner case of munlock() vs. THPs
The following test case triggers BUG() in munlock_vma_pages_range():
int main(int argc, char *argv[])
{
int fd;
system("mount -t tmpfs -o huge=always none /mnt");
fd = open("/mnt/test", O_CREAT | O_RDWR);
ftruncate(fd, 4UL << 20);
mmap(NULL, 4UL << 20, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED | MAP_LOCKED, fd, 0);
mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_LOCKED, fd, 0);
munlockall();
return 0;
}
The second mmap() create PTE-mapping of the first huge page in file. It
makes kernel munlock the page as we never keep PTE-mapped page mlocked.
On munlockall() when we handle vma created by the first mmap(),
munlock_vma_page() returns page_mask == 0, as the page is not mlocked
anymore. On next iteration follow_page_mask() return tail page, but
page_mask is HPAGE_NR_PAGES - 1. It makes us skip to the first tail
page of the next huge page and step on
VM_BUG_ON_PAGE(PageMlocked(page)).
The fix is not use the page_mask from follow_page_mask() at all. It has
no use for us.
Link: http://lkml.kernel.org/r/20170302150252.34120-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-10 03:17:23 +03:00
page = follow_page ( vma , start , FOLL_GET | FOLL_DUMP ) ;
2013-09-12 01:22:35 +04:00
2016-01-16 03:54:33 +03:00
if ( page & & ! IS_ERR ( page ) ) {
if ( PageTransTail ( page ) ) {
VM_BUG_ON_PAGE ( PageMlocked ( page ) , page ) ;
put_page ( page ) ; /* follow_page_mask() */
} else if ( PageTransHuge ( page ) ) {
lock_page ( page ) ;
/*
* Any THP page found by follow_page_mask ( ) may
* have gotten split before reaching
thp: fix another corner case of munlock() vs. THPs
The following test case triggers BUG() in munlock_vma_pages_range():
int main(int argc, char *argv[])
{
int fd;
system("mount -t tmpfs -o huge=always none /mnt");
fd = open("/mnt/test", O_CREAT | O_RDWR);
ftruncate(fd, 4UL << 20);
mmap(NULL, 4UL << 20, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED | MAP_LOCKED, fd, 0);
mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_LOCKED, fd, 0);
munlockall();
return 0;
}
The second mmap() create PTE-mapping of the first huge page in file. It
makes kernel munlock the page as we never keep PTE-mapped page mlocked.
On munlockall() when we handle vma created by the first mmap(),
munlock_vma_page() returns page_mask == 0, as the page is not mlocked
anymore. On next iteration follow_page_mask() return tail page, but
page_mask is HPAGE_NR_PAGES - 1. It makes us skip to the first tail
page of the next huge page and step on
VM_BUG_ON_PAGE(PageMlocked(page)).
The fix is not use the page_mask from follow_page_mask() at all. It has
no use for us.
Link: http://lkml.kernel.org/r/20170302150252.34120-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-10 03:17:23 +03:00
* munlock_vma_page ( ) , so we need to compute
* the page_mask here instead .
2016-01-16 03:54:33 +03:00
*/
page_mask = munlock_vma_page ( page ) ;
unlock_page ( page ) ;
put_page ( page ) ; /* follow_page_mask() */
} else {
/*
* Non - huge pages are handled in batches via
* pagevec . The pin from follow_page_mask ( )
* prevents them from collapsing by THP .
*/
pagevec_add ( & pvec , page ) ;
zone = page_zone ( page ) ;
2013-09-12 01:22:35 +04:00
2016-01-16 03:54:33 +03:00
/*
* Try to fill the rest of pagevec using fast
* pte walk . This will also update start to
* the next page to process . Then munlock the
* pagevec .
*/
start = __munlock_pagevec_fill ( & pvec , vma ,
2017-09-09 02:12:59 +03:00
zone , start , end ) ;
2016-01-16 03:54:33 +03:00
__munlock_pagevec ( & pvec , zone ) ;
goto next ;
}
2009-09-22 04:03:23 +04:00
}
2014-01-03 00:58:43 +04:00
page_increm = 1 + page_mask ;
2013-02-28 05:02:44 +04:00
start + = page_increm * PAGE_SIZE ;
2013-09-12 01:22:35 +04:00
next :
2009-09-22 04:03:23 +04:00
cond_resched ( ) ;
}
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
}
/*
* mlock_fixup - handle mlock [ all ] / munlock [ all ] requests .
*
* Filters out " special " vmas - - VM_LOCKED never gets set for these , and
* munlock is a no - op . However , for some special vmas , we go ahead and
2013-02-23 04:32:44 +04:00
* populate the ptes .
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
*
* For vmas that pass the filters , merge / split as appropriate .
*/
2005-04-17 02:20:36 +04:00
static int mlock_fixup ( struct vm_area_struct * vma , struct vm_area_struct * * prev ,
2011-05-26 14:16:19 +04:00
unsigned long start , unsigned long end , vm_flags_t newflags )
2005-04-17 02:20:36 +04:00
{
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
struct mm_struct * mm = vma - > vm_mm ;
2005-04-17 02:20:36 +04:00
pgoff_t pgoff ;
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
int nr_pages ;
2005-04-17 02:20:36 +04:00
int ret = 0 ;
2011-05-26 14:16:19 +04:00
int lock = ! ! ( newflags & VM_LOCKED ) ;
2016-10-08 02:59:40 +03:00
vm_flags_t old_flags = vma - > vm_flags ;
2005-04-17 02:20:36 +04:00
mlock: only hold mmap_sem in shared mode when faulting in pages
Currently mlock() holds mmap_sem in exclusive mode while the pages get
faulted in. In the case of a large mlock, this can potentially take a
very long time, during which various commands such as 'ps auxw' will
block. This makes sysadmins unhappy:
real 14m36.232s
user 0m0.003s
sys 0m0.015s
(output from 'time ps auxw' while a 20GB file was being mlocked without
being previously preloaded into page cache)
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages, in small batches, releasing mmap_sem when we
block on disk access or when we detect some contention.
This patch:
Before this change, mlock() holds mmap_sem in exclusive mode while the
pages get faulted in. In the case of a large mlock, this can potentially
take a very long time. Various things will block while mmap_sem is held,
including 'ps auxw'. This can make sysadmins angry.
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages with mmap_sem held for reads only. We need to
recheck the vma flags after we re-acquire mmap_sem, but this is easy.
In the case where a vma has been munlocked before mlock completes, pages
that were already marked as PageMlocked() are handled by the munlock()
call, and mlock() is careful to not mark new page batches as PageMlocked()
after the munlock() call has cleared the VM_LOCKED vma flags. So, the end
result will be identical to what'd happen if munlock() had executed after
the mlock() call.
In a later change, I will allow the second pass to release mmap_sem when
blocking on disk accesses or when it is otherwise contended, so that it
won't be held for long periods of time even in shared mode.
Signed-off-by: Michel Lespinasse <walken@google.com>
Tested-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 02:46:10 +03:00
if ( newflags = = vma - > vm_flags | | ( vma - > vm_flags & VM_SPECIAL ) | |
2018-08-18 01:43:40 +03:00
is_vm_hugetlb_page ( vma ) | | vma = = get_gate_vma ( current - > mm ) | |
vma_is_dax ( vma ) )
2015-11-06 05:51:39 +03:00
/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
goto out ;
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
2005-04-17 02:20:36 +04:00
pgoff = vma - > vm_pgoff + ( ( start - vma - > vm_start ) > > PAGE_SHIFT ) ;
* prev = vma_merge ( mm , * prev , start , end , newflags , vma - > anon_vma ,
2015-09-05 01:46:24 +03:00
vma - > vm_file , pgoff , vma_policy ( vma ) ,
vma - > vm_userfaultfd_ctx ) ;
2005-04-17 02:20:36 +04:00
if ( * prev ) {
vma = * prev ;
goto success ;
}
if ( start ! = vma - > vm_start ) {
ret = split_vma ( mm , vma , start , 1 ) ;
if ( ret )
goto out ;
}
if ( end ! = vma - > vm_end ) {
ret = split_vma ( mm , vma , end , 0 ) ;
if ( ret )
goto out ;
}
success :
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
/*
* Keep track of amount of locked VM .
*/
nr_pages = ( end - start ) > > PAGE_SHIFT ;
if ( ! lock )
nr_pages = - nr_pages ;
2016-10-08 02:59:40 +03:00
else if ( old_flags & VM_LOCKED )
nr_pages = 0 ;
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
mm - > locked_vm + = nr_pages ;
2005-04-17 02:20:36 +04:00
/*
2020-06-09 07:33:54 +03:00
* vm_flags is protected by the mmap_lock held in write mode .
2005-04-17 02:20:36 +04:00
* It ' s okay if try_to_unmap_one unmaps a page just after we
2015-04-15 01:44:39 +03:00
* set VM_LOCKED , populate_vma_page_range will bring it back .
2005-04-17 02:20:36 +04:00
*/
mlock: only hold mmap_sem in shared mode when faulting in pages
Currently mlock() holds mmap_sem in exclusive mode while the pages get
faulted in. In the case of a large mlock, this can potentially take a
very long time, during which various commands such as 'ps auxw' will
block. This makes sysadmins unhappy:
real 14m36.232s
user 0m0.003s
sys 0m0.015s
(output from 'time ps auxw' while a 20GB file was being mlocked without
being previously preloaded into page cache)
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages, in small batches, releasing mmap_sem when we
block on disk access or when we detect some contention.
This patch:
Before this change, mlock() holds mmap_sem in exclusive mode while the
pages get faulted in. In the case of a large mlock, this can potentially
take a very long time. Various things will block while mmap_sem is held,
including 'ps auxw'. This can make sysadmins angry.
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages with mmap_sem held for reads only. We need to
recheck the vma flags after we re-acquire mmap_sem, but this is easy.
In the case where a vma has been munlocked before mlock completes, pages
that were already marked as PageMlocked() are handled by the munlock()
call, and mlock() is careful to not mark new page batches as PageMlocked()
after the munlock() call has cleared the VM_LOCKED vma flags. So, the end
result will be identical to what'd happen if munlock() had executed after
the mlock() call.
In a later change, I will allow the second pass to release mmap_sem when
blocking on disk accesses or when it is otherwise contended, so that it
won't be held for long periods of time even in shared mode.
Signed-off-by: Michel Lespinasse <walken@google.com>
Tested-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 02:46:10 +03:00
if ( lock )
2009-09-22 04:03:23 +04:00
vma - > vm_flags = newflags ;
mlock: only hold mmap_sem in shared mode when faulting in pages
Currently mlock() holds mmap_sem in exclusive mode while the pages get
faulted in. In the case of a large mlock, this can potentially take a
very long time, during which various commands such as 'ps auxw' will
block. This makes sysadmins unhappy:
real 14m36.232s
user 0m0.003s
sys 0m0.015s
(output from 'time ps auxw' while a 20GB file was being mlocked without
being previously preloaded into page cache)
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages, in small batches, releasing mmap_sem when we
block on disk access or when we detect some contention.
This patch:
Before this change, mlock() holds mmap_sem in exclusive mode while the
pages get faulted in. In the case of a large mlock, this can potentially
take a very long time. Various things will block while mmap_sem is held,
including 'ps auxw'. This can make sysadmins angry.
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages with mmap_sem held for reads only. We need to
recheck the vma flags after we re-acquire mmap_sem, but this is easy.
In the case where a vma has been munlocked before mlock completes, pages
that were already marked as PageMlocked() are handled by the munlock()
call, and mlock() is careful to not mark new page batches as PageMlocked()
after the munlock() call has cleared the VM_LOCKED vma flags. So, the end
result will be identical to what'd happen if munlock() had executed after
the mlock() call.
In a later change, I will allow the second pass to release mmap_sem when
blocking on disk accesses or when it is otherwise contended, so that it
won't be held for long periods of time even in shared mode.
Signed-off-by: Michel Lespinasse <walken@google.com>
Tested-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 02:46:10 +03:00
else
2009-09-22 04:03:23 +04:00
munlock_vma_pages_range ( vma , start , end ) ;
2005-04-17 02:20:36 +04:00
out :
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:44 +04:00
* prev = vma ;
2005-04-17 02:20:36 +04:00
return ret ;
}
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
static int apply_vma_lock_flags ( unsigned long start , size_t len ,
vm_flags_t flags )
2005-04-17 02:20:36 +04:00
{
unsigned long nstart , end , tmp ;
struct vm_area_struct * vma , * prev ;
int error ;
2015-11-06 05:46:49 +03:00
VM_BUG_ON ( offset_in_page ( start ) ) ;
mlock: only hold mmap_sem in shared mode when faulting in pages
Currently mlock() holds mmap_sem in exclusive mode while the pages get
faulted in. In the case of a large mlock, this can potentially take a
very long time, during which various commands such as 'ps auxw' will
block. This makes sysadmins unhappy:
real 14m36.232s
user 0m0.003s
sys 0m0.015s
(output from 'time ps auxw' while a 20GB file was being mlocked without
being previously preloaded into page cache)
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages, in small batches, releasing mmap_sem when we
block on disk access or when we detect some contention.
This patch:
Before this change, mlock() holds mmap_sem in exclusive mode while the
pages get faulted in. In the case of a large mlock, this can potentially
take a very long time. Various things will block while mmap_sem is held,
including 'ps auxw'. This can make sysadmins angry.
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages with mmap_sem held for reads only. We need to
recheck the vma flags after we re-acquire mmap_sem, but this is easy.
In the case where a vma has been munlocked before mlock completes, pages
that were already marked as PageMlocked() are handled by the munlock()
call, and mlock() is careful to not mark new page batches as PageMlocked()
after the munlock() call has cleared the VM_LOCKED vma flags. So, the end
result will be identical to what'd happen if munlock() had executed after
the mlock() call.
In a later change, I will allow the second pass to release mmap_sem when
blocking on disk accesses or when it is otherwise contended, so that it
won't be held for long periods of time even in shared mode.
Signed-off-by: Michel Lespinasse <walken@google.com>
Tested-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 02:46:10 +03:00
VM_BUG_ON ( len ! = PAGE_ALIGN ( len ) ) ;
2005-04-17 02:20:36 +04:00
end = start + len ;
if ( end < start )
return - EINVAL ;
if ( end = = start )
return 0 ;
2012-03-07 06:23:36 +04:00
vma = find_vma ( current - > mm , start ) ;
2005-04-17 02:20:36 +04:00
if ( ! vma | | vma - > vm_start > start )
return - ENOMEM ;
2012-03-07 06:23:36 +04:00
prev = vma - > vm_prev ;
2005-04-17 02:20:36 +04:00
if ( start > vma - > vm_start )
prev = vma ;
for ( nstart = start ; ; ) {
2015-11-06 05:51:39 +03:00
vm_flags_t newflags = vma - > vm_flags & VM_LOCKED_CLEAR_MASK ;
2005-04-17 02:20:36 +04:00
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
newflags | = flags ;
2005-04-17 02:20:36 +04:00
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
2005-04-17 02:20:36 +04:00
tmp = vma - > vm_end ;
if ( tmp > end )
tmp = end ;
error = mlock_fixup ( vma , & prev , nstart , tmp , newflags ) ;
if ( error )
break ;
nstart = tmp ;
if ( nstart < prev - > vm_end )
nstart = prev - > vm_end ;
if ( nstart > = end )
break ;
vma = prev - > vm_next ;
if ( ! vma | | vma - > vm_start ! = nstart ) {
error = - ENOMEM ;
break ;
}
}
return error ;
}
2016-10-08 02:59:36 +03:00
/*
* Go through vma areas and sum size of mlocked
* vma pages , as return value .
* Note deferred memory locking case ( mlock2 ( , , MLOCK_ONFAULT )
* is also counted .
* Return value : previously mlocked page counts
*/
2019-06-14 01:56:08 +03:00
static unsigned long count_mm_mlocked_page_nr ( struct mm_struct * mm ,
2016-10-08 02:59:36 +03:00
unsigned long start , size_t len )
{
struct vm_area_struct * vma ;
2019-06-14 01:56:08 +03:00
unsigned long count = 0 ;
2016-10-08 02:59:36 +03:00
if ( mm = = NULL )
mm = current - > mm ;
vma = find_vma ( mm , start ) ;
if ( vma = = NULL )
vma = mm - > mmap ;
for ( ; vma ; vma = vma - > vm_next ) {
if ( start > = vma - > vm_end )
continue ;
if ( start + len < = vma - > vm_start )
break ;
if ( vma - > vm_flags & VM_LOCKED ) {
if ( start > vma - > vm_start )
count - = ( start - vma - > vm_start ) ;
if ( start + len < vma - > vm_end ) {
count + = start + len - vma - > vm_start ;
break ;
}
count + = vma - > vm_end - vma - > vm_start ;
}
}
return count > > PAGE_SHIFT ;
}
2016-05-24 02:25:27 +03:00
static __must_check int do_mlock ( unsigned long start , size_t len , vm_flags_t flags )
2005-04-17 02:20:36 +04:00
{
unsigned long locked ;
unsigned long lock_limit ;
int error = - ENOMEM ;
mm: untag user pointers passed to memory syscalls
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-26 02:48:30 +03:00
start = untagged_addr ( start ) ;
2005-04-17 02:20:36 +04:00
if ( ! can_do_mlock ( ) )
return - EPERM ;
2015-11-06 05:46:49 +03:00
len = PAGE_ALIGN ( len + ( offset_in_page ( start ) ) ) ;
2005-04-17 02:20:36 +04:00
start & = PAGE_MASK ;
2010-03-06 00:41:44 +03:00
lock_limit = rlimit ( RLIMIT_MEMLOCK ) ;
2005-04-17 02:20:36 +04:00
lock_limit > > = PAGE_SHIFT ;
2014-01-22 03:49:16 +04:00
locked = len > > PAGE_SHIFT ;
2020-06-09 07:33:25 +03:00
if ( mmap_write_lock_killable ( current - > mm ) )
2016-05-24 02:25:27 +03:00
return - EINTR ;
2014-01-22 03:49:16 +04:00
locked + = current - > mm - > locked_vm ;
2016-10-08 02:59:36 +03:00
if ( ( locked > lock_limit ) & & ( ! capable ( CAP_IPC_LOCK ) ) ) {
/*
* It is possible that the regions requested intersect with
* previously mlocked areas , that part area in " mm->locked_vm "
* should not be counted to new mlock increment count . So check
* and adjust locked count if necessary .
*/
locked - = count_mm_mlocked_page_nr ( current - > mm ,
start , len ) ;
}
2005-04-17 02:20:36 +04:00
/* check against resource limits */
if ( ( locked < = lock_limit ) | | capable ( CAP_IPC_LOCK ) )
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
error = apply_vma_lock_flags ( start , len , flags ) ;
2014-01-22 03:49:16 +04:00
2020-06-09 07:33:25 +03:00
mmap_write_unlock ( current - > mm ) ;
2015-04-15 01:44:42 +03:00
if ( error )
return error ;
error = __mm_populate ( start , len , 0 ) ;
if ( error )
return __mlock_posix_error_return ( error ) ;
return 0 ;
2005-04-17 02:20:36 +04:00
}
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
SYSCALL_DEFINE2 ( mlock , unsigned long , start , size_t , len )
{
return do_mlock ( start , len , VM_LOCKED ) ;
}
2015-11-06 05:51:33 +03:00
SYSCALL_DEFINE3 ( mlock2 , unsigned long , start , size_t , len , int , flags )
{
2015-11-06 05:51:39 +03:00
vm_flags_t vm_flags = VM_LOCKED ;
if ( flags & ~ MLOCK_ONFAULT )
2015-11-06 05:51:33 +03:00
return - EINVAL ;
2015-11-06 05:51:39 +03:00
if ( flags & MLOCK_ONFAULT )
vm_flags | = VM_LOCKONFAULT ;
return do_mlock ( start , len , vm_flags ) ;
2015-11-06 05:51:33 +03:00
}
2009-01-14 16:14:15 +03:00
SYSCALL_DEFINE2 ( munlock , unsigned long , start , size_t , len )
2005-04-17 02:20:36 +04:00
{
int ret ;
mm: untag user pointers passed to memory syscalls
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-26 02:48:30 +03:00
start = untagged_addr ( start ) ;
2015-11-06 05:46:49 +03:00
len = PAGE_ALIGN ( len + ( offset_in_page ( start ) ) ) ;
2005-04-17 02:20:36 +04:00
start & = PAGE_MASK ;
2014-01-22 03:49:16 +04:00
2020-06-09 07:33:25 +03:00
if ( mmap_write_lock_killable ( current - > mm ) )
2016-05-24 02:25:27 +03:00
return - EINTR ;
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
ret = apply_vma_lock_flags ( start , len , 0 ) ;
2020-06-09 07:33:25 +03:00
mmap_write_unlock ( current - > mm ) ;
2014-01-22 03:49:16 +04:00
2005-04-17 02:20:36 +04:00
return ret ;
}
2015-11-06 05:51:39 +03:00
/*
* Take the MCL_ * flags passed into mlockall ( or 0 if called from munlockall )
* and translate into the appropriate modifications to mm - > def_flags and / or the
* flags for all current VMAs .
*
* There are a couple of subtleties with this . If mlockall ( ) is called multiple
* times with different flags , the values do not necessarily stack . If mlockall
* is called once including the MCL_FUTURE flag and then a second time without
* it , VM_LOCKED and VM_LOCKONFAULT will be cleared from mm - > def_flags .
*/
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
static int apply_mlockall_flags ( int flags )
2005-04-17 02:20:36 +04:00
{
struct vm_area_struct * vma , * prev = NULL ;
2015-11-06 05:51:39 +03:00
vm_flags_t to_add = 0 ;
2005-04-17 02:20:36 +04:00
2015-11-06 05:51:39 +03:00
current - > mm - > def_flags & = VM_LOCKED_CLEAR_MASK ;
if ( flags & MCL_FUTURE ) {
2013-03-29 03:26:23 +04:00
current - > mm - > def_flags | = VM_LOCKED ;
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
2015-11-06 05:51:39 +03:00
if ( flags & MCL_ONFAULT )
current - > mm - > def_flags | = VM_LOCKONFAULT ;
if ( ! ( flags & MCL_CURRENT ) )
goto out ;
}
if ( flags & MCL_CURRENT ) {
to_add | = VM_LOCKED ;
if ( flags & MCL_ONFAULT )
to_add | = VM_LOCKONFAULT ;
}
2005-04-17 02:20:36 +04:00
for ( vma = current - > mm - > mmap ; vma ; vma = prev - > vm_next ) {
2011-05-26 14:16:19 +04:00
vm_flags_t newflags ;
2005-04-17 02:20:36 +04:00
2015-11-06 05:51:39 +03:00
newflags = vma - > vm_flags & VM_LOCKED_CLEAR_MASK ;
newflags | = to_add ;
2005-04-17 02:20:36 +04:00
/* Ignore errors */
mlock_fixup ( vma , & prev , vma - > vm_start , vma - > vm_end , newflags ) ;
2017-10-24 18:22:18 +03:00
cond_resched ( ) ;
2005-04-17 02:20:36 +04:00
}
out :
return 0 ;
}
2009-01-14 16:14:16 +03:00
SYSCALL_DEFINE1 ( mlockall , int , flags )
2005-04-17 02:20:36 +04:00
{
unsigned long lock_limit ;
2015-11-06 05:46:00 +03:00
int ret ;
2005-04-17 02:20:36 +04:00
2019-06-14 01:55:55 +03:00
if ( ! flags | | ( flags & ~ ( MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT ) ) | |
flags = = MCL_ONFAULT )
2015-11-06 05:46:00 +03:00
return - EINVAL ;
2005-04-17 02:20:36 +04:00
if ( ! can_do_mlock ( ) )
2015-11-06 05:46:00 +03:00
return - EPERM ;
2005-04-17 02:20:36 +04:00
2010-03-06 00:41:44 +03:00
lock_limit = rlimit ( RLIMIT_MEMLOCK ) ;
2005-04-17 02:20:36 +04:00
lock_limit > > = PAGE_SHIFT ;
2020-06-09 07:33:25 +03:00
if ( mmap_write_lock_killable ( current - > mm ) )
2016-05-24 02:25:27 +03:00
return - EINTR ;
2014-01-22 03:49:16 +04:00
2016-05-24 02:25:27 +03:00
ret = - ENOMEM ;
2005-04-17 02:20:36 +04:00
if ( ! ( flags & MCL_CURRENT ) | | ( current - > mm - > total_vm < = lock_limit ) | |
capable ( CAP_IPC_LOCK ) )
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
ret = apply_mlockall_flags ( flags ) ;
2020-06-09 07:33:25 +03:00
mmap_write_unlock ( current - > mm ) ;
2013-02-23 04:32:37 +04:00
if ( ! ret & & ( flags & MCL_CURRENT ) )
mm_populate ( 0 , TASK_SIZE ) ;
2015-11-06 05:46:00 +03:00
2005-04-17 02:20:36 +04:00
return ret ;
}
2009-01-14 16:14:16 +03:00
SYSCALL_DEFINE0 ( munlockall )
2005-04-17 02:20:36 +04:00
{
int ret ;
2020-06-09 07:33:25 +03:00
if ( mmap_write_lock_killable ( current - > mm ) )
2016-05-24 02:25:27 +03:00
return - EINTR ;
mm: mlock: refactor mlock, munlock, and munlockall code
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:51:29 +03:00
ret = apply_mlockall_flags ( 0 ) ;
2020-06-09 07:33:25 +03:00
mmap_write_unlock ( current - > mm ) ;
2005-04-17 02:20:36 +04:00
return ret ;
}
/*
* Objects with different lifetime than processes ( SHM_LOCK and SHM_HUGETLB
* shm segments ) get accounted against the user_struct instead .
*/
static DEFINE_SPINLOCK ( shmlock_user_lock ) ;
int user_shm_lock ( size_t size , struct user_struct * user )
{
unsigned long lock_limit , locked ;
int allowed = 0 ;
locked = ( size + PAGE_SIZE - 1 ) > > PAGE_SHIFT ;
2010-03-06 00:41:44 +03:00
lock_limit = rlimit ( RLIMIT_MEMLOCK ) ;
2007-07-16 10:38:25 +04:00
if ( lock_limit = = RLIM_INFINITY )
allowed = 1 ;
2005-04-17 02:20:36 +04:00
lock_limit > > = PAGE_SHIFT ;
spin_lock ( & shmlock_user_lock ) ;
2007-07-16 10:38:25 +04:00
if ( ! allowed & &
locked + user - > locked_shm > lock_limit & & ! capable ( CAP_IPC_LOCK ) )
2005-04-17 02:20:36 +04:00
goto out ;
get_uid ( user ) ;
user - > locked_shm + = locked ;
allowed = 1 ;
out :
spin_unlock ( & shmlock_user_lock ) ;
return allowed ;
}
void user_shm_unlock ( size_t size , struct user_struct * user )
{
spin_lock ( & shmlock_user_lock ) ;
user - > locked_shm - = ( size + PAGE_SIZE - 1 ) > > PAGE_SHIFT ;
spin_unlock ( & shmlock_user_lock ) ;
free_uid ( user ) ;
}