linux/sound/soc/codecs/cs35l56-sdw.c

569 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
//
// CS35L56 ALSA SoC audio driver SoundWire binding
//
// Copyright (C) 2023 Cirrus Logic, Inc. and
// Cirrus Logic International Semiconductor Ltd.
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/soundwire/sdw.h>
#include <linux/soundwire/sdw_registers.h>
#include <linux/soundwire/sdw_type.h>
#include <linux/swab.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "cs35l56.h"
/* Register addresses are offset when sent over SoundWire */
#define CS35L56_SDW_ADDR_OFFSET 0x8000
static int cs35l56_sdw_read_one(struct sdw_slave *peripheral, unsigned int reg, void *buf)
{
int ret;
ret = sdw_nread_no_pm(peripheral, reg, 4, (u8 *)buf);
if (ret != 0) {
dev_err(&peripheral->dev, "Read failed @%#x:%d\n", reg, ret);
return ret;
}
swab32s((u32 *)buf);
return 0;
}
static int cs35l56_sdw_read(void *context, const void *reg_buf,
const size_t reg_size, void *val_buf,
size_t val_size)
{
struct sdw_slave *peripheral = context;
u8 *buf8 = val_buf;
unsigned int reg, bytes;
int ret;
reg = le32_to_cpu(*(const __le32 *)reg_buf);
reg += CS35L56_SDW_ADDR_OFFSET;
if (val_size == 4)
return cs35l56_sdw_read_one(peripheral, reg, val_buf);
while (val_size) {
bytes = SDW_REG_NO_PAGE - (reg & SDW_REGADDR); /* to end of page */
if (bytes > val_size)
bytes = val_size;
ret = sdw_nread_no_pm(peripheral, reg, bytes, buf8);
if (ret != 0) {
dev_err(&peripheral->dev, "Read failed @%#x..%#x:%d\n",
reg, reg + bytes - 1, ret);
return ret;
}
swab32_array((u32 *)buf8, bytes / 4);
val_size -= bytes;
reg += bytes;
buf8 += bytes;
}
return 0;
}
static inline void cs35l56_swab_copy(void *dest, const void *src, size_t nbytes)
{
u32 *dest32 = dest;
const u32 *src32 = src;
for (; nbytes > 0; nbytes -= 4)
*dest32++ = swab32(*src32++);
}
static int cs35l56_sdw_write_one(struct sdw_slave *peripheral, unsigned int reg, const void *buf)
{
u32 val_le = swab32(*(u32 *)buf);
int ret;
ret = sdw_nwrite_no_pm(peripheral, reg, 4, (u8 *)&val_le);
if (ret != 0) {
dev_err(&peripheral->dev, "Write failed @%#x:%d\n", reg, ret);
return ret;
}
return 0;
}
static int cs35l56_sdw_gather_write(void *context,
const void *reg_buf, size_t reg_size,
const void *val_buf, size_t val_size)
{
struct sdw_slave *peripheral = context;
const u8 *src_be = val_buf;
u32 val_le_buf[64]; /* Define u32 so it is 32-bit aligned */
unsigned int reg, bytes;
int ret;
reg = le32_to_cpu(*(const __le32 *)reg_buf);
reg += CS35L56_SDW_ADDR_OFFSET;
if (val_size == 4)
return cs35l56_sdw_write_one(peripheral, reg, src_be);
while (val_size) {
bytes = SDW_REG_NO_PAGE - (reg & SDW_REGADDR); /* to end of page */
if (bytes > val_size)
bytes = val_size;
if (bytes > sizeof(val_le_buf))
bytes = sizeof(val_le_buf);
cs35l56_swab_copy(val_le_buf, src_be, bytes);
ret = sdw_nwrite_no_pm(peripheral, reg, bytes, (u8 *)val_le_buf);
if (ret != 0) {
dev_err(&peripheral->dev, "Write failed @%#x..%#x:%d\n",
reg, reg + bytes - 1, ret);
return ret;
}
val_size -= bytes;
reg += bytes;
src_be += bytes;
}
return 0;
}
static int cs35l56_sdw_write(void *context, const void *val_buf, size_t val_size)
{
const u8 *src_buf = val_buf;
/* First word of val_buf contains the destination address */
return cs35l56_sdw_gather_write(context, &src_buf[0], 4, &src_buf[4], val_size - 4);
}
/*
* Registers are big-endian on I2C and SPI but little-endian on SoundWire.
* Exported firmware controls are big-endian on I2C/SPI but little-endian on
* SoundWire. Firmware files are always big-endian and are opaque blobs.
* Present a big-endian regmap and hide the endianness swap, so that the ALSA
* byte controls always have the same byte order, and firmware file blobs
* can be written verbatim.
*/
static const struct regmap_bus cs35l56_regmap_bus_sdw = {
.read = cs35l56_sdw_read,
.write = cs35l56_sdw_write,
.gather_write = cs35l56_sdw_gather_write,
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
.val_format_endian_default = REGMAP_ENDIAN_BIG,
};
static void cs35l56_sdw_init(struct sdw_slave *peripheral)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
int ret;
pm_runtime_get_noresume(cs35l56->base.dev);
regcache_cache_only(cs35l56->base.regmap, false);
ret = cs35l56_init(cs35l56);
if (ret < 0) {
regcache_cache_only(cs35l56->base.regmap, true);
goto out;
}
/*
* cs35l56_init can return with !init_done if it triggered
* a soft reset.
*/
if (cs35l56->base.init_done) {
/* Enable SoundWire interrupts */
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_MASK_1,
CS35L56_SDW_INT_MASK_CODEC_IRQ);
}
out:
pm_runtime_mark_last_busy(cs35l56->base.dev);
pm_runtime_put_autosuspend(cs35l56->base.dev);
}
static int cs35l56_sdw_interrupt(struct sdw_slave *peripheral,
struct sdw_slave_intr_status *status)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
/* SoundWire core holds our pm_runtime when calling this function. */
dev_dbg(cs35l56->base.dev, "int control_port=%#x\n", status->control_port);
if ((status->control_port & SDW_SCP_INT1_IMPL_DEF) == 0)
return 0;
/*
* Prevent bus manager suspending and possibly issuing a
* bus-reset before the queued work has run.
*/
pm_runtime_get_noresume(cs35l56->base.dev);
/*
* Mask and clear until it has been handled. The read of GEN_INT_STAT_1
* is required as per the SoundWire spec for interrupt status bits
* to clear. GEN_INT_MASK_1 masks the _inputs_ to GEN_INT_STAT1.
* None of the interrupts are time-critical so use the
* power-efficient queue.
*/
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_MASK_1, 0);
sdw_read_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1);
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1, 0xFF);
queue_work(system_power_efficient_wq, &cs35l56->sdw_irq_work);
return 0;
}
static void cs35l56_sdw_irq_work(struct work_struct *work)
{
struct cs35l56_private *cs35l56 = container_of(work,
struct cs35l56_private,
sdw_irq_work);
cs35l56_irq(-1, &cs35l56->base);
/* unmask interrupts */
if (!cs35l56->sdw_irq_no_unmask)
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_MASK_1,
CS35L56_SDW_INT_MASK_CODEC_IRQ);
pm_runtime_put_autosuspend(cs35l56->base.dev);
}
static int cs35l56_sdw_read_prop(struct sdw_slave *peripheral)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
struct sdw_slave_prop *prop = &peripheral->prop;
struct sdw_dpn_prop *ports;
ports = devm_kcalloc(cs35l56->base.dev, 2, sizeof(*ports), GFP_KERNEL);
if (!ports)
return -ENOMEM;
prop->source_ports = BIT(CS35L56_SDW1_CAPTURE_PORT);
prop->sink_ports = BIT(CS35L56_SDW1_PLAYBACK_PORT);
prop->paging_support = true;
prop->clk_stop_mode1 = false;
prop->quirks = SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY;
prop->scp_int1_mask = SDW_SCP_INT1_BUS_CLASH | SDW_SCP_INT1_PARITY | SDW_SCP_INT1_IMPL_DEF;
/* DP1 - playback */
ports[0].num = CS35L56_SDW1_PLAYBACK_PORT;
ports[0].type = SDW_DPN_FULL;
ports[0].ch_prep_timeout = 10;
prop->sink_dpn_prop = &ports[0];
/* DP3 - capture */
ports[1].num = CS35L56_SDW1_CAPTURE_PORT;
ports[1].type = SDW_DPN_FULL;
ports[1].ch_prep_timeout = 10;
prop->src_dpn_prop = &ports[1];
return 0;
}
static int cs35l56_sdw_update_status(struct sdw_slave *peripheral,
enum sdw_slave_status status)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
switch (status) {
case SDW_SLAVE_ATTACHED:
dev_dbg(cs35l56->base.dev, "%s: ATTACHED\n", __func__);
if (cs35l56->sdw_attached)
break;
if (!cs35l56->base.init_done || cs35l56->soft_resetting)
cs35l56_sdw_init(peripheral);
cs35l56->sdw_attached = true;
break;
case SDW_SLAVE_UNATTACHED:
dev_dbg(cs35l56->base.dev, "%s: UNATTACHED\n", __func__);
cs35l56->sdw_attached = false;
break;
default:
break;
}
return 0;
}
static int cs35l56_a1_kick_divider(struct cs35l56_private *cs35l56,
struct sdw_slave *peripheral)
{
unsigned int curr_scale_reg, next_scale_reg;
int curr_scale, next_scale, ret;
if (!cs35l56->base.init_done)
return 0;
if (peripheral->bus->params.curr_bank) {
curr_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B1;
next_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B0;
} else {
curr_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B0;
next_scale_reg = SDW_SCP_BUSCLOCK_SCALE_B1;
}
/*
* Current clock scale value must be different to new value.
* Modify current to guarantee this. If next still has the dummy
* value we wrote when it was current, the core code has not set
* a new scale so restore its original good value
*/
curr_scale = sdw_read_no_pm(peripheral, curr_scale_reg);
if (curr_scale < 0) {
dev_err(cs35l56->base.dev, "Failed to read current clock scale: %d\n", curr_scale);
return curr_scale;
}
next_scale = sdw_read_no_pm(peripheral, next_scale_reg);
if (next_scale < 0) {
dev_err(cs35l56->base.dev, "Failed to read next clock scale: %d\n", next_scale);
return next_scale;
}
if (next_scale == CS35L56_SDW_INVALID_BUS_SCALE) {
next_scale = cs35l56->old_sdw_clock_scale;
ret = sdw_write_no_pm(peripheral, next_scale_reg, next_scale);
if (ret < 0) {
dev_err(cs35l56->base.dev, "Failed to modify current clock scale: %d\n",
ret);
return ret;
}
}
cs35l56->old_sdw_clock_scale = curr_scale;
ret = sdw_write_no_pm(peripheral, curr_scale_reg, CS35L56_SDW_INVALID_BUS_SCALE);
if (ret < 0) {
dev_err(cs35l56->base.dev, "Failed to modify current clock scale: %d\n", ret);
return ret;
}
dev_dbg(cs35l56->base.dev, "Next bus scale: %#x\n", next_scale);
return 0;
}
static int cs35l56_sdw_bus_config(struct sdw_slave *peripheral,
struct sdw_bus_params *params)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
int sclk;
sclk = params->curr_dr_freq / 2;
dev_dbg(cs35l56->base.dev, "%s: sclk=%u c=%u r=%u\n",
__func__, sclk, params->col, params->row);
if (cs35l56->base.rev < 0xb0)
return cs35l56_a1_kick_divider(cs35l56, peripheral);
return 0;
}
static int __maybe_unused cs35l56_sdw_clk_stop(struct sdw_slave *peripheral,
enum sdw_clk_stop_mode mode,
enum sdw_clk_stop_type type)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
dev_dbg(cs35l56->base.dev, "%s: mode:%d type:%d\n", __func__, mode, type);
return 0;
}
static const struct sdw_slave_ops cs35l56_sdw_ops = {
.read_prop = cs35l56_sdw_read_prop,
.interrupt_callback = cs35l56_sdw_interrupt,
.update_status = cs35l56_sdw_update_status,
.bus_config = cs35l56_sdw_bus_config,
#ifdef DEBUG
.clk_stop = cs35l56_sdw_clk_stop,
#endif
};
static int __maybe_unused cs35l56_sdw_handle_unattach(struct cs35l56_private *cs35l56)
{
struct sdw_slave *peripheral = cs35l56->sdw_peripheral;
if (peripheral->unattach_request) {
/* Cannot access registers until bus is re-initialized. */
dev_dbg(cs35l56->base.dev, "Wait for initialization_complete\n");
if (!wait_for_completion_timeout(&peripheral->initialization_complete,
msecs_to_jiffies(5000))) {
dev_err(cs35l56->base.dev, "initialization_complete timed out\n");
return -ETIMEDOUT;
}
peripheral->unattach_request = 0;
/*
* Don't call regcache_mark_dirty(), we can't be sure that the
* Manager really did issue a Bus Reset.
*/
}
return 0;
}
static int __maybe_unused cs35l56_sdw_runtime_suspend(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
if (!cs35l56->base.init_done)
return 0;
return cs35l56_runtime_suspend_common(&cs35l56->base);
}
static int __maybe_unused cs35l56_sdw_runtime_resume(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
int ret;
dev_dbg(dev, "Runtime resume\n");
if (!cs35l56->base.init_done)
return 0;
ret = cs35l56_sdw_handle_unattach(cs35l56);
if (ret < 0)
return ret;
ret = cs35l56_runtime_resume_common(&cs35l56->base, true);
if (ret)
return ret;
/* Re-enable SoundWire interrupts */
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_MASK_1,
CS35L56_SDW_INT_MASK_CODEC_IRQ);
return 0;
}
ASoC: cs35l56: Add basic system suspend handling This adds the main handling for system suspend but does not handle re-patching the firmware after system resume. This is a multi-stage suspend and resume because if there is a RESET line it is almost certain that it will be shared by all the amps. So every amp must have done its suspend before we can assert RESET. Likewise we must de-assert RESET before the amps can resume. It's preferable to assert RESET before we turning off regulators, and while they power up. The actual suspend and resume is done by using the pair pm_runtime_force_suspend() and pm_runtime_force_resume() to re-use our runtime suspend/resume sequences. pm_runtime_force_suspend() will disable our pm_runtime. If we were runtime-resumed it calls our runtime_suspend(). pm_runtime_force_resume() re-enables pm_runtime and if we were originally runtime-resumed before the pm_runtime_force_suspend() it calls our runtime_resume(). Otherwise it leaves us runtime-suspended. The general process is therefore: suspend() -> finish dsp_work and then run our runtime_suspend suspend_late() -> assert RESET and turn off supplies resume_early() -> enable supplies and de-assert RESET resume() -> pm_runtime_force_resume() In addition, to prevent the IRQ handler running in the period between pm_runtime_force_suspend() and pm_runtime_force_resume() the parent IRQ is temporarily disabled: - from suspend until suspend_noirq - from resume_noirq until resume Signed-off-by: Richard Fitzgerald <rf@opensource.cirrus.com> Link: https://lore.kernel.org/r/20230411152528.329803-6-rf@opensource.cirrus.com Signed-off-by: Mark Brown <broonie@kernel.org>
2023-04-11 16:25:27 +01:00
static int __maybe_unused cs35l56_sdw_system_suspend(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
if (!cs35l56->base.init_done)
ASoC: cs35l56: Add basic system suspend handling This adds the main handling for system suspend but does not handle re-patching the firmware after system resume. This is a multi-stage suspend and resume because if there is a RESET line it is almost certain that it will be shared by all the amps. So every amp must have done its suspend before we can assert RESET. Likewise we must de-assert RESET before the amps can resume. It's preferable to assert RESET before we turning off regulators, and while they power up. The actual suspend and resume is done by using the pair pm_runtime_force_suspend() and pm_runtime_force_resume() to re-use our runtime suspend/resume sequences. pm_runtime_force_suspend() will disable our pm_runtime. If we were runtime-resumed it calls our runtime_suspend(). pm_runtime_force_resume() re-enables pm_runtime and if we were originally runtime-resumed before the pm_runtime_force_suspend() it calls our runtime_resume(). Otherwise it leaves us runtime-suspended. The general process is therefore: suspend() -> finish dsp_work and then run our runtime_suspend suspend_late() -> assert RESET and turn off supplies resume_early() -> enable supplies and de-assert RESET resume() -> pm_runtime_force_resume() In addition, to prevent the IRQ handler running in the period between pm_runtime_force_suspend() and pm_runtime_force_resume() the parent IRQ is temporarily disabled: - from suspend until suspend_noirq - from resume_noirq until resume Signed-off-by: Richard Fitzgerald <rf@opensource.cirrus.com> Link: https://lore.kernel.org/r/20230411152528.329803-6-rf@opensource.cirrus.com Signed-off-by: Mark Brown <broonie@kernel.org>
2023-04-11 16:25:27 +01:00
return 0;
/*
* Disable SoundWire interrupts.
* Flush - don't cancel because that could leave an unbalanced pm_runtime_get.
*/
cs35l56->sdw_irq_no_unmask = true;
flush_work(&cs35l56->sdw_irq_work);
/* Mask interrupts and flush in case sdw_irq_work was queued again */
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_MASK_1, 0);
sdw_read_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_STAT_1);
sdw_write_no_pm(cs35l56->sdw_peripheral, CS35L56_SDW_GEN_INT_STAT_1, 0xFF);
flush_work(&cs35l56->sdw_irq_work);
return cs35l56_system_suspend(dev);
}
static int __maybe_unused cs35l56_sdw_system_resume(struct device *dev)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(dev);
cs35l56->sdw_irq_no_unmask = false;
/* runtime_resume re-enables the interrupt */
return cs35l56_system_resume(dev);
}
static int cs35l56_sdw_probe(struct sdw_slave *peripheral, const struct sdw_device_id *id)
{
struct device *dev = &peripheral->dev;
struct cs35l56_private *cs35l56;
int ret;
cs35l56 = devm_kzalloc(dev, sizeof(*cs35l56), GFP_KERNEL);
if (!cs35l56)
return -ENOMEM;
cs35l56->base.dev = dev;
cs35l56->sdw_peripheral = peripheral;
INIT_WORK(&cs35l56->sdw_irq_work, cs35l56_sdw_irq_work);
dev_set_drvdata(dev, cs35l56);
cs35l56->base.regmap = devm_regmap_init(dev, &cs35l56_regmap_bus_sdw,
peripheral, &cs35l56_regmap_sdw);
if (IS_ERR(cs35l56->base.regmap)) {
ret = PTR_ERR(cs35l56->base.regmap);
return dev_err_probe(dev, ret, "Failed to allocate register map\n");
}
/* Start in cache-only until device is enumerated */
regcache_cache_only(cs35l56->base.regmap, true);
ret = cs35l56_common_probe(cs35l56);
if (ret != 0)
return ret;
return 0;
}
static int cs35l56_sdw_remove(struct sdw_slave *peripheral)
{
struct cs35l56_private *cs35l56 = dev_get_drvdata(&peripheral->dev);
/* Disable SoundWire interrupts */
cs35l56->sdw_irq_no_unmask = true;
cancel_work_sync(&cs35l56->sdw_irq_work);
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_MASK_1, 0);
sdw_read_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1);
sdw_write_no_pm(peripheral, CS35L56_SDW_GEN_INT_STAT_1, 0xFF);
cs35l56_remove(cs35l56);
return 0;
}
static const struct dev_pm_ops cs35l56_sdw_pm = {
SET_RUNTIME_PM_OPS(cs35l56_sdw_runtime_suspend, cs35l56_sdw_runtime_resume, NULL)
SYSTEM_SLEEP_PM_OPS(cs35l56_sdw_system_suspend, cs35l56_sdw_system_resume)
ASoC: cs35l56: Add basic system suspend handling This adds the main handling for system suspend but does not handle re-patching the firmware after system resume. This is a multi-stage suspend and resume because if there is a RESET line it is almost certain that it will be shared by all the amps. So every amp must have done its suspend before we can assert RESET. Likewise we must de-assert RESET before the amps can resume. It's preferable to assert RESET before we turning off regulators, and while they power up. The actual suspend and resume is done by using the pair pm_runtime_force_suspend() and pm_runtime_force_resume() to re-use our runtime suspend/resume sequences. pm_runtime_force_suspend() will disable our pm_runtime. If we were runtime-resumed it calls our runtime_suspend(). pm_runtime_force_resume() re-enables pm_runtime and if we were originally runtime-resumed before the pm_runtime_force_suspend() it calls our runtime_resume(). Otherwise it leaves us runtime-suspended. The general process is therefore: suspend() -> finish dsp_work and then run our runtime_suspend suspend_late() -> assert RESET and turn off supplies resume_early() -> enable supplies and de-assert RESET resume() -> pm_runtime_force_resume() In addition, to prevent the IRQ handler running in the period between pm_runtime_force_suspend() and pm_runtime_force_resume() the parent IRQ is temporarily disabled: - from suspend until suspend_noirq - from resume_noirq until resume Signed-off-by: Richard Fitzgerald <rf@opensource.cirrus.com> Link: https://lore.kernel.org/r/20230411152528.329803-6-rf@opensource.cirrus.com Signed-off-by: Mark Brown <broonie@kernel.org>
2023-04-11 16:25:27 +01:00
LATE_SYSTEM_SLEEP_PM_OPS(cs35l56_system_suspend_late, cs35l56_system_resume_early)
/* NOIRQ stage not needed, SoundWire doesn't use a hard IRQ */
};
static const struct sdw_device_id cs35l56_sdw_id[] = {
SDW_SLAVE_ENTRY(0x01FA, 0x3556, 0),
{},
};
MODULE_DEVICE_TABLE(sdw, cs35l56_sdw_id);
static struct sdw_driver cs35l56_sdw_driver = {
.driver = {
.name = "cs35l56",
.pm = &cs35l56_sdw_pm,
},
.probe = cs35l56_sdw_probe,
.remove = cs35l56_sdw_remove,
.ops = &cs35l56_sdw_ops,
.id_table = cs35l56_sdw_id,
};
module_sdw_driver(cs35l56_sdw_driver);
MODULE_DESCRIPTION("ASoC CS35L56 SoundWire driver");
MODULE_IMPORT_NS(SND_SOC_CS35L56_CORE);
MODULE_IMPORT_NS(SND_SOC_CS35L56_SHARED);
MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>");
MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
MODULE_LICENSE("GPL");