2006-07-29 17:33:44 -03:00
# ifndef DIBX000_COMMON_H
# define DIBX000_COMMON_H
enum dibx000_i2c_interface {
2009-08-17 07:01:10 -03:00
DIBX000_I2C_INTERFACE_TUNER = 0 ,
2006-07-29 17:33:44 -03:00
DIBX000_I2C_INTERFACE_GPIO_1_2 = 1 ,
2011-01-03 15:39:35 -03:00
DIBX000_I2C_INTERFACE_GPIO_3_4 = 2 ,
DIBX000_I2C_INTERFACE_GPIO_6_7 = 3
2006-07-29 17:33:44 -03:00
} ;
struct dibx000_i2c_master {
# define DIB3000MC 1
# define DIB7000 2
# define DIB7000P 11
# define DIB7000MC 12
2009-08-17 07:01:10 -03:00
# define DIB8000 13
2006-07-29 17:33:44 -03:00
u16 device_rev ;
enum dibx000_i2c_interface selected_interface ;
2011-01-04 13:08:14 -03:00
/* struct i2c_adapter tuner_i2c_adap; */
2009-08-17 07:01:10 -03:00
struct i2c_adapter gated_tuner_i2c_adap ;
2011-01-03 15:39:35 -03:00
struct i2c_adapter master_i2c_adap_gpio12 ;
struct i2c_adapter master_i2c_adap_gpio34 ;
struct i2c_adapter master_i2c_adap_gpio67 ;
2006-07-29 17:33:44 -03:00
struct i2c_adapter * i2c_adap ;
2009-08-17 07:01:10 -03:00
u8 i2c_addr ;
2006-07-29 17:33:44 -03:00
u16 base_reg ;
2011-05-03 12:27:33 -03:00
/* for the I2C transfer */
struct i2c_msg msg [ 34 ] ;
u8 i2c_write_buffer [ 8 ] ;
u8 i2c_read_buffer [ 2 ] ;
2011-08-03 12:08:21 -03:00
struct mutex i2c_buffer_lock ;
2006-07-29 17:33:44 -03:00
} ;
2009-08-17 07:01:10 -03:00
extern int dibx000_init_i2c_master ( struct dibx000_i2c_master * mst ,
2011-01-03 15:39:35 -03:00
u16 device_rev , struct i2c_adapter * i2c_adap ,
u8 i2c_addr ) ;
2009-08-17 07:01:10 -03:00
extern struct i2c_adapter * dibx000_get_i2c_adapter ( struct dibx000_i2c_master
2011-01-03 15:39:35 -03:00
* mst ,
enum dibx000_i2c_interface
intf , int gating ) ;
2006-07-29 17:33:44 -03:00
extern void dibx000_exit_i2c_master ( struct dibx000_i2c_master * mst ) ;
2009-08-17 07:01:10 -03:00
extern void dibx000_reset_i2c_master ( struct dibx000_i2c_master * mst ) ;
2011-01-03 15:39:35 -03:00
extern int dibx000_i2c_set_speed ( struct i2c_adapter * i2c_adap , u16 speed ) ;
2006-07-29 17:33:44 -03:00
2009-12-04 13:27:57 -03:00
extern u32 systime ( void ) ;
2006-07-29 17:33:44 -03:00
# define BAND_LBAND 0x01
# define BAND_UHF 0x02
# define BAND_VHF 0x04
2006-10-17 18:28:14 -03:00
# define BAND_SBAND 0x08
2011-01-03 15:39:35 -03:00
# define BAND_FM 0x10
2009-12-04 13:27:57 -03:00
# define BAND_CBAND 0x20
2006-10-17 18:28:14 -03:00
2011-01-04 13:08:14 -03:00
# define BAND_OF_FREQUENCY(freq_kHz) ((freq_kHz) <= 170000 ? BAND_CBAND : \
2009-12-04 13:27:57 -03:00
( freq_kHz ) < = 115000 ? BAND_FM : \
2006-10-17 18:28:14 -03:00
( freq_kHz ) < = 250000 ? BAND_VHF : \
( freq_kHz ) < = 863000 ? BAND_UHF : \
( freq_kHz ) < = 2000000 ? BAND_LBAND : BAND_SBAND )
2006-07-29 17:33:44 -03:00
struct dibx000_agc_config {
2009-08-17 07:01:10 -03:00
/* defines the capabilities of this AGC-setting - using the BAND_-defines */
u8 band_caps ;
2006-07-29 17:33:44 -03:00
u16 setup ;
u16 inv_gain ;
u16 time_stabiliz ;
2009-08-17 07:01:10 -03:00
u8 alpha_level ;
2006-07-29 17:33:44 -03:00
u16 thlock ;
2009-08-17 07:01:10 -03:00
u8 wbd_inv ;
2006-07-29 17:33:44 -03:00
u16 wbd_ref ;
u8 wbd_sel ;
u8 wbd_alpha ;
u16 agc1_max ;
u16 agc1_min ;
u16 agc2_max ;
u16 agc2_min ;
u8 agc1_pt1 ;
u8 agc1_pt2 ;
u8 agc1_pt3 ;
u8 agc1_slope1 ;
u8 agc1_slope2 ;
u8 agc2_pt1 ;
u8 agc2_pt2 ;
u8 agc2_slope1 ;
u8 agc2_slope2 ;
u8 alpha_mant ;
u8 alpha_exp ;
u8 beta_mant ;
u8 beta_exp ;
u8 perform_agc_softsplit ;
struct {
u16 min ;
u16 max ;
u16 min_thres ;
u16 max_thres ;
} split ;
} ;
struct dibx000_bandwidth_config {
2009-08-17 07:01:10 -03:00
u32 internal ;
u32 sampling ;
2006-07-29 17:33:44 -03:00
u8 pll_prediv ;
u8 pll_ratio ;
u8 pll_range ;
u8 pll_reset ;
u8 pll_bypass ;
u8 enable_refdiv ;
u8 bypclk_div ;
u8 IO_CLK_en_core ;
u8 ADClkSrc ;
u8 modulo ;
u16 sad_cfg ;
u32 ifreq ;
u32 timf ;
2007-07-27 10:08:51 -03:00
u32 xtal_hz ;
2006-07-29 17:33:44 -03:00
} ;
enum dibx000_adc_states {
DIBX000_SLOW_ADC_ON = 0 ,
DIBX000_SLOW_ADC_OFF ,
DIBX000_ADC_ON ,
DIBX000_ADC_OFF ,
DIBX000_VBG_ENABLE ,
DIBX000_VBG_DISABLE ,
} ;
2011-01-04 13:08:14 -03:00
# define BANDWIDTH_TO_KHZ(v) ((v) == BANDWIDTH_8_MHZ ? 8000 : \
2011-01-04 04:54:31 -03:00
( v ) = = BANDWIDTH_7_MHZ ? 7000 : \
2011-01-04 13:08:14 -03:00
( v ) = = BANDWIDTH_6_MHZ ? 6000 : 8000 )
2006-07-29 17:33:44 -03:00
2008-01-25 07:31:58 -03:00
# define BANDWIDTH_TO_INDEX(v) ( \
( v ) = = 8000 ? BANDWIDTH_8_MHZ : \
( v ) = = 7000 ? BANDWIDTH_7_MHZ : \
( v ) = = 6000 ? BANDWIDTH_6_MHZ : BANDWIDTH_8_MHZ )
2006-07-29 17:33:44 -03:00
/* Chip output mode. */
2007-07-27 10:08:51 -03:00
# define OUTMODE_HIGH_Z 0
# define OUTMODE_MPEG2_PAR_GATED_CLK 1
# define OUTMODE_MPEG2_PAR_CONT_CLK 2
# define OUTMODE_MPEG2_SERIAL 7
# define OUTMODE_DIVERSITY 4
# define OUTMODE_MPEG2_FIFO 5
# define OUTMODE_ANALOG_ADC 6
2006-07-29 17:33:44 -03:00
2011-01-04 04:54:31 -03:00
# define INPUT_MODE_OFF 0x11
# define INPUT_MODE_DIVERSITY 0x12
# define INPUT_MODE_MPEG 0x13
2009-12-04 13:27:57 -03:00
enum frontend_tune_state {
2011-01-04 04:54:31 -03:00
CT_TUNER_START = 10 ,
CT_TUNER_STEP_0 ,
CT_TUNER_STEP_1 ,
CT_TUNER_STEP_2 ,
CT_TUNER_STEP_3 ,
CT_TUNER_STEP_4 ,
CT_TUNER_STEP_5 ,
CT_TUNER_STEP_6 ,
CT_TUNER_STEP_7 ,
CT_TUNER_STOP ,
CT_AGC_START = 20 ,
CT_AGC_STEP_0 ,
CT_AGC_STEP_1 ,
CT_AGC_STEP_2 ,
CT_AGC_STEP_3 ,
CT_AGC_STEP_4 ,
CT_AGC_STOP ,
2009-12-04 13:27:57 -03:00
CT_DEMOD_START = 30 ,
2011-01-04 04:54:31 -03:00
CT_DEMOD_STEP_1 ,
CT_DEMOD_STEP_2 ,
CT_DEMOD_STEP_3 ,
CT_DEMOD_STEP_4 ,
CT_DEMOD_STEP_5 ,
CT_DEMOD_STEP_6 ,
CT_DEMOD_STEP_7 ,
CT_DEMOD_STEP_8 ,
CT_DEMOD_STEP_9 ,
CT_DEMOD_STEP_10 ,
CT_DEMOD_SEARCH_NEXT = 41 ,
CT_DEMOD_STEP_LOCKED ,
CT_DEMOD_STOP ,
CT_DONE = 100 ,
CT_SHUTDOWN ,
2009-12-04 13:27:57 -03:00
} ;
struct dvb_frontend_parametersContext {
# define CHANNEL_STATUS_PARAMETERS_UNKNOWN 0x01
# define CHANNEL_STATUS_PARAMETERS_SET 0x02
2011-01-04 04:54:31 -03:00
u8 status ;
u32 tune_time_estimation [ 2 ] ;
s32 tps_available ;
u16 tps [ 9 ] ;
2009-12-04 13:27:57 -03:00
} ;
# define FE_STATUS_TUNE_FAILED 0
# define FE_STATUS_TUNE_TIMED_OUT -1
# define FE_STATUS_TUNE_TIME_TOO_SHORT -2
# define FE_STATUS_TUNE_PENDING -3
# define FE_STATUS_STD_SUCCESS -4
# define FE_STATUS_FFT_SUCCESS -5
# define FE_STATUS_DEMOD_SUCCESS -6
# define FE_STATUS_LOCKED -7
# define FE_STATUS_DATA_LOCKED -8
# define FE_CALLBACK_TIME_NEVER 0xffffffff
2011-01-04 13:08:14 -03:00
# define ABS(x) ((x < 0) ? (-x) : (x))
2011-01-04 04:28:59 -03:00
# define DATA_BUS_ACCESS_MODE_8BIT 0x01
# define DATA_BUS_ACCESS_MODE_16BIT 0x02
# define DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT 0x10
struct dibGPIOFunction {
# define BOARD_GPIO_COMPONENT_BUS_ADAPTER 1
# define BOARD_GPIO_COMPONENT_DEMOD 2
u8 component ;
# define BOARD_GPIO_FUNCTION_BOARD_ON 1
# define BOARD_GPIO_FUNCTION_BOARD_OFF 2
# define BOARD_GPIO_FUNCTION_COMPONENT_ON 3
# define BOARD_GPIO_FUNCTION_COMPONENT_OFF 4
# define BOARD_GPIO_FUNCTION_SUBBAND_PWM 5
# define BOARD_GPIO_FUNCTION_SUBBAND_GPIO 6
u8 function ;
/* mask, direction and value are used specify which GPIO to change GPIO0
* is LSB and possible GPIO31 is MSB . The same bit - position as in the
* mask is used for the direction and the value . Direction = = 1 is OUT ,
* 0 = = IN . For direction " OUT " value is either 1 or 0 , for direction IN
* value has no meaning .
*
* In case of BOARD_GPIO_FUNCTION_PWM mask is giving the GPIO to be
* used to do the PWM . Direction gives the PWModulator to be used .
* Value gives the PWM value in device - dependent scale .
*/
u32 mask ;
u32 direction ;
u32 value ;
} ;
# define MAX_NB_SUBBANDS 8
struct dibSubbandSelection {
u8 size ; /* Actual number of subbands. */
struct {
u16 f_mhz ;
struct dibGPIOFunction gpio ;
} subband [ MAX_NB_SUBBANDS ] ;
} ;
# define DEMOD_TIMF_SET 0x00
# define DEMOD_TIMF_GET 0x01
# define DEMOD_TIMF_UPDATE 0x02
2009-12-04 13:27:57 -03:00
2006-07-29 17:33:44 -03:00
# endif