crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
// SPDX-License-Identifier: GPL-2.0 OR MIT
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
/*
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
* Copyright ( C ) 2015 - 2019 Jason A . Donenfeld < Jason @ zx2c4 . com > . All Rights Reserved .
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
*/
# include <crypto/algapi.h>
# include <crypto/internal/hash.h>
2019-11-08 13:22:19 +01:00
# include <crypto/internal/poly1305.h>
2019-03-12 22:12:48 -07:00
# include <crypto/internal/simd.h>
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
# include <linux/crypto.h>
2019-11-08 13:22:23 +01:00
# include <linux/jump_label.h>
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
# include <linux/kernel.h>
# include <linux/module.h>
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
# include <asm/intel-family.h>
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
# include <asm/simd.h>
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
asmlinkage void poly1305_init_x86_64 ( void * ctx ,
const u8 key [ POLY1305_KEY_SIZE ] ) ;
asmlinkage void poly1305_blocks_x86_64 ( void * ctx , const u8 * inp ,
const size_t len , const u32 padbit ) ;
asmlinkage void poly1305_emit_x86_64 ( void * ctx , u8 mac [ POLY1305_DIGEST_SIZE ] ,
const u32 nonce [ 4 ] ) ;
asmlinkage void poly1305_emit_avx ( void * ctx , u8 mac [ POLY1305_DIGEST_SIZE ] ,
const u32 nonce [ 4 ] ) ;
asmlinkage void poly1305_blocks_avx ( void * ctx , const u8 * inp , const size_t len ,
const u32 padbit ) ;
asmlinkage void poly1305_blocks_avx2 ( void * ctx , const u8 * inp , const size_t len ,
const u32 padbit ) ;
asmlinkage void poly1305_blocks_avx512 ( void * ctx , const u8 * inp ,
const size_t len , const u32 padbit ) ;
static __ro_after_init DEFINE_STATIC_KEY_FALSE ( poly1305_use_avx ) ;
2019-11-08 13:22:23 +01:00
static __ro_after_init DEFINE_STATIC_KEY_FALSE ( poly1305_use_avx2 ) ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
static __ro_after_init DEFINE_STATIC_KEY_FALSE ( poly1305_use_avx512 ) ;
struct poly1305_arch_internal {
union {
struct {
u32 h [ 5 ] ;
u32 is_base2_26 ;
} ;
u64 hs [ 3 ] ;
} ;
u64 r [ 2 ] ;
u64 pad ;
struct { u32 r2 , r1 , r4 , r3 ; } rn [ 9 ] ;
} ;
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:07 +02:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
/* The AVX code uses base 2^26, while the scalar code uses base 2^64. If we hit
* the unfortunate situation of using AVX and then having to go back to scalar
* - - because the user is silly and has called the update function from two
* separate contexts - - then we need to convert back to the original base before
* proceeding . It is possible to reason that the initial reduction below is
* sufficient given the implementation invariants . However , for an avoidance of
* doubt and because this is not performance critical , we do the full reduction
* anyway . Z3 proof of below function : https : //xn--4db.cc/ltPtHCKN/py
*/
static void convert_to_base2_64 ( void * ctx )
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
struct poly1305_arch_internal * state = ctx ;
u32 cy ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( ! state - > is_base2_26 )
return ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
cy = state - > h [ 0 ] > > 26 ; state - > h [ 0 ] & = 0x3ffffff ; state - > h [ 1 ] + = cy ;
cy = state - > h [ 1 ] > > 26 ; state - > h [ 1 ] & = 0x3ffffff ; state - > h [ 2 ] + = cy ;
cy = state - > h [ 2 ] > > 26 ; state - > h [ 2 ] & = 0x3ffffff ; state - > h [ 3 ] + = cy ;
cy = state - > h [ 3 ] > > 26 ; state - > h [ 3 ] & = 0x3ffffff ; state - > h [ 4 ] + = cy ;
state - > hs [ 0 ] = ( ( u64 ) state - > h [ 2 ] < < 52 ) | ( ( u64 ) state - > h [ 1 ] < < 26 ) | state - > h [ 0 ] ;
state - > hs [ 1 ] = ( ( u64 ) state - > h [ 4 ] < < 40 ) | ( ( u64 ) state - > h [ 3 ] < < 14 ) | ( state - > h [ 2 ] > > 12 ) ;
state - > hs [ 2 ] = state - > h [ 4 ] > > 24 ;
# define ULT(a, b) ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
cy = ( state - > hs [ 2 ] > > 2 ) + ( state - > hs [ 2 ] & ~ 3ULL ) ;
state - > hs [ 2 ] & = 3 ;
state - > hs [ 0 ] + = cy ;
state - > hs [ 1 ] + = ( cy = ULT ( state - > hs [ 0 ] , cy ) ) ;
state - > hs [ 2 ] + = ULT ( state - > hs [ 1 ] , cy ) ;
# undef ULT
state - > is_base2_26 = 0 ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
static void poly1305_simd_init ( void * ctx , const u8 key [ POLY1305_KEY_SIZE ] )
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:07 +02:00
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
poly1305_init_x86_64 ( ctx , key ) ;
crypto: poly1305 - Add a two block SSE2 variant for x86_64
Extends the x86_64 SSE2 Poly1305 authenticator by a function processing two
consecutive Poly1305 blocks in parallel using a derived key r^2. Loop
unrolling can be more effectively mapped to SSE instructions, further
increasing throughput.
For large messages, throughput increases by ~45-65% compared to single
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:07 +02:00
}
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
static void poly1305_simd_blocks ( void * ctx , const u8 * inp , size_t len ,
const u32 padbit )
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
struct poly1305_arch_internal * state = ctx ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
/* SIMD disables preemption, so relax after processing each page. */
BUILD_BUG_ON ( PAGE_SIZE < POLY1305_BLOCK_SIZE | |
PAGE_SIZE % POLY1305_BLOCK_SIZE ) ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( ! IS_ENABLED ( CONFIG_AS_AVX ) | | ! static_branch_likely ( & poly1305_use_avx ) | |
( len < ( POLY1305_BLOCK_SIZE * 18 ) & & ! state - > is_base2_26 ) | |
! crypto_simd_usable ( ) ) {
convert_to_base2_64 ( ctx ) ;
poly1305_blocks_x86_64 ( ctx , inp , len , padbit ) ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
return ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
}
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
for ( ; ; ) {
const size_t bytes = min_t ( size_t , len , PAGE_SIZE ) ;
kernel_fpu_begin ( ) ;
if ( IS_ENABLED ( CONFIG_AS_AVX512 ) & & static_branch_likely ( & poly1305_use_avx512 ) )
poly1305_blocks_avx512 ( ctx , inp , bytes , padbit ) ;
else if ( IS_ENABLED ( CONFIG_AS_AVX2 ) & & static_branch_likely ( & poly1305_use_avx2 ) )
poly1305_blocks_avx2 ( ctx , inp , bytes , padbit ) ;
else
poly1305_blocks_avx ( ctx , inp , bytes , padbit ) ;
kernel_fpu_end ( ) ;
len - = bytes ;
if ( ! len )
break ;
inp + = bytes ;
}
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
static void poly1305_simd_emit ( void * ctx , u8 mac [ POLY1305_DIGEST_SIZE ] ,
const u32 nonce [ 4 ] )
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
{
2020-01-17 11:42:22 +01:00
if ( ! IS_ENABLED ( CONFIG_AS_AVX ) | | ! static_branch_likely ( & poly1305_use_avx ) )
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
poly1305_emit_x86_64 ( ctx , mac , nonce ) ;
2020-01-17 11:42:22 +01:00
else
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
poly1305_emit_avx ( ctx , mac , nonce ) ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
void poly1305_init_arch ( struct poly1305_desc_ctx * dctx , const u8 * key )
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
poly1305_simd_init ( & dctx - > h , key ) ;
dctx - > s [ 0 ] = get_unaligned_le32 ( & key [ 16 ] ) ;
dctx - > s [ 1 ] = get_unaligned_le32 ( & key [ 20 ] ) ;
dctx - > s [ 2 ] = get_unaligned_le32 ( & key [ 24 ] ) ;
dctx - > s [ 3 ] = get_unaligned_le32 ( & key [ 28 ] ) ;
dctx - > buflen = 0 ;
dctx - > sset = true ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
EXPORT_SYMBOL ( poly1305_init_arch ) ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
static unsigned int crypto_poly1305_setdctxkey ( struct poly1305_desc_ctx * dctx ,
const u8 * inp , unsigned int len )
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
unsigned int acc = 0 ;
if ( unlikely ( ! dctx - > sset ) ) {
if ( ! dctx - > rset & & len > = POLY1305_BLOCK_SIZE ) {
poly1305_simd_init ( & dctx - > h , inp ) ;
inp + = POLY1305_BLOCK_SIZE ;
len - = POLY1305_BLOCK_SIZE ;
acc + = POLY1305_BLOCK_SIZE ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
dctx - > rset = 1 ;
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( len > = POLY1305_BLOCK_SIZE ) {
dctx - > s [ 0 ] = get_unaligned_le32 ( & inp [ 0 ] ) ;
dctx - > s [ 1 ] = get_unaligned_le32 ( & inp [ 4 ] ) ;
dctx - > s [ 2 ] = get_unaligned_le32 ( & inp [ 8 ] ) ;
dctx - > s [ 3 ] = get_unaligned_le32 ( & inp [ 12 ] ) ;
inp + = POLY1305_BLOCK_SIZE ;
len - = POLY1305_BLOCK_SIZE ;
acc + = POLY1305_BLOCK_SIZE ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
dctx - > sset = true ;
}
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
return acc ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
}
2019-11-08 13:22:23 +01:00
void poly1305_update_arch ( struct poly1305_desc_ctx * dctx , const u8 * src ,
unsigned int srclen )
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
unsigned int bytes , used ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
if ( unlikely ( dctx - > buflen ) ) {
bytes = min ( srclen , POLY1305_BLOCK_SIZE - dctx - > buflen ) ;
memcpy ( dctx - > buf + dctx - > buflen , src , bytes ) ;
src + = bytes ;
srclen - = bytes ;
dctx - > buflen + = bytes ;
if ( dctx - > buflen = = POLY1305_BLOCK_SIZE ) {
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( likely ( ! crypto_poly1305_setdctxkey ( dctx , dctx - > buf , POLY1305_BLOCK_SIZE ) ) )
poly1305_simd_blocks ( & dctx - > h , dctx - > buf , POLY1305_BLOCK_SIZE , 1 ) ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
dctx - > buflen = 0 ;
}
}
if ( likely ( srclen > = POLY1305_BLOCK_SIZE ) ) {
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
bytes = round_down ( srclen , POLY1305_BLOCK_SIZE ) ;
srclen - = bytes ;
used = crypto_poly1305_setdctxkey ( dctx , src , bytes ) ;
if ( likely ( bytes - used ) )
poly1305_simd_blocks ( & dctx - > h , src + used , bytes - used , 1 ) ;
src + = bytes ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
}
if ( unlikely ( srclen ) ) {
dctx - > buflen = srclen ;
memcpy ( dctx - > buf , src , srclen ) ;
}
2019-11-08 13:22:22 +01:00
}
2019-11-08 13:22:23 +01:00
EXPORT_SYMBOL ( poly1305_update_arch ) ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
void poly1305_final_arch ( struct poly1305_desc_ctx * dctx , u8 * dst )
2019-11-08 13:22:23 +01:00
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( unlikely ( dctx - > buflen ) ) {
dctx - > buf [ dctx - > buflen + + ] = 1 ;
memset ( dctx - > buf + dctx - > buflen , 0 ,
POLY1305_BLOCK_SIZE - dctx - > buflen ) ;
poly1305_simd_blocks ( & dctx - > h , dctx - > buf , POLY1305_BLOCK_SIZE , 0 ) ;
crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.
There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.
Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.
Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:46 -05:00
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
poly1305_simd_emit ( & dctx - > h , dst , dctx - > s ) ;
* dctx = ( struct poly1305_desc_ctx ) { } ;
2019-11-08 13:22:23 +01:00
}
EXPORT_SYMBOL ( poly1305_final_arch ) ;
2019-11-08 13:22:22 +01:00
static int crypto_poly1305_init ( struct shash_desc * desc )
{
struct poly1305_desc_ctx * dctx = shash_desc_ctx ( desc ) ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
* dctx = ( struct poly1305_desc_ctx ) { } ;
2019-11-08 13:22:22 +01:00
return 0 ;
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
static int crypto_poly1305_update ( struct shash_desc * desc ,
const u8 * src , unsigned int srclen )
2019-11-08 13:22:22 +01:00
{
struct poly1305_desc_ctx * dctx = shash_desc_ctx ( desc ) ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
poly1305_update_arch ( dctx , src , srclen ) ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
return 0 ;
}
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
static int crypto_poly1305_final ( struct shash_desc * desc , u8 * dst )
2019-11-08 13:22:23 +01:00
{
struct poly1305_desc_ctx * dctx = shash_desc_ctx ( desc ) ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( unlikely ( ! dctx - > sset ) )
return - ENOKEY ;
poly1305_final_arch ( dctx , dst ) ;
2019-11-08 13:22:23 +01:00
return 0 ;
}
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
static struct shash_alg alg = {
. digestsize = POLY1305_DIGEST_SIZE ,
2019-11-08 13:22:20 +01:00
. init = crypto_poly1305_init ,
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
. update = crypto_poly1305_update ,
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
. final = crypto_poly1305_final ,
2019-11-08 13:22:20 +01:00
. descsize = sizeof ( struct poly1305_desc_ctx ) ,
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
. base = {
. cra_name = " poly1305 " ,
. cra_driver_name = " poly1305-simd " ,
. cra_priority = 300 ,
. cra_blocksize = POLY1305_BLOCK_SIZE ,
. cra_module = THIS_MODULE ,
} ,
} ;
static int __init poly1305_simd_mod_init ( void )
{
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( IS_ENABLED ( CONFIG_AS_AVX ) & & boot_cpu_has ( X86_FEATURE_AVX ) & &
cpu_has_xfeatures ( XFEATURE_MASK_SSE | XFEATURE_MASK_YMM , NULL ) )
static_branch_enable ( & poly1305_use_avx ) ;
if ( IS_ENABLED ( CONFIG_AS_AVX2 ) & & boot_cpu_has ( X86_FEATURE_AVX ) & &
2019-11-08 13:22:23 +01:00
boot_cpu_has ( X86_FEATURE_AVX2 ) & &
cpu_has_xfeatures ( XFEATURE_MASK_SSE | XFEATURE_MASK_YMM , NULL ) )
static_branch_enable ( & poly1305_use_avx2 ) ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
if ( IS_ENABLED ( CONFIG_AS_AVX512 ) & & boot_cpu_has ( X86_FEATURE_AVX ) & &
boot_cpu_has ( X86_FEATURE_AVX2 ) & & boot_cpu_has ( X86_FEATURE_AVX512F ) & &
cpu_has_xfeatures ( XFEATURE_MASK_SSE | XFEATURE_MASK_YMM | XFEATURE_MASK_AVX512 , NULL ) & &
/* Skylake downclocks unacceptably much when using zmm, but later generations are fast. */
boot_cpu_data . x86_model ! = INTEL_FAM6_SKYLAKE_X )
static_branch_enable ( & poly1305_use_avx512 ) ;
2019-11-25 11:31:12 +01:00
return IS_REACHABLE ( CONFIG_CRYPTO_HASH ) ? crypto_register_shash ( & alg ) : 0 ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
}
static void __exit poly1305_simd_mod_exit ( void )
{
2019-11-25 11:31:12 +01:00
if ( IS_REACHABLE ( CONFIG_CRYPTO_HASH ) )
crypto_unregister_shash ( & alg ) ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
}
module_init ( poly1305_simd_mod_init ) ;
module_exit ( poly1305_simd_mod_exit ) ;
MODULE_LICENSE ( " GPL " ) ;
crypto: x86/poly1305 - wire up faster implementations for kernel
These x86_64 vectorized implementations support AVX, AVX-2, and AVX512F.
The AVX-512F implementation is disabled on Skylake, due to throttling,
but it is quite fast on >= Cannonlake.
On the left is cycle counts on a Core i7 6700HQ using the AVX-2
codepath, comparing this implementation ("new") to the implementation in
the current crypto api ("old"). On the right are benchmarks on a Xeon
Gold 5120 using the AVX-512 codepath. The new implementation is faster
on all benchmarks.
AVX-2 AVX-512
--------- -----------
size old new size old new
---- ---- ---- ---- ---- ----
0 70 68 0 74 70
16 92 90 16 96 92
32 134 104 32 136 106
48 172 120 48 184 124
64 218 136 64 218 138
80 254 158 80 260 160
96 298 174 96 300 176
112 342 192 112 342 194
128 388 212 128 384 212
144 428 228 144 420 226
160 466 246 160 464 248
176 510 264 176 504 264
192 550 282 192 544 282
208 594 302 208 582 300
224 628 316 224 624 318
240 676 334 240 662 338
256 716 354 256 708 358
272 764 374 272 748 372
288 802 352 288 788 358
304 420 366 304 422 370
320 428 360 320 432 364
336 484 378 336 486 380
352 426 384 352 434 390
368 478 400 368 480 408
384 488 394 384 490 398
400 542 408 400 542 412
416 486 416 416 492 426
432 534 430 432 538 436
448 544 422 448 546 432
464 600 438 464 600 448
480 540 448 480 548 456
496 594 464 496 594 476
512 602 456 512 606 470
528 656 476 528 656 480
544 600 480 544 606 498
560 650 494 560 652 512
576 664 490 576 662 508
592 714 508 592 716 522
608 656 514 608 664 538
624 708 532 624 710 552
640 716 524 640 720 516
656 770 536 656 772 526
672 716 548 672 722 544
688 770 562 688 768 556
704 774 552 704 778 556
720 826 568 720 832 568
736 768 574 736 780 584
752 822 592 752 826 600
768 830 584 768 836 560
784 884 602 784 888 572
800 828 610 800 838 588
816 884 628 816 884 604
832 888 618 832 894 598
848 942 632 848 946 612
864 884 644 864 896 628
880 936 660 880 942 644
896 948 652 896 952 608
912 1000 664 912 1004 616
928 942 676 928 954 634
944 994 690 944 1000 646
960 1002 680 960 1008 646
976 1054 694 976 1062 658
992 1002 706 992 1012 674
1008 1052 720 1008 1058 690
This commit wires in the prior implementation from Andy, and makes the
following changes to be suitable for kernel land.
- Some cosmetic and structural changes, like renaming labels to
.Lname, constants, and other Linux conventions, as well as making
the code easy for us to maintain moving forward.
- CPU feature checking is done in C by the glue code.
- We avoid jumping into the middle of functions, to appease objtool,
and instead parameterize shared code.
- We maintain frame pointers so that stack traces make sense.
- We remove the dependency on the perl xlate code, which transforms
the output into things that assemblers we don't care about use.
Importantly, none of our changes affect the arithmetic or core code, but
just involve the differing environment of kernel space.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-05 22:40:48 -05:00
MODULE_AUTHOR ( " Jason A. Donenfeld <Jason@zx2c4.com> " ) ;
crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.
When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.
For large messages, throughput increases by ~5-10% compared to
poly1305-generic:
testing speed of poly1305 (poly1305-generic)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 4080026 opers/sec, 391682496 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 6221094 opers/sec, 597225024 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9609750 opers/sec, 922536057 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1459379 opers/sec, 420301267 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2115179 opers/sec, 609171609 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 593000 opers/sec, 626208000 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 302077 opers/sec, 628320576 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 140202 opers/sec, 1153022070 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3790063 opers/sec, 363846076 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5913378 opers/sec, 567684355 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9352574 opers/sec, 897847104 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1362145 opers/sec, 392297990 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2007075 opers/sec, 578037628 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 566272 opers/sec, 597984182 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 288857 opers/sec, 600823808 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 153075 opers/sec, 1258896201 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 19:14:06 +02:00
MODULE_DESCRIPTION ( " Poly1305 authenticator " ) ;
MODULE_ALIAS_CRYPTO ( " poly1305 " ) ;
MODULE_ALIAS_CRYPTO ( " poly1305-simd " ) ;