linux/drivers/mmc/host/wbsd.c

2006 lines
39 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/drivers/mmc/host/wbsd.c - Winbond W83L51xD SD/MMC driver
*
* Copyright (C) 2004-2007 Pierre Ossman, All Rights Reserved.
*
* Warning!
*
* Changes to the FIFO system should be done with extreme care since
* the hardware is full of bugs related to the FIFO. Known issues are:
*
* - FIFO size field in FSR is always zero.
*
* - FIFO interrupts tend not to work as they should. Interrupts are
* triggered only for full/empty events, not for threshold values.
*
* - On APIC systems the FIFO empty interrupt is sometimes lost.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/pnp.h>
#include <linux/highmem.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/scatterlist.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/dma.h>
#include "wbsd.h"
#define DRIVER_NAME "wbsd"
#define DBG(x...) \
pr_debug(DRIVER_NAME ": " x)
#define DBGF(f, x...) \
pr_debug(DRIVER_NAME " [%s()]: " f, __func__ , ##x)
/*
* Device resources
*/
#ifdef CONFIG_PNP
static const struct pnp_device_id pnp_dev_table[] = {
{ "WEC0517", 0 },
{ "WEC0518", 0 },
{ "", 0 },
};
MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
#endif /* CONFIG_PNP */
static const int config_ports[] = { 0x2E, 0x4E };
static const int unlock_codes[] = { 0x83, 0x87 };
static const int valid_ids[] = {
0x7112,
};
#ifdef CONFIG_PNP
static unsigned int param_nopnp = 0;
#else
static const unsigned int param_nopnp = 1;
#endif
static unsigned int param_io = 0x248;
static unsigned int param_irq = 6;
static int param_dma = 2;
/*
* Basic functions
*/
static inline void wbsd_unlock_config(struct wbsd_host *host)
{
BUG_ON(host->config == 0);
outb(host->unlock_code, host->config);
outb(host->unlock_code, host->config);
}
static inline void wbsd_lock_config(struct wbsd_host *host)
{
BUG_ON(host->config == 0);
outb(LOCK_CODE, host->config);
}
static inline void wbsd_write_config(struct wbsd_host *host, u8 reg, u8 value)
{
BUG_ON(host->config == 0);
outb(reg, host->config);
outb(value, host->config + 1);
}
static inline u8 wbsd_read_config(struct wbsd_host *host, u8 reg)
{
BUG_ON(host->config == 0);
outb(reg, host->config);
return inb(host->config + 1);
}
static inline void wbsd_write_index(struct wbsd_host *host, u8 index, u8 value)
{
outb(index, host->base + WBSD_IDXR);
outb(value, host->base + WBSD_DATAR);
}
static inline u8 wbsd_read_index(struct wbsd_host *host, u8 index)
{
outb(index, host->base + WBSD_IDXR);
return inb(host->base + WBSD_DATAR);
}
/*
* Common routines
*/
static void wbsd_init_device(struct wbsd_host *host)
{
u8 setup, ier;
/*
* Reset chip (SD/MMC part) and fifo.
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
setup |= WBSD_FIFO_RESET | WBSD_SOFT_RESET;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
/*
* Set DAT3 to input
*/
setup &= ~WBSD_DAT3_H;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
host->flags &= ~WBSD_FIGNORE_DETECT;
/*
* Read back default clock.
*/
host->clk = wbsd_read_index(host, WBSD_IDX_CLK);
/*
* Power down port.
*/
outb(WBSD_POWER_N, host->base + WBSD_CSR);
/*
* Set maximum timeout.
*/
wbsd_write_index(host, WBSD_IDX_TAAC, 0x7F);
/*
* Test for card presence
*/
if (inb(host->base + WBSD_CSR) & WBSD_CARDPRESENT)
host->flags |= WBSD_FCARD_PRESENT;
else
host->flags &= ~WBSD_FCARD_PRESENT;
/*
* Enable interesting interrupts.
*/
ier = 0;
ier |= WBSD_EINT_CARD;
ier |= WBSD_EINT_FIFO_THRE;
ier |= WBSD_EINT_CRC;
ier |= WBSD_EINT_TIMEOUT;
ier |= WBSD_EINT_TC;
outb(ier, host->base + WBSD_EIR);
/*
* Clear interrupts.
*/
inb(host->base + WBSD_ISR);
}
static void wbsd_reset(struct wbsd_host *host)
{
u8 setup;
pr_err("%s: Resetting chip\n", mmc_hostname(host->mmc));
/*
* Soft reset of chip (SD/MMC part).
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
setup |= WBSD_SOFT_RESET;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
}
static void wbsd_request_end(struct wbsd_host *host, struct mmc_request *mrq)
{
unsigned long dmaflags;
if (host->dma >= 0) {
/*
* Release ISA DMA controller.
*/
dmaflags = claim_dma_lock();
disable_dma(host->dma);
clear_dma_ff(host->dma);
release_dma_lock(dmaflags);
/*
* Disable DMA on host.
*/
wbsd_write_index(host, WBSD_IDX_DMA, 0);
}
host->mrq = NULL;
/*
* MMC layer might call back into the driver so first unlock.
*/
spin_unlock(&host->lock);
mmc_request_done(host->mmc, mrq);
spin_lock(&host->lock);
}
/*
* Scatter/gather functions
*/
static inline void wbsd_init_sg(struct wbsd_host *host, struct mmc_data *data)
{
/*
* Get info. about SG list from data structure.
*/
host->cur_sg = data->sg;
host->num_sg = data->sg_len;
host->offset = 0;
host->remain = host->cur_sg->length;
}
static inline int wbsd_next_sg(struct wbsd_host *host)
{
/*
* Skip to next SG entry.
*/
host->cur_sg++;
host->num_sg--;
/*
* Any entries left?
*/
if (host->num_sg > 0) {
host->offset = 0;
host->remain = host->cur_sg->length;
}
return host->num_sg;
}
static inline char *wbsd_map_sg(struct wbsd_host *host)
{
return kmap_atomic(sg_page(host->cur_sg)) + host->cur_sg->offset;
}
static inline void wbsd_sg_to_dma(struct wbsd_host *host, struct mmc_data *data)
{
size_t len = 0;
int i;
for (i = 0; i < data->sg_len; i++)
len += data->sg[i].length;
sg_copy_to_buffer(data->sg, data->sg_len, host->dma_buffer, len);
}
static inline void wbsd_dma_to_sg(struct wbsd_host *host, struct mmc_data *data)
{
size_t len = 0;
int i;
for (i = 0; i < data->sg_len; i++)
len += data->sg[i].length;
sg_copy_from_buffer(data->sg, data->sg_len, host->dma_buffer, len);
}
/*
* Command handling
*/
static inline void wbsd_get_short_reply(struct wbsd_host *host,
struct mmc_command *cmd)
{
/*
* Correct response type?
*/
if (wbsd_read_index(host, WBSD_IDX_RSPLEN) != WBSD_RSP_SHORT) {
cmd->error = -EILSEQ;
return;
}
cmd->resp[0] = wbsd_read_index(host, WBSD_IDX_RESP12) << 24;
cmd->resp[0] |= wbsd_read_index(host, WBSD_IDX_RESP13) << 16;
cmd->resp[0] |= wbsd_read_index(host, WBSD_IDX_RESP14) << 8;
cmd->resp[0] |= wbsd_read_index(host, WBSD_IDX_RESP15) << 0;
cmd->resp[1] = wbsd_read_index(host, WBSD_IDX_RESP16) << 24;
}
static inline void wbsd_get_long_reply(struct wbsd_host *host,
struct mmc_command *cmd)
{
int i;
/*
* Correct response type?
*/
if (wbsd_read_index(host, WBSD_IDX_RSPLEN) != WBSD_RSP_LONG) {
cmd->error = -EILSEQ;
return;
}
for (i = 0; i < 4; i++) {
cmd->resp[i] =
wbsd_read_index(host, WBSD_IDX_RESP1 + i * 4) << 24;
cmd->resp[i] |=
wbsd_read_index(host, WBSD_IDX_RESP2 + i * 4) << 16;
cmd->resp[i] |=
wbsd_read_index(host, WBSD_IDX_RESP3 + i * 4) << 8;
cmd->resp[i] |=
wbsd_read_index(host, WBSD_IDX_RESP4 + i * 4) << 0;
}
}
static void wbsd_send_command(struct wbsd_host *host, struct mmc_command *cmd)
{
int i;
u8 status, isr;
/*
* Clear accumulated ISR. The interrupt routine
* will fill this one with events that occur during
* transfer.
*/
host->isr = 0;
/*
* Send the command (CRC calculated by host).
*/
outb(cmd->opcode, host->base + WBSD_CMDR);
for (i = 3; i >= 0; i--)
outb((cmd->arg >> (i * 8)) & 0xff, host->base + WBSD_CMDR);
cmd->error = 0;
/*
* Wait for the request to complete.
*/
do {
status = wbsd_read_index(host, WBSD_IDX_STATUS);
} while (status & WBSD_CARDTRAFFIC);
/*
* Do we expect a reply?
*/
if (cmd->flags & MMC_RSP_PRESENT) {
/*
* Read back status.
*/
isr = host->isr;
/* Card removed? */
if (isr & WBSD_INT_CARD)
cmd->error = -ENOMEDIUM;
/* Timeout? */
else if (isr & WBSD_INT_TIMEOUT)
cmd->error = -ETIMEDOUT;
/* CRC? */
else if ((cmd->flags & MMC_RSP_CRC) && (isr & WBSD_INT_CRC))
cmd->error = -EILSEQ;
/* All ok */
else {
if (cmd->flags & MMC_RSP_136)
wbsd_get_long_reply(host, cmd);
else
wbsd_get_short_reply(host, cmd);
}
}
}
/*
* Data functions
*/
static void wbsd_empty_fifo(struct wbsd_host *host)
{
struct mmc_data *data = host->mrq->cmd->data;
char *buffer;
int i, idx, fsr, fifo;
/*
* Handle excessive data.
*/
if (host->num_sg == 0)
return;
buffer = wbsd_map_sg(host) + host->offset;
idx = 0;
/*
* Drain the fifo. This has a tendency to loop longer
* than the FIFO length (usually one block).
*/
while (!((fsr = inb(host->base + WBSD_FSR)) & WBSD_FIFO_EMPTY)) {
/*
* The size field in the FSR is broken so we have to
* do some guessing.
*/
if (fsr & WBSD_FIFO_FULL)
fifo = 16;
else if (fsr & WBSD_FIFO_FUTHRE)
fifo = 8;
else
fifo = 1;
for (i = 0; i < fifo; i++) {
buffer[idx++] = inb(host->base + WBSD_DFR);
host->offset++;
host->remain--;
data->bytes_xfered++;
/*
* End of scatter list entry?
*/
if (host->remain == 0) {
kunmap_atomic(buffer);
/*
* Get next entry. Check if last.
*/
if (!wbsd_next_sg(host))
return;
buffer = wbsd_map_sg(host);
idx = 0;
}
}
}
kunmap_atomic(buffer);
/*
* This is a very dirty hack to solve a
* hardware problem. The chip doesn't trigger
* FIFO threshold interrupts properly.
*/
if ((data->blocks * data->blksz - data->bytes_xfered) < 16)
tasklet_schedule(&host->fifo_tasklet);
}
static void wbsd_fill_fifo(struct wbsd_host *host)
{
struct mmc_data *data = host->mrq->cmd->data;
char *buffer;
int i, idx, fsr, fifo;
/*
* Check that we aren't being called after the
* entire buffer has been transferred.
*/
if (host->num_sg == 0)
return;
buffer = wbsd_map_sg(host) + host->offset;
idx = 0;
/*
* Fill the fifo. This has a tendency to loop longer
* than the FIFO length (usually one block).
*/
while (!((fsr = inb(host->base + WBSD_FSR)) & WBSD_FIFO_FULL)) {
/*
* The size field in the FSR is broken so we have to
* do some guessing.
*/
if (fsr & WBSD_FIFO_EMPTY)
fifo = 0;
else if (fsr & WBSD_FIFO_EMTHRE)
fifo = 8;
else
fifo = 15;
for (i = 16; i > fifo; i--) {
outb(buffer[idx], host->base + WBSD_DFR);
host->offset++;
host->remain--;
data->bytes_xfered++;
/*
* End of scatter list entry?
*/
if (host->remain == 0) {
kunmap_atomic(buffer);
/*
* Get next entry. Check if last.
*/
if (!wbsd_next_sg(host))
return;
buffer = wbsd_map_sg(host);
idx = 0;
}
}
}
kunmap_atomic(buffer);
/*
* The controller stops sending interrupts for
* 'FIFO empty' under certain conditions. So we
* need to be a bit more pro-active.
*/
tasklet_schedule(&host->fifo_tasklet);
}
static void wbsd_prepare_data(struct wbsd_host *host, struct mmc_data *data)
{
u16 blksize;
u8 setup;
unsigned long dmaflags;
unsigned int size;
/*
* Calculate size.
*/
size = data->blocks * data->blksz;
/*
* Check timeout values for overflow.
* (Yes, some cards cause this value to overflow).
*/
if (data->timeout_ns > 127000000)
wbsd_write_index(host, WBSD_IDX_TAAC, 127);
else {
wbsd_write_index(host, WBSD_IDX_TAAC,
data->timeout_ns / 1000000);
}
if (data->timeout_clks > 255)
wbsd_write_index(host, WBSD_IDX_NSAC, 255);
else
wbsd_write_index(host, WBSD_IDX_NSAC, data->timeout_clks);
/*
* Inform the chip of how large blocks will be
* sent. It needs this to determine when to
* calculate CRC.
*
* Space for CRC must be included in the size.
* Two bytes are needed for each data line.
*/
if (host->bus_width == MMC_BUS_WIDTH_1) {
blksize = data->blksz + 2;
wbsd_write_index(host, WBSD_IDX_PBSMSB, (blksize >> 4) & 0xF0);
wbsd_write_index(host, WBSD_IDX_PBSLSB, blksize & 0xFF);
} else if (host->bus_width == MMC_BUS_WIDTH_4) {
blksize = data->blksz + 2 * 4;
wbsd_write_index(host, WBSD_IDX_PBSMSB,
((blksize >> 4) & 0xF0) | WBSD_DATA_WIDTH);
wbsd_write_index(host, WBSD_IDX_PBSLSB, blksize & 0xFF);
} else {
data->error = -EINVAL;
return;
}
/*
* Clear the FIFO. This is needed even for DMA
* transfers since the chip still uses the FIFO
* internally.
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
setup |= WBSD_FIFO_RESET;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
/*
* DMA transfer?
*/
if (host->dma >= 0) {
/*
* The buffer for DMA is only 64 kB.
*/
BUG_ON(size > 0x10000);
if (size > 0x10000) {
data->error = -EINVAL;
return;
}
/*
* Transfer data from the SG list to
* the DMA buffer.
*/
if (data->flags & MMC_DATA_WRITE)
wbsd_sg_to_dma(host, data);
/*
* Initialise the ISA DMA controller.
*/
dmaflags = claim_dma_lock();
disable_dma(host->dma);
clear_dma_ff(host->dma);
if (data->flags & MMC_DATA_READ)
set_dma_mode(host->dma, DMA_MODE_READ & ~0x40);
else
set_dma_mode(host->dma, DMA_MODE_WRITE & ~0x40);
set_dma_addr(host->dma, host->dma_addr);
set_dma_count(host->dma, size);
enable_dma(host->dma);
release_dma_lock(dmaflags);
/*
* Enable DMA on the host.
*/
wbsd_write_index(host, WBSD_IDX_DMA, WBSD_DMA_ENABLE);
} else {
/*
* This flag is used to keep printk
* output to a minimum.
*/
host->firsterr = 1;
/*
* Initialise the SG list.
*/
wbsd_init_sg(host, data);
/*
* Turn off DMA.
*/
wbsd_write_index(host, WBSD_IDX_DMA, 0);
/*
* Set up FIFO threshold levels (and fill
* buffer if doing a write).
*/
if (data->flags & MMC_DATA_READ) {
wbsd_write_index(host, WBSD_IDX_FIFOEN,
WBSD_FIFOEN_FULL | 8);
} else {
wbsd_write_index(host, WBSD_IDX_FIFOEN,
WBSD_FIFOEN_EMPTY | 8);
wbsd_fill_fifo(host);
}
}
data->error = 0;
}
static void wbsd_finish_data(struct wbsd_host *host, struct mmc_data *data)
{
unsigned long dmaflags;
int count;
u8 status;
WARN_ON(host->mrq == NULL);
/*
* Send a stop command if needed.
*/
if (data->stop)
wbsd_send_command(host, data->stop);
/*
* Wait for the controller to leave data
* transfer state.
*/
do {
status = wbsd_read_index(host, WBSD_IDX_STATUS);
} while (status & (WBSD_BLOCK_READ | WBSD_BLOCK_WRITE));
/*
* DMA transfer?
*/
if (host->dma >= 0) {
/*
* Disable DMA on the host.
*/
wbsd_write_index(host, WBSD_IDX_DMA, 0);
/*
* Turn of ISA DMA controller.
*/
dmaflags = claim_dma_lock();
disable_dma(host->dma);
clear_dma_ff(host->dma);
count = get_dma_residue(host->dma);
release_dma_lock(dmaflags);
data->bytes_xfered = host->mrq->data->blocks *
host->mrq->data->blksz - count;
data->bytes_xfered -= data->bytes_xfered % data->blksz;
/*
* Any leftover data?
*/
if (count) {
pr_err("%s: Incomplete DMA transfer. "
"%d bytes left.\n",
mmc_hostname(host->mmc), count);
if (!data->error)
data->error = -EIO;
} else {
/*
* Transfer data from DMA buffer to
* SG list.
*/
if (data->flags & MMC_DATA_READ)
wbsd_dma_to_sg(host, data);
}
if (data->error) {
if (data->bytes_xfered)
data->bytes_xfered -= data->blksz;
}
}
wbsd_request_end(host, host->mrq);
}
/*****************************************************************************\
* *
* MMC layer callbacks *
* *
\*****************************************************************************/
static void wbsd_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct wbsd_host *host = mmc_priv(mmc);
struct mmc_command *cmd;
/*
* Disable tasklets to avoid a deadlock.
*/
spin_lock_bh(&host->lock);
BUG_ON(host->mrq != NULL);
cmd = mrq->cmd;
host->mrq = mrq;
/*
* Check that there is actually a card in the slot.
*/
if (!(host->flags & WBSD_FCARD_PRESENT)) {
cmd->error = -ENOMEDIUM;
goto done;
}
if (cmd->data) {
/*
* The hardware is so delightfully stupid that it has a list
* of "data" commands. If a command isn't on this list, it'll
* just go back to the idle state and won't send any data
* interrupts.
*/
switch (cmd->opcode) {
case SD_SWITCH_VOLTAGE:
case MMC_READ_SINGLE_BLOCK:
case MMC_READ_MULTIPLE_BLOCK:
case MMC_WRITE_DAT_UNTIL_STOP:
case MMC_WRITE_BLOCK:
case MMC_WRITE_MULTIPLE_BLOCK:
case MMC_PROGRAM_CID:
case MMC_PROGRAM_CSD:
case MMC_SEND_WRITE_PROT:
case MMC_LOCK_UNLOCK:
case MMC_GEN_CMD:
break;
/* ACMDs. We don't keep track of state, so we just treat them
* like any other command. */
case SD_APP_SEND_SCR:
break;
default:
pr_warn("%s: Data command %d is not supported by this controller\n",
mmc_hostname(host->mmc), cmd->opcode);
cmd->error = -EINVAL;
goto done;
}
}
/*
* Does the request include data?
*/
if (cmd->data) {
wbsd_prepare_data(host, cmd->data);
if (cmd->data->error)
goto done;
}
wbsd_send_command(host, cmd);
/*
* If this is a data transfer the request
* will be finished after the data has
* transferred.
*/
if (cmd->data && !cmd->error) {
/*
* Dirty fix for hardware bug.
*/
if (host->dma == -1)
tasklet_schedule(&host->fifo_tasklet);
spin_unlock_bh(&host->lock);
return;
}
done:
wbsd_request_end(host, mrq);
spin_unlock_bh(&host->lock);
}
static void wbsd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct wbsd_host *host = mmc_priv(mmc);
u8 clk, setup, pwr;
spin_lock_bh(&host->lock);
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF)
wbsd_init_device(host);
if (ios->clock >= 24000000)
clk = WBSD_CLK_24M;
else if (ios->clock >= 16000000)
clk = WBSD_CLK_16M;
else if (ios->clock >= 12000000)
clk = WBSD_CLK_12M;
else
clk = WBSD_CLK_375K;
/*
* Only write to the clock register when
* there is an actual change.
*/
if (clk != host->clk) {
wbsd_write_index(host, WBSD_IDX_CLK, clk);
host->clk = clk;
}
/*
* Power up card.
*/
if (ios->power_mode != MMC_POWER_OFF) {
pwr = inb(host->base + WBSD_CSR);
pwr &= ~WBSD_POWER_N;
outb(pwr, host->base + WBSD_CSR);
}
/*
* MMC cards need to have pin 1 high during init.
* It wreaks havoc with the card detection though so
* that needs to be disabled.
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
if (ios->chip_select == MMC_CS_HIGH) {
BUG_ON(ios->bus_width != MMC_BUS_WIDTH_1);
setup |= WBSD_DAT3_H;
host->flags |= WBSD_FIGNORE_DETECT;
} else {
if (setup & WBSD_DAT3_H) {
setup &= ~WBSD_DAT3_H;
/*
* We cannot resume card detection immediately
* because of capacitance and delays in the chip.
*/
mod_timer(&host->ignore_timer, jiffies + HZ / 100);
}
}
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
/*
* Store bus width for later. Will be used when
* setting up the data transfer.
*/
host->bus_width = ios->bus_width;
spin_unlock_bh(&host->lock);
}
static int wbsd_get_ro(struct mmc_host *mmc)
{
struct wbsd_host *host = mmc_priv(mmc);
u8 csr;
spin_lock_bh(&host->lock);
csr = inb(host->base + WBSD_CSR);
csr |= WBSD_MSLED;
outb(csr, host->base + WBSD_CSR);
mdelay(1);
csr = inb(host->base + WBSD_CSR);
csr &= ~WBSD_MSLED;
outb(csr, host->base + WBSD_CSR);
spin_unlock_bh(&host->lock);
return !!(csr & WBSD_WRPT);
}
static const struct mmc_host_ops wbsd_ops = {
.request = wbsd_request,
.set_ios = wbsd_set_ios,
.get_ro = wbsd_get_ro,
};
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
/*
* Helper function to reset detection ignore
*/
static void wbsd_reset_ignore(struct timer_list *t)
{
struct wbsd_host *host = from_timer(host, t, ignore_timer);
BUG_ON(host == NULL);
DBG("Resetting card detection ignore\n");
spin_lock_bh(&host->lock);
host->flags &= ~WBSD_FIGNORE_DETECT;
/*
* Card status might have changed during the
* blackout.
*/
tasklet_schedule(&host->card_tasklet);
spin_unlock_bh(&host->lock);
}
/*
* Tasklets
*/
static inline struct mmc_data *wbsd_get_data(struct wbsd_host *host)
{
WARN_ON(!host->mrq);
if (!host->mrq)
return NULL;
WARN_ON(!host->mrq->cmd);
if (!host->mrq->cmd)
return NULL;
WARN_ON(!host->mrq->cmd->data);
if (!host->mrq->cmd->data)
return NULL;
return host->mrq->cmd->data;
}
static void wbsd_tasklet_card(unsigned long param)
{
struct wbsd_host *host = (struct wbsd_host *)param;
u8 csr;
int delay = -1;
spin_lock(&host->lock);
if (host->flags & WBSD_FIGNORE_DETECT) {
spin_unlock(&host->lock);
return;
}
csr = inb(host->base + WBSD_CSR);
WARN_ON(csr == 0xff);
if (csr & WBSD_CARDPRESENT) {
if (!(host->flags & WBSD_FCARD_PRESENT)) {
DBG("Card inserted\n");
host->flags |= WBSD_FCARD_PRESENT;
delay = 500;
}
} else if (host->flags & WBSD_FCARD_PRESENT) {
DBG("Card removed\n");
host->flags &= ~WBSD_FCARD_PRESENT;
if (host->mrq) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
wbsd_reset(host);
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
delay = 0;
}
/*
* Unlock first since we might get a call back.
*/
spin_unlock(&host->lock);
if (delay != -1)
mmc_detect_change(host->mmc, msecs_to_jiffies(delay));
}
static void wbsd_tasklet_fifo(unsigned long param)
{
struct wbsd_host *host = (struct wbsd_host *)param;
struct mmc_data *data;
spin_lock(&host->lock);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
if (data->flags & MMC_DATA_WRITE)
wbsd_fill_fifo(host);
else
wbsd_empty_fifo(host);
/*
* Done?
*/
if (host->num_sg == 0) {
wbsd_write_index(host, WBSD_IDX_FIFOEN, 0);
tasklet_schedule(&host->finish_tasklet);
}
end:
spin_unlock(&host->lock);
}
static void wbsd_tasklet_crc(unsigned long param)
{
struct wbsd_host *host = (struct wbsd_host *)param;
struct mmc_data *data;
spin_lock(&host->lock);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
DBGF("CRC error\n");
data->error = -EILSEQ;
tasklet_schedule(&host->finish_tasklet);
end:
spin_unlock(&host->lock);
}
static void wbsd_tasklet_timeout(unsigned long param)
{
struct wbsd_host *host = (struct wbsd_host *)param;
struct mmc_data *data;
spin_lock(&host->lock);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
DBGF("Timeout\n");
data->error = -ETIMEDOUT;
tasklet_schedule(&host->finish_tasklet);
end:
spin_unlock(&host->lock);
}
static void wbsd_tasklet_finish(unsigned long param)
{
struct wbsd_host *host = (struct wbsd_host *)param;
struct mmc_data *data;
spin_lock(&host->lock);
WARN_ON(!host->mrq);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
wbsd_finish_data(host, data);
end:
spin_unlock(&host->lock);
}
/*
* Interrupt handling
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
static irqreturn_t wbsd_irq(int irq, void *dev_id)
{
struct wbsd_host *host = dev_id;
int isr;
isr = inb(host->base + WBSD_ISR);
/*
* Was it actually our hardware that caused the interrupt?
*/
if (isr == 0xff || isr == 0x00)
return IRQ_NONE;
host->isr |= isr;
/*
* Schedule tasklets as needed.
*/
if (isr & WBSD_INT_CARD)
tasklet_schedule(&host->card_tasklet);
if (isr & WBSD_INT_FIFO_THRE)
tasklet_schedule(&host->fifo_tasklet);
if (isr & WBSD_INT_CRC)
tasklet_hi_schedule(&host->crc_tasklet);
if (isr & WBSD_INT_TIMEOUT)
tasklet_hi_schedule(&host->timeout_tasklet);
if (isr & WBSD_INT_TC)
tasklet_schedule(&host->finish_tasklet);
return IRQ_HANDLED;
}
/*****************************************************************************\
* *
* Device initialisation and shutdown *
* *
\*****************************************************************************/
/*
* Allocate/free MMC structure.
*/
static int wbsd_alloc_mmc(struct device *dev)
{
struct mmc_host *mmc;
struct wbsd_host *host;
/*
* Allocate MMC structure.
*/
mmc = mmc_alloc_host(sizeof(struct wbsd_host), dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dma = -1;
/*
* Set host parameters.
*/
mmc->ops = &wbsd_ops;
mmc->f_min = 375000;
mmc->f_max = 24000000;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->caps = MMC_CAP_4_BIT_DATA;
spin_lock_init(&host->lock);
/*
* Set up timers
*/
timer_setup(&host->ignore_timer, wbsd_reset_ignore, 0);
/*
* Maximum number of segments. Worst case is one sector per segment
* so this will be 64kB/512.
*/
mmc->max_segs = 128;
/*
* Maximum request size. Also limited by 64KiB buffer.
*/
mmc->max_req_size = 65536;
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes.
*/
mmc->max_seg_size = mmc->max_req_size;
/*
* Maximum block size. We have 12 bits (= 4095) but have to subtract
* space for CRC. So the maximum is 4095 - 4*2 = 4087.
*/
mmc->max_blk_size = 4087;
/*
* Maximum block count. There is no real limit so the maximum
* request size will be the only restriction.
*/
mmc->max_blk_count = mmc->max_req_size;
dev_set_drvdata(dev, mmc);
return 0;
}
static void wbsd_free_mmc(struct device *dev)
{
struct mmc_host *mmc;
struct wbsd_host *host;
mmc = dev_get_drvdata(dev);
if (!mmc)
return;
host = mmc_priv(mmc);
BUG_ON(host == NULL);
del_timer_sync(&host->ignore_timer);
mmc_free_host(mmc);
dev_set_drvdata(dev, NULL);
}
/*
* Scan for known chip id:s
*/
static int wbsd_scan(struct wbsd_host *host)
{
int i, j, k;
int id;
/*
* Iterate through all ports, all codes to
* find hardware that is in our known list.
*/
for (i = 0; i < ARRAY_SIZE(config_ports); i++) {
if (!request_region(config_ports[i], 2, DRIVER_NAME))
continue;
for (j = 0; j < ARRAY_SIZE(unlock_codes); j++) {
id = 0xFFFF;
host->config = config_ports[i];
host->unlock_code = unlock_codes[j];
wbsd_unlock_config(host);
outb(WBSD_CONF_ID_HI, config_ports[i]);
id = inb(config_ports[i] + 1) << 8;
outb(WBSD_CONF_ID_LO, config_ports[i]);
id |= inb(config_ports[i] + 1);
wbsd_lock_config(host);
for (k = 0; k < ARRAY_SIZE(valid_ids); k++) {
if (id == valid_ids[k]) {
host->chip_id = id;
return 0;
}
}
if (id != 0xFFFF) {
DBG("Unknown hardware (id %x) found at %x\n",
id, config_ports[i]);
}
}
release_region(config_ports[i], 2);
}
host->config = 0;
host->unlock_code = 0;
return -ENODEV;
}
/*
* Allocate/free io port ranges
*/
static int wbsd_request_region(struct wbsd_host *host, int base)
{
if (base & 0x7)
return -EINVAL;
if (!request_region(base, 8, DRIVER_NAME))
return -EIO;
host->base = base;
return 0;
}
static void wbsd_release_regions(struct wbsd_host *host)
{
if (host->base)
release_region(host->base, 8);
host->base = 0;
if (host->config)
release_region(host->config, 2);
host->config = 0;
}
/*
* Allocate/free DMA port and buffer
*/
static void wbsd_request_dma(struct wbsd_host *host, int dma)
{
if (dma < 0)
return;
if (request_dma(dma, DRIVER_NAME))
goto err;
/*
* We need to allocate a special buffer in
* order for ISA to be able to DMA to it.
*/
host->dma_buffer = kmalloc(WBSD_DMA_SIZE,
mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic __GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to the page allocator. This has been true but only for allocations requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always ignored for smaller sizes. This is a bit unfortunate because there is no way to express the same semantic for those requests and they are considered too important to fail so they might end up looping in the page allocator for ever, similarly to GFP_NOFAIL requests. Now that the whole tree has been cleaned up and accidental or misled usage of __GFP_REPEAT flag has been removed for !costly requests we can give the original flag a better name and more importantly a more useful semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user that the allocator would try really hard but there is no promise of a success. This will work independent of the order and overrides the default allocator behavior. Page allocator users have several levels of guarantee vs. cost options (take GFP_KERNEL as an example) - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_ attempt to free memory at all. The most light weight mode which even doesn't kick the background reclaim. Should be used carefully because it might deplete the memory and the next user might hit the more aggressive reclaim - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic allocation without any attempt to free memory from the current context but can wake kswapd to reclaim memory if the zone is below the low watermark. Can be used from either atomic contexts or when the request is a performance optimization and there is another fallback for a slow path. - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) - non sleeping allocation with an expensive fallback so it can access some portion of memory reserves. Usually used from interrupt/bh context with an expensive slow path fallback. - GFP_KERNEL - both background and direct reclaim are allowed and the _default_ page allocator behavior is used. That means that !costly allocation requests are basically nofail but there is no guarantee of that behavior so failures have to be checked properly by callers (e.g. OOM killer victim is allowed to fail currently). - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior and all allocation requests fail early rather than cause disruptive reclaim (one round of reclaim in this implementation). The OOM killer is not invoked. - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator behavior and all allocation requests try really hard. The request will fail if the reclaim cannot make any progress. The OOM killer won't be triggered. - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior and all allocation requests will loop endlessly until they succeed. This might be really dangerous especially for larger orders. Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL because they already had their semantic. No new users are added. __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if there is no progress and we have already passed the OOM point. This means that all the reclaim opportunities have been exhausted except the most disruptive one (the OOM killer) and a user defined fallback behavior is more sensible than keep retrying in the page allocator. [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c] [mhocko@suse.com: semantic fix] Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz [mhocko@kernel.org: address other thing spotted by Vlastimil] Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 00:36:45 +03:00
GFP_NOIO | GFP_DMA | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
if (!host->dma_buffer)
goto free;
/*
* Translate the address to a physical address.
*/
host->dma_addr = dma_map_single(mmc_dev(host->mmc), host->dma_buffer,
WBSD_DMA_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(mmc_dev(host->mmc), host->dma_addr))
goto kfree;
/*
* ISA DMA must be aligned on a 64k basis.
*/
if ((host->dma_addr & 0xffff) != 0)
goto unmap;
/*
* ISA cannot access memory above 16 MB.
*/
else if (host->dma_addr >= 0x1000000)
goto unmap;
host->dma = dma;
return;
unmap:
/*
* If we've gotten here then there is some kind of alignment bug
*/
BUG_ON(1);
dma_unmap_single(mmc_dev(host->mmc), host->dma_addr,
WBSD_DMA_SIZE, DMA_BIDIRECTIONAL);
host->dma_addr = 0;
kfree:
kfree(host->dma_buffer);
host->dma_buffer = NULL;
free:
free_dma(dma);
err:
pr_warn(DRIVER_NAME ": Unable to allocate DMA %d - falling back on FIFO\n",
dma);
}
static void wbsd_release_dma(struct wbsd_host *host)
{
/*
* host->dma_addr is valid here iff host->dma_buffer is not NULL.
*/
if (host->dma_buffer) {
dma_unmap_single(mmc_dev(host->mmc), host->dma_addr,
WBSD_DMA_SIZE, DMA_BIDIRECTIONAL);
kfree(host->dma_buffer);
}
if (host->dma >= 0)
free_dma(host->dma);
host->dma = -1;
host->dma_buffer = NULL;
host->dma_addr = 0;
}
/*
* Allocate/free IRQ.
*/
static int wbsd_request_irq(struct wbsd_host *host, int irq)
{
int ret;
/*
* Set up tasklets. Must be done before requesting interrupt.
*/
tasklet_init(&host->card_tasklet, wbsd_tasklet_card,
(unsigned long)host);
tasklet_init(&host->fifo_tasklet, wbsd_tasklet_fifo,
(unsigned long)host);
tasklet_init(&host->crc_tasklet, wbsd_tasklet_crc,
(unsigned long)host);
tasklet_init(&host->timeout_tasklet, wbsd_tasklet_timeout,
(unsigned long)host);
tasklet_init(&host->finish_tasklet, wbsd_tasklet_finish,
(unsigned long)host);
/*
* Allocate interrupt.
*/
ret = request_irq(irq, wbsd_irq, IRQF_SHARED, DRIVER_NAME, host);
if (ret)
return ret;
host->irq = irq;
return 0;
}
static void wbsd_release_irq(struct wbsd_host *host)
{
if (!host->irq)
return;
free_irq(host->irq, host);
host->irq = 0;
tasklet_kill(&host->card_tasklet);
tasklet_kill(&host->fifo_tasklet);
tasklet_kill(&host->crc_tasklet);
tasklet_kill(&host->timeout_tasklet);
tasklet_kill(&host->finish_tasklet);
}
/*
* Allocate all resources for the host.
*/
static int wbsd_request_resources(struct wbsd_host *host,
int base, int irq, int dma)
{
int ret;
/*
* Allocate I/O ports.
*/
ret = wbsd_request_region(host, base);
if (ret)
return ret;
/*
* Allocate interrupt.
*/
ret = wbsd_request_irq(host, irq);
if (ret)
return ret;
/*
* Allocate DMA.
*/
wbsd_request_dma(host, dma);
return 0;
}
/*
* Release all resources for the host.
*/
static void wbsd_release_resources(struct wbsd_host *host)
{
wbsd_release_dma(host);
wbsd_release_irq(host);
wbsd_release_regions(host);
}
/*
* Configure the resources the chip should use.
*/
static void wbsd_chip_config(struct wbsd_host *host)
{
wbsd_unlock_config(host);
/*
* Reset the chip.
*/
wbsd_write_config(host, WBSD_CONF_SWRST, 1);
wbsd_write_config(host, WBSD_CONF_SWRST, 0);
/*
* Select SD/MMC function.
*/
wbsd_write_config(host, WBSD_CONF_DEVICE, DEVICE_SD);
/*
* Set up card detection.
*/
wbsd_write_config(host, WBSD_CONF_PINS, WBSD_PINS_DETECT_GP11);
/*
* Configure chip
*/
wbsd_write_config(host, WBSD_CONF_PORT_HI, host->base >> 8);
wbsd_write_config(host, WBSD_CONF_PORT_LO, host->base & 0xff);
wbsd_write_config(host, WBSD_CONF_IRQ, host->irq);
if (host->dma >= 0)
wbsd_write_config(host, WBSD_CONF_DRQ, host->dma);
/*
* Enable and power up chip.
*/
wbsd_write_config(host, WBSD_CONF_ENABLE, 1);
wbsd_write_config(host, WBSD_CONF_POWER, 0x20);
wbsd_lock_config(host);
}
/*
* Check that configured resources are correct.
*/
static int wbsd_chip_validate(struct wbsd_host *host)
{
int base, irq, dma;
wbsd_unlock_config(host);
/*
* Select SD/MMC function.
*/
wbsd_write_config(host, WBSD_CONF_DEVICE, DEVICE_SD);
/*
* Read configuration.
*/
base = wbsd_read_config(host, WBSD_CONF_PORT_HI) << 8;
base |= wbsd_read_config(host, WBSD_CONF_PORT_LO);
irq = wbsd_read_config(host, WBSD_CONF_IRQ);
dma = wbsd_read_config(host, WBSD_CONF_DRQ);
wbsd_lock_config(host);
/*
* Validate against given configuration.
*/
if (base != host->base)
return 0;
if (irq != host->irq)
return 0;
if ((dma != host->dma) && (host->dma != -1))
return 0;
return 1;
}
/*
* Powers down the SD function
*/
static void wbsd_chip_poweroff(struct wbsd_host *host)
{
wbsd_unlock_config(host);
wbsd_write_config(host, WBSD_CONF_DEVICE, DEVICE_SD);
wbsd_write_config(host, WBSD_CONF_ENABLE, 0);
wbsd_lock_config(host);
}
/*****************************************************************************\
* *
* Devices setup and shutdown *
* *
\*****************************************************************************/
static int wbsd_init(struct device *dev, int base, int irq, int dma,
int pnp)
{
struct wbsd_host *host = NULL;
struct mmc_host *mmc = NULL;
int ret;
ret = wbsd_alloc_mmc(dev);
if (ret)
return ret;
mmc = dev_get_drvdata(dev);
host = mmc_priv(mmc);
/*
* Scan for hardware.
*/
ret = wbsd_scan(host);
if (ret) {
if (pnp && (ret == -ENODEV)) {
pr_warn(DRIVER_NAME ": Unable to confirm device presence - you may experience lock-ups\n");
} else {
wbsd_free_mmc(dev);
return ret;
}
}
/*
* Request resources.
*/
ret = wbsd_request_resources(host, base, irq, dma);
if (ret) {
wbsd_release_resources(host);
wbsd_free_mmc(dev);
return ret;
}
/*
* See if chip needs to be configured.
*/
if (pnp) {
if ((host->config != 0) && !wbsd_chip_validate(host)) {
pr_warn(DRIVER_NAME ": PnP active but chip not configured! You probably have a buggy BIOS. Configuring chip manually.\n");
wbsd_chip_config(host);
}
} else
wbsd_chip_config(host);
/*
* Power Management stuff. No idea how this works.
* Not tested.
*/
#ifdef CONFIG_PM
if (host->config) {
wbsd_unlock_config(host);
wbsd_write_config(host, WBSD_CONF_PME, 0xA0);
wbsd_lock_config(host);
}
#endif
/*
* Allow device to initialise itself properly.
*/
mdelay(5);
/*
* Reset the chip into a known state.
*/
wbsd_init_device(host);
mmc_add_host(mmc);
pr_info("%s: W83L51xD", mmc_hostname(mmc));
if (host->chip_id != 0)
printk(" id %x", (int)host->chip_id);
printk(" at 0x%x irq %d", (int)host->base, (int)host->irq);
if (host->dma >= 0)
printk(" dma %d", (int)host->dma);
else
printk(" FIFO");
if (pnp)
printk(" PnP");
printk("\n");
return 0;
}
static void wbsd_shutdown(struct device *dev, int pnp)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct wbsd_host *host;
if (!mmc)
return;
host = mmc_priv(mmc);
mmc_remove_host(mmc);
/*
* Power down the SD/MMC function.
*/
if (!pnp)
wbsd_chip_poweroff(host);
wbsd_release_resources(host);
wbsd_free_mmc(dev);
}
/*
* Non-PnP
*/
static int wbsd_probe(struct platform_device *dev)
{
/* Use the module parameters for resources */
return wbsd_init(&dev->dev, param_io, param_irq, param_dma, 0);
}
static int wbsd_remove(struct platform_device *dev)
{
wbsd_shutdown(&dev->dev, 0);
return 0;
}
/*
* PnP
*/
#ifdef CONFIG_PNP
static int
wbsd_pnp_probe(struct pnp_dev *pnpdev, const struct pnp_device_id *dev_id)
{
int io, irq, dma;
/*
* Get resources from PnP layer.
*/
io = pnp_port_start(pnpdev, 0);
irq = pnp_irq(pnpdev, 0);
if (pnp_dma_valid(pnpdev, 0))
dma = pnp_dma(pnpdev, 0);
else
dma = -1;
DBGF("PnP resources: port %3x irq %d dma %d\n", io, irq, dma);
return wbsd_init(&pnpdev->dev, io, irq, dma, 1);
}
static void wbsd_pnp_remove(struct pnp_dev *dev)
{
wbsd_shutdown(&dev->dev, 1);
}
#endif /* CONFIG_PNP */
/*
* Power management
*/
#ifdef CONFIG_PM
static int wbsd_platform_suspend(struct platform_device *dev,
pm_message_t state)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
struct wbsd_host *host;
if (mmc == NULL)
return 0;
DBGF("Suspending...\n");
host = mmc_priv(mmc);
wbsd_chip_poweroff(host);
return 0;
}
static int wbsd_platform_resume(struct platform_device *dev)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
struct wbsd_host *host;
if (mmc == NULL)
return 0;
DBGF("Resuming...\n");
host = mmc_priv(mmc);
wbsd_chip_config(host);
/*
* Allow device to initialise itself properly.
*/
mdelay(5);
wbsd_init_device(host);
return 0;
}
#ifdef CONFIG_PNP
static int wbsd_pnp_suspend(struct pnp_dev *pnp_dev, pm_message_t state)
{
struct mmc_host *mmc = dev_get_drvdata(&pnp_dev->dev);
if (mmc == NULL)
return 0;
DBGF("Suspending...\n");
return 0;
}
static int wbsd_pnp_resume(struct pnp_dev *pnp_dev)
{
struct mmc_host *mmc = dev_get_drvdata(&pnp_dev->dev);
struct wbsd_host *host;
if (mmc == NULL)
return 0;
DBGF("Resuming...\n");
host = mmc_priv(mmc);
/*
* See if chip needs to be configured.
*/
if (host->config != 0) {
if (!wbsd_chip_validate(host)) {
pr_warn(DRIVER_NAME ": PnP active but chip not configured! You probably have a buggy BIOS. Configuring chip manually.\n");
wbsd_chip_config(host);
}
}
/*
* Allow device to initialise itself properly.
*/
mdelay(5);
wbsd_init_device(host);
return 0;
}
#endif /* CONFIG_PNP */
#else /* CONFIG_PM */
#define wbsd_platform_suspend NULL
#define wbsd_platform_resume NULL
#define wbsd_pnp_suspend NULL
#define wbsd_pnp_resume NULL
#endif /* CONFIG_PM */
static struct platform_device *wbsd_device;
static struct platform_driver wbsd_driver = {
.probe = wbsd_probe,
.remove = wbsd_remove,
.suspend = wbsd_platform_suspend,
.resume = wbsd_platform_resume,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
#ifdef CONFIG_PNP
static struct pnp_driver wbsd_pnp_driver = {
.name = DRIVER_NAME,
.id_table = pnp_dev_table,
.probe = wbsd_pnp_probe,
.remove = wbsd_pnp_remove,
.suspend = wbsd_pnp_suspend,
.resume = wbsd_pnp_resume,
};
#endif /* CONFIG_PNP */
/*
* Module loading/unloading
*/
static int __init wbsd_drv_init(void)
{
int result;
pr_info(DRIVER_NAME
": Winbond W83L51xD SD/MMC card interface driver\n");
pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
#ifdef CONFIG_PNP
if (!param_nopnp) {
result = pnp_register_driver(&wbsd_pnp_driver);
if (result < 0)
return result;
}
#endif /* CONFIG_PNP */
if (param_nopnp) {
result = platform_driver_register(&wbsd_driver);
if (result < 0)
return result;
wbsd_device = platform_device_alloc(DRIVER_NAME, -1);
if (!wbsd_device) {
platform_driver_unregister(&wbsd_driver);
return -ENOMEM;
}
result = platform_device_add(wbsd_device);
if (result) {
platform_device_put(wbsd_device);
platform_driver_unregister(&wbsd_driver);
return result;
}
}
return 0;
}
static void __exit wbsd_drv_exit(void)
{
#ifdef CONFIG_PNP
if (!param_nopnp)
pnp_unregister_driver(&wbsd_pnp_driver);
#endif /* CONFIG_PNP */
if (param_nopnp) {
platform_device_unregister(wbsd_device);
platform_driver_unregister(&wbsd_driver);
}
DBG("unloaded\n");
}
module_init(wbsd_drv_init);
module_exit(wbsd_drv_exit);
#ifdef CONFIG_PNP
module_param_hw_named(nopnp, param_nopnp, uint, other, 0444);
#endif
module_param_hw_named(io, param_io, uint, ioport, 0444);
module_param_hw_named(irq, param_irq, uint, irq, 0444);
module_param_hw_named(dma, param_dma, int, dma, 0444);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>");
MODULE_DESCRIPTION("Winbond W83L51xD SD/MMC card interface driver");
#ifdef CONFIG_PNP
MODULE_PARM_DESC(nopnp, "Scan for device instead of relying on PNP. (default 0)");
#endif
MODULE_PARM_DESC(io, "I/O base to allocate. Must be 8 byte aligned. (default 0x248)");
MODULE_PARM_DESC(irq, "IRQ to allocate. (default 6)");
MODULE_PARM_DESC(dma, "DMA channel to allocate. -1 for no DMA. (default 2)");