linux/fs/bcachefs/alloc_foreground.c

972 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Primary bucket allocation code
*
* Copyright 2012 Google, Inc.
*
* Allocation in bcache is done in terms of buckets:
*
* Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
* btree pointers - they must match for the pointer to be considered valid.
*
* Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
* bucket simply by incrementing its gen.
*
* The gens (along with the priorities; it's really the gens are important but
* the code is named as if it's the priorities) are written in an arbitrary list
* of buckets on disk, with a pointer to them in the journal header.
*
* When we invalidate a bucket, we have to write its new gen to disk and wait
* for that write to complete before we use it - otherwise after a crash we
* could have pointers that appeared to be good but pointed to data that had
* been overwritten.
*
* Since the gens and priorities are all stored contiguously on disk, we can
* batch this up: We fill up the free_inc list with freshly invalidated buckets,
* call prio_write(), and when prio_write() finishes we pull buckets off the
* free_inc list and optionally discard them.
*
* free_inc isn't the only freelist - if it was, we'd often have to sleep while
* priorities and gens were being written before we could allocate. c->free is a
* smaller freelist, and buckets on that list are always ready to be used.
*
* If we've got discards enabled, that happens when a bucket moves from the
* free_inc list to the free list.
*
* It's important to ensure that gens don't wrap around - with respect to
* either the oldest gen in the btree or the gen on disk. This is quite
* difficult to do in practice, but we explicitly guard against it anyways - if
* a bucket is in danger of wrapping around we simply skip invalidating it that
* time around, and we garbage collect or rewrite the priorities sooner than we
* would have otherwise.
*
* bch2_bucket_alloc() allocates a single bucket from a specific device.
*
* bch2_bucket_alloc_set() allocates one or more buckets from different devices
* in a given filesystem.
*
* invalidate_buckets() drives all the processes described above. It's called
* from bch2_bucket_alloc() and a few other places that need to make sure free
* buckets are ready.
*
* invalidate_buckets_(lru|fifo)() find buckets that are available to be
* invalidated, and then invalidate them and stick them on the free_inc list -
* in either lru or fifo order.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "btree_gc.h"
#include "buckets.h"
#include "clock.h"
#include "debug.h"
#include "disk_groups.h"
#include "ec.h"
#include "io.h"
#include "trace.h"
#include <linux/math64.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
enum bucket_alloc_ret {
ALLOC_SUCCESS,
OPEN_BUCKETS_EMPTY,
FREELIST_EMPTY, /* Allocator thread not keeping up */
};
/*
* Open buckets represent a bucket that's currently being allocated from. They
* serve two purposes:
*
* - They track buckets that have been partially allocated, allowing for
* sub-bucket sized allocations - they're used by the sector allocator below
*
* - They provide a reference to the buckets they own that mark and sweep GC
* can find, until the new allocation has a pointer to it inserted into the
* btree
*
* When allocating some space with the sector allocator, the allocation comes
* with a reference to an open bucket - the caller is required to put that
* reference _after_ doing the index update that makes its allocation reachable.
*/
void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob)
{
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
if (ob->ec) {
bch2_ec_bucket_written(c, ob);
return;
}
percpu_down_read(&c->mark_lock);
spin_lock(&ob->lock);
bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr),
false, gc_pos_alloc(c, ob), 0);
ob->valid = false;
ob->type = 0;
spin_unlock(&ob->lock);
percpu_up_read(&c->mark_lock);
spin_lock(&c->freelist_lock);
ob->freelist = c->open_buckets_freelist;
c->open_buckets_freelist = ob - c->open_buckets;
c->open_buckets_nr_free++;
spin_unlock(&c->freelist_lock);
closure_wake_up(&c->open_buckets_wait);
}
void bch2_open_bucket_write_error(struct bch_fs *c,
struct open_buckets *obs,
unsigned dev)
{
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, obs, ob, i)
if (ob->ptr.dev == dev &&
ob->ec)
bch2_ec_bucket_cancel(c, ob);
}
static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c)
{
struct open_bucket *ob;
BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free);
ob = c->open_buckets + c->open_buckets_freelist;
c->open_buckets_freelist = ob->freelist;
atomic_set(&ob->pin, 1);
ob->type = 0;
c->open_buckets_nr_free--;
return ob;
}
static void open_bucket_free_unused(struct bch_fs *c,
struct open_bucket *ob,
bool may_realloc)
{
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
BUG_ON(ca->open_buckets_partial_nr >=
ARRAY_SIZE(ca->open_buckets_partial));
if (ca->open_buckets_partial_nr <
ARRAY_SIZE(ca->open_buckets_partial) &&
may_realloc) {
spin_lock(&c->freelist_lock);
ob->on_partial_list = true;
ca->open_buckets_partial[ca->open_buckets_partial_nr++] =
ob - c->open_buckets;
spin_unlock(&c->freelist_lock);
closure_wake_up(&c->open_buckets_wait);
closure_wake_up(&c->freelist_wait);
} else {
bch2_open_bucket_put(c, ob);
}
}
static void verify_not_stale(struct bch_fs *c, const struct open_buckets *obs)
{
#ifdef CONFIG_BCACHEFS_DEBUG
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, obs, ob, i) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
BUG_ON(ptr_stale(ca, &ob->ptr));
}
#endif
}
/* _only_ for allocating the journal on a new device: */
long bch2_bucket_alloc_new_fs(struct bch_dev *ca)
{
struct bucket_array *buckets;
ssize_t b;
rcu_read_lock();
buckets = bucket_array(ca);
for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++)
if (is_available_bucket(buckets->b[b].mark))
goto success;
b = -1;
success:
rcu_read_unlock();
return b;
}
static inline unsigned open_buckets_reserved(enum alloc_reserve reserve)
{
switch (reserve) {
case RESERVE_ALLOC:
return 0;
case RESERVE_BTREE:
return OPEN_BUCKETS_COUNT / 4;
default:
return OPEN_BUCKETS_COUNT / 2;
}
}
/**
* bch_bucket_alloc - allocate a single bucket from a specific device
*
* Returns index of bucket on success, 0 on failure
* */
struct open_bucket *bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca,
enum alloc_reserve reserve,
bool may_alloc_partial,
struct closure *cl)
{
struct bucket_array *buckets;
struct open_bucket *ob;
long bucket = 0;
spin_lock(&c->freelist_lock);
if (may_alloc_partial &&
ca->open_buckets_partial_nr) {
ob = c->open_buckets +
ca->open_buckets_partial[--ca->open_buckets_partial_nr];
ob->on_partial_list = false;
spin_unlock(&c->freelist_lock);
return ob;
}
if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(reserve))) {
if (cl)
closure_wait(&c->open_buckets_wait, cl);
if (!c->blocked_allocate_open_bucket)
c->blocked_allocate_open_bucket = local_clock();
spin_unlock(&c->freelist_lock);
trace_open_bucket_alloc_fail(ca, reserve);
return ERR_PTR(-OPEN_BUCKETS_EMPTY);
}
if (likely(fifo_pop(&ca->free[RESERVE_NONE], bucket)))
goto out;
switch (reserve) {
case RESERVE_ALLOC:
if (fifo_pop(&ca->free[RESERVE_BTREE], bucket))
goto out;
break;
case RESERVE_BTREE:
if (fifo_used(&ca->free[RESERVE_BTREE]) * 2 >=
ca->free[RESERVE_BTREE].size &&
fifo_pop(&ca->free[RESERVE_BTREE], bucket))
goto out;
break;
case RESERVE_MOVINGGC:
if (fifo_pop(&ca->free[RESERVE_MOVINGGC], bucket))
goto out;
break;
default:
break;
}
if (cl)
closure_wait(&c->freelist_wait, cl);
if (!c->blocked_allocate)
c->blocked_allocate = local_clock();
spin_unlock(&c->freelist_lock);
trace_bucket_alloc_fail(ca, reserve);
return ERR_PTR(-FREELIST_EMPTY);
out:
verify_not_on_freelist(c, ca, bucket);
ob = bch2_open_bucket_alloc(c);
spin_lock(&ob->lock);
buckets = bucket_array(ca);
ob->valid = true;
ob->sectors_free = ca->mi.bucket_size;
ob->ptr = (struct bch_extent_ptr) {
.type = 1 << BCH_EXTENT_ENTRY_ptr,
.gen = buckets->b[bucket].mark.gen,
.offset = bucket_to_sector(ca, bucket),
.dev = ca->dev_idx,
};
bucket_io_clock_reset(c, ca, bucket, READ);
bucket_io_clock_reset(c, ca, bucket, WRITE);
spin_unlock(&ob->lock);
if (c->blocked_allocate_open_bucket) {
bch2_time_stats_update(
&c->times[BCH_TIME_blocked_allocate_open_bucket],
c->blocked_allocate_open_bucket);
c->blocked_allocate_open_bucket = 0;
}
if (c->blocked_allocate) {
bch2_time_stats_update(
&c->times[BCH_TIME_blocked_allocate],
c->blocked_allocate);
c->blocked_allocate = 0;
}
spin_unlock(&c->freelist_lock);
bch2_wake_allocator(ca);
trace_bucket_alloc(ca, reserve);
return ob;
}
static int __dev_stripe_cmp(struct dev_stripe_state *stripe,
unsigned l, unsigned r)
{
return ((stripe->next_alloc[l] > stripe->next_alloc[r]) -
(stripe->next_alloc[l] < stripe->next_alloc[r]));
}
#define dev_stripe_cmp(l, r) __dev_stripe_cmp(stripe, l, r)
struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *c,
struct dev_stripe_state *stripe,
struct bch_devs_mask *devs)
{
struct dev_alloc_list ret = { .nr = 0 };
unsigned i;
for_each_set_bit(i, devs->d, BCH_SB_MEMBERS_MAX)
ret.devs[ret.nr++] = i;
bubble_sort(ret.devs, ret.nr, dev_stripe_cmp);
return ret;
}
void bch2_dev_stripe_increment(struct bch_fs *c, struct bch_dev *ca,
struct dev_stripe_state *stripe)
{
u64 *v = stripe->next_alloc + ca->dev_idx;
u64 free_space = dev_buckets_free(c, ca);
u64 free_space_inv = free_space
? div64_u64(1ULL << 48, free_space)
: 1ULL << 48;
u64 scale = *v / 4;
if (*v + free_space_inv >= *v)
*v += free_space_inv;
else
*v = U64_MAX;
for (v = stripe->next_alloc;
v < stripe->next_alloc + ARRAY_SIZE(stripe->next_alloc); v++)
*v = *v < scale ? 0 : *v - scale;
}
#define BUCKET_MAY_ALLOC_PARTIAL (1 << 0)
#define BUCKET_ALLOC_USE_DURABILITY (1 << 1)
static void add_new_bucket(struct bch_fs *c,
struct open_buckets *ptrs,
struct bch_devs_mask *devs_may_alloc,
unsigned *nr_effective,
bool *have_cache,
unsigned flags,
struct open_bucket *ob)
{
unsigned durability =
bch_dev_bkey_exists(c, ob->ptr.dev)->mi.durability;
__clear_bit(ob->ptr.dev, devs_may_alloc->d);
*nr_effective += (flags & BUCKET_ALLOC_USE_DURABILITY)
? durability : 1;
*have_cache |= !durability;
ob_push(c, ptrs, ob);
}
int bch2_bucket_alloc_set(struct bch_fs *c,
struct open_buckets *ptrs,
struct dev_stripe_state *stripe,
struct bch_devs_mask *devs_may_alloc,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
enum alloc_reserve reserve,
unsigned flags,
struct closure *cl)
{
struct dev_alloc_list devs_sorted =
bch2_dev_alloc_list(c, stripe, devs_may_alloc);
struct bch_dev *ca;
bool alloc_failure = false;
unsigned i;
BUG_ON(*nr_effective >= nr_replicas);
for (i = 0; i < devs_sorted.nr; i++) {
struct open_bucket *ob;
ca = rcu_dereference(c->devs[devs_sorted.devs[i]]);
if (!ca)
continue;
if (!ca->mi.durability && *have_cache)
continue;
ob = bch2_bucket_alloc(c, ca, reserve,
flags & BUCKET_MAY_ALLOC_PARTIAL, cl);
if (IS_ERR(ob)) {
enum bucket_alloc_ret ret = -PTR_ERR(ob);
WARN_ON(reserve == RESERVE_MOVINGGC &&
ret != OPEN_BUCKETS_EMPTY);
if (cl)
return -EAGAIN;
if (ret == OPEN_BUCKETS_EMPTY)
return -ENOSPC;
alloc_failure = true;
continue;
}
add_new_bucket(c, ptrs, devs_may_alloc,
nr_effective, have_cache, flags, ob);
bch2_dev_stripe_increment(c, ca, stripe);
if (*nr_effective >= nr_replicas)
return 0;
}
return alloc_failure ? -ENOSPC : -EROFS;
}
/* Allocate from stripes: */
/*
* if we can't allocate a new stripe because there are already too many
* partially filled stripes, force allocating from an existing stripe even when
* it's to a device we don't want:
*/
static void bucket_alloc_from_stripe(struct bch_fs *c,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_mask *devs_may_alloc,
u16 target,
unsigned erasure_code,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
unsigned flags)
{
struct dev_alloc_list devs_sorted;
struct ec_stripe_head *h;
struct open_bucket *ob;
struct bch_dev *ca;
unsigned i, ec_idx;
if (!erasure_code)
return;
if (nr_replicas < 2)
return;
if (ec_open_bucket(c, ptrs))
return;
h = bch2_ec_stripe_head_get(c, target, 0, nr_replicas - 1);
if (!h)
return;
devs_sorted = bch2_dev_alloc_list(c, &wp->stripe, devs_may_alloc);
for (i = 0; i < devs_sorted.nr; i++)
open_bucket_for_each(c, &h->s->blocks, ob, ec_idx)
if (ob->ptr.dev == devs_sorted.devs[i] &&
!test_and_set_bit(h->s->data_block_idx[ec_idx],
h->s->blocks_allocated))
goto got_bucket;
goto out_put_head;
got_bucket:
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
ob->ec_idx = h->s->data_block_idx[ec_idx];
ob->ec = h->s;
add_new_bucket(c, ptrs, devs_may_alloc,
nr_effective, have_cache, flags, ob);
atomic_inc(&h->s->pin);
out_put_head:
bch2_ec_stripe_head_put(c, h);
}
/* Sector allocator */
static void get_buckets_from_writepoint(struct bch_fs *c,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_mask *devs_may_alloc,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
unsigned flags,
bool need_ec)
{
struct open_buckets ptrs_skip = { .nr = 0 };
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, &wp->ptrs, ob, i) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
if (*nr_effective < nr_replicas &&
test_bit(ob->ptr.dev, devs_may_alloc->d) &&
(ca->mi.durability ||
(wp->type == BCH_DATA_USER && !*have_cache)) &&
(ob->ec || !need_ec)) {
add_new_bucket(c, ptrs, devs_may_alloc,
nr_effective, have_cache,
flags, ob);
} else {
ob_push(c, &ptrs_skip, ob);
}
}
wp->ptrs = ptrs_skip;
}
static int open_bucket_add_buckets(struct bch_fs *c,
struct open_buckets *ptrs,
struct write_point *wp,
struct bch_devs_list *devs_have,
u16 target,
unsigned erasure_code,
unsigned nr_replicas,
unsigned *nr_effective,
bool *have_cache,
enum alloc_reserve reserve,
unsigned flags,
struct closure *_cl)
{
struct bch_devs_mask devs;
struct open_bucket *ob;
struct closure *cl = NULL;
unsigned i;
int ret;
rcu_read_lock();
devs = target_rw_devs(c, wp->type, target);
rcu_read_unlock();
/* Don't allocate from devices we already have pointers to: */
for (i = 0; i < devs_have->nr; i++)
__clear_bit(devs_have->devs[i], devs.d);
open_bucket_for_each(c, ptrs, ob, i)
__clear_bit(ob->ptr.dev, devs.d);
if (erasure_code) {
get_buckets_from_writepoint(c, ptrs, wp, &devs,
nr_replicas, nr_effective,
have_cache, flags, true);
if (*nr_effective >= nr_replicas)
return 0;
bucket_alloc_from_stripe(c, ptrs, wp, &devs,
target, erasure_code,
nr_replicas, nr_effective,
have_cache, flags);
if (*nr_effective >= nr_replicas)
return 0;
}
get_buckets_from_writepoint(c, ptrs, wp, &devs,
nr_replicas, nr_effective,
have_cache, flags, false);
if (*nr_effective >= nr_replicas)
return 0;
percpu_down_read(&c->mark_lock);
rcu_read_lock();
retry_blocking:
/*
* Try nonblocking first, so that if one device is full we'll try from
* other devices:
*/
ret = bch2_bucket_alloc_set(c, ptrs, &wp->stripe, &devs,
nr_replicas, nr_effective, have_cache,
reserve, flags, cl);
if (ret && ret != -EROFS && !cl && _cl) {
cl = _cl;
goto retry_blocking;
}
rcu_read_unlock();
percpu_up_read(&c->mark_lock);
return ret;
}
void bch2_open_buckets_stop_dev(struct bch_fs *c, struct bch_dev *ca,
struct open_buckets *obs)
{
struct open_buckets ptrs = { .nr = 0 };
struct open_bucket *ob, *ob2;
unsigned i, j;
open_bucket_for_each(c, obs, ob, i) {
bool drop = !ca || ob->ptr.dev == ca->dev_idx;
if (!drop && ob->ec) {
mutex_lock(&ob->ec->lock);
open_bucket_for_each(c, &ob->ec->blocks, ob2, j)
drop |= ob2->ptr.dev == ca->dev_idx;
open_bucket_for_each(c, &ob->ec->parity, ob2, j)
drop |= ob2->ptr.dev == ca->dev_idx;
mutex_unlock(&ob->ec->lock);
}
if (drop)
bch2_open_bucket_put(c, ob);
else
ob_push(c, &ptrs, ob);
}
*obs = ptrs;
}
void bch2_writepoint_stop(struct bch_fs *c, struct bch_dev *ca,
struct write_point *wp)
{
mutex_lock(&wp->lock);
bch2_open_buckets_stop_dev(c, ca, &wp->ptrs);
mutex_unlock(&wp->lock);
}
static inline struct hlist_head *writepoint_hash(struct bch_fs *c,
unsigned long write_point)
{
unsigned hash =
hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash)));
return &c->write_points_hash[hash];
}
static struct write_point *__writepoint_find(struct hlist_head *head,
unsigned long write_point)
{
struct write_point *wp;
hlist_for_each_entry_rcu(wp, head, node)
if (wp->write_point == write_point)
return wp;
return NULL;
}
static inline bool too_many_writepoints(struct bch_fs *c, unsigned factor)
{
u64 stranded = c->write_points_nr * c->bucket_size_max;
u64 free = bch2_fs_usage_read_short(c).free;
return stranded * factor > free;
}
static bool try_increase_writepoints(struct bch_fs *c)
{
struct write_point *wp;
if (c->write_points_nr == ARRAY_SIZE(c->write_points) ||
too_many_writepoints(c, 32))
return false;
wp = c->write_points + c->write_points_nr++;
hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point));
return true;
}
static bool try_decrease_writepoints(struct bch_fs *c,
unsigned old_nr)
{
struct write_point *wp;
mutex_lock(&c->write_points_hash_lock);
if (c->write_points_nr < old_nr) {
mutex_unlock(&c->write_points_hash_lock);
return true;
}
if (c->write_points_nr == 1 ||
!too_many_writepoints(c, 8)) {
mutex_unlock(&c->write_points_hash_lock);
return false;
}
wp = c->write_points + --c->write_points_nr;
hlist_del_rcu(&wp->node);
mutex_unlock(&c->write_points_hash_lock);
bch2_writepoint_stop(c, NULL, wp);
return true;
}
static struct write_point *writepoint_find(struct bch_fs *c,
unsigned long write_point)
{
struct write_point *wp, *oldest;
struct hlist_head *head;
if (!(write_point & 1UL)) {
wp = (struct write_point *) write_point;
mutex_lock(&wp->lock);
return wp;
}
head = writepoint_hash(c, write_point);
restart_find:
wp = __writepoint_find(head, write_point);
if (wp) {
lock_wp:
mutex_lock(&wp->lock);
if (wp->write_point == write_point)
goto out;
mutex_unlock(&wp->lock);
goto restart_find;
}
restart_find_oldest:
oldest = NULL;
for (wp = c->write_points;
wp < c->write_points + c->write_points_nr; wp++)
if (!oldest || time_before64(wp->last_used, oldest->last_used))
oldest = wp;
mutex_lock(&oldest->lock);
mutex_lock(&c->write_points_hash_lock);
if (oldest >= c->write_points + c->write_points_nr ||
try_increase_writepoints(c)) {
mutex_unlock(&c->write_points_hash_lock);
mutex_unlock(&oldest->lock);
goto restart_find_oldest;
}
wp = __writepoint_find(head, write_point);
if (wp && wp != oldest) {
mutex_unlock(&c->write_points_hash_lock);
mutex_unlock(&oldest->lock);
goto lock_wp;
}
wp = oldest;
hlist_del_rcu(&wp->node);
wp->write_point = write_point;
hlist_add_head_rcu(&wp->node, head);
mutex_unlock(&c->write_points_hash_lock);
out:
wp->last_used = sched_clock();
return wp;
}
/*
* Get us an open_bucket we can allocate from, return with it locked:
*/
struct write_point *bch2_alloc_sectors_start(struct bch_fs *c,
unsigned target,
unsigned erasure_code,
struct write_point_specifier write_point,
struct bch_devs_list *devs_have,
unsigned nr_replicas,
unsigned nr_replicas_required,
enum alloc_reserve reserve,
unsigned flags,
struct closure *cl)
{
struct write_point *wp;
struct open_bucket *ob;
struct open_buckets ptrs;
unsigned nr_effective, write_points_nr;
unsigned ob_flags = 0;
bool have_cache;
int ret, i;
if (!(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS))
ob_flags |= BUCKET_ALLOC_USE_DURABILITY;
BUG_ON(!nr_replicas || !nr_replicas_required);
retry:
ptrs.nr = 0;
nr_effective = 0;
write_points_nr = c->write_points_nr;
have_cache = false;
wp = writepoint_find(c, write_point.v);
if (wp->type == BCH_DATA_USER)
ob_flags |= BUCKET_MAY_ALLOC_PARTIAL;
/* metadata may not allocate on cache devices: */
if (wp->type != BCH_DATA_USER)
have_cache = true;
if (!target || (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) {
ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have,
target, erasure_code,
nr_replicas, &nr_effective,
&have_cache, reserve,
ob_flags, cl);
} else {
ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have,
target, erasure_code,
nr_replicas, &nr_effective,
&have_cache, reserve,
ob_flags, NULL);
if (!ret)
goto alloc_done;
ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have,
0, erasure_code,
nr_replicas, &nr_effective,
&have_cache, reserve,
ob_flags, cl);
}
alloc_done:
BUG_ON(!ret && nr_effective < nr_replicas);
if (erasure_code && !ec_open_bucket(c, &ptrs))
pr_debug("failed to get ec bucket: ret %u", ret);
if (ret == -EROFS &&
nr_effective >= nr_replicas_required)
ret = 0;
if (ret)
goto err;
/* Free buckets we didn't use: */
open_bucket_for_each(c, &wp->ptrs, ob, i)
open_bucket_free_unused(c, ob, wp->type == BCH_DATA_USER);
wp->ptrs = ptrs;
wp->sectors_free = UINT_MAX;
open_bucket_for_each(c, &wp->ptrs, ob, i)
wp->sectors_free = min(wp->sectors_free, ob->sectors_free);
BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX);
verify_not_stale(c, &wp->ptrs);
return wp;
err:
open_bucket_for_each(c, &wp->ptrs, ob, i)
if (ptrs.nr < ARRAY_SIZE(ptrs.v))
ob_push(c, &ptrs, ob);
else
open_bucket_free_unused(c, ob,
wp->type == BCH_DATA_USER);
wp->ptrs = ptrs;
mutex_unlock(&wp->lock);
if (ret == -ENOSPC &&
try_decrease_writepoints(c, write_points_nr))
goto retry;
return ERR_PTR(ret);
}
/*
* Append pointers to the space we just allocated to @k, and mark @sectors space
* as allocated out of @ob
*/
void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp,
struct bkey_i *k, unsigned sectors)
{
struct open_bucket *ob;
unsigned i;
BUG_ON(sectors > wp->sectors_free);
wp->sectors_free -= sectors;
open_bucket_for_each(c, &wp->ptrs, ob, i) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev);
struct bch_extent_ptr tmp = ob->ptr;
tmp.cached = !ca->mi.durability &&
wp->type == BCH_DATA_USER;
tmp.offset += ca->mi.bucket_size - ob->sectors_free;
bch2_bkey_append_ptr(k, tmp);
BUG_ON(sectors > ob->sectors_free);
ob->sectors_free -= sectors;
}
}
/*
* Append pointers to the space we just allocated to @k, and mark @sectors space
* as allocated out of @ob
*/
void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp)
{
struct open_buckets ptrs = { .nr = 0 }, keep = { .nr = 0 };
struct open_bucket *ob;
unsigned i;
open_bucket_for_each(c, &wp->ptrs, ob, i)
ob_push(c, !ob->sectors_free ? &ptrs : &keep, ob);
wp->ptrs = keep;
mutex_unlock(&wp->lock);
bch2_open_buckets_put(c, &ptrs);
}
void bch2_fs_allocator_foreground_init(struct bch_fs *c)
{
struct open_bucket *ob;
struct write_point *wp;
mutex_init(&c->write_points_hash_lock);
c->write_points_nr = ARRAY_SIZE(c->write_points);
/* open bucket 0 is a sentinal NULL: */
spin_lock_init(&c->open_buckets[0].lock);
for (ob = c->open_buckets + 1;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) {
spin_lock_init(&ob->lock);
c->open_buckets_nr_free++;
ob->freelist = c->open_buckets_freelist;
c->open_buckets_freelist = ob - c->open_buckets;
}
writepoint_init(&c->btree_write_point, BCH_DATA_BTREE);
writepoint_init(&c->rebalance_write_point, BCH_DATA_USER);
for (wp = c->write_points;
wp < c->write_points + c->write_points_nr; wp++) {
writepoint_init(wp, BCH_DATA_USER);
wp->last_used = sched_clock();
wp->write_point = (unsigned long) wp;
hlist_add_head_rcu(&wp->node,
writepoint_hash(c, wp->write_point));
}
}