linux/drivers/iio/common/hid-sensors/hid-sensor-attributes.c

515 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* HID Sensors Driver
* Copyright (c) 2012, Intel Corporation.
*/
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/hid-sensor-hub.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define HZ_PER_MHZ 1000000L
static struct {
u32 usage_id;
int unit; /* 0 for default others from HID sensor spec */
int scale_val0; /* scale, whole number */
int scale_val1; /* scale, fraction in nanos */
} unit_conversion[] = {
{HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000},
{HID_USAGE_SENSOR_ACCEL_3D,
HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
{HID_USAGE_SENSOR_ACCEL_3D,
HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
{HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000},
{HID_USAGE_SENSOR_GRAVITY_VECTOR,
HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
{HID_USAGE_SENSOR_GRAVITY_VECTOR,
HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
{HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293},
{HID_USAGE_SENSOR_GYRO_3D,
HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0},
{HID_USAGE_SENSOR_GYRO_3D,
HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293},
{HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000},
{HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0},
{HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293},
{HID_USAGE_SENSOR_INCLINOMETER_3D,
HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
{HID_USAGE_SENSOR_INCLINOMETER_3D,
HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0},
{HID_USAGE_SENSOR_ALS, 0, 1, 0},
{HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0},
{HID_USAGE_SENSOR_PRESSURE, 0, 100, 0},
{HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000},
{HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0},
{HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND,
1000000, 0},
{HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0},
{HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0},
{HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0},
{HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0},
{HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0},
{HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0},
};
static void simple_div(int dividend, int divisor, int *whole,
int *micro_frac)
{
int rem;
int exp = 0;
*micro_frac = 0;
if (divisor == 0) {
*whole = 0;
return;
}
*whole = dividend/divisor;
rem = dividend % divisor;
if (rem) {
while (rem <= divisor) {
rem *= 10;
exp++;
}
*micro_frac = (rem / divisor) * int_pow(10, 6 - exp);
}
}
static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2)
{
int divisor = int_pow(10, exp);
*val1 = no / divisor;
*val2 = no % divisor * int_pow(10, 6 - exp);
}
/*
VTF format uses exponent and variable size format.
For example if the size is 2 bytes
0x0067 with VTF16E14 format -> +1.03
To convert just change to 0x67 to decimal and use two decimal as E14 stands
for 10^-2.
Negative numbers are 2's complement
*/
static void convert_from_vtf_format(u32 value, int size, int exp,
int *val1, int *val2)
{
int sign = 1;
if (value & BIT(size*8 - 1)) {
value = ((1LL << (size * 8)) - value);
sign = -1;
}
exp = hid_sensor_convert_exponent(exp);
if (exp >= 0) {
*val1 = sign * value * int_pow(10, exp);
*val2 = 0;
} else {
split_micro_fraction(value, -exp, val1, val2);
if (*val1)
*val1 = sign * (*val1);
else
*val2 = sign * (*val2);
}
}
static u32 convert_to_vtf_format(int size, int exp, int val1, int val2)
{
int divisor;
u32 value;
int sign = 1;
if (val1 < 0 || val2 < 0)
sign = -1;
exp = hid_sensor_convert_exponent(exp);
if (exp < 0) {
divisor = int_pow(10, 6 + exp);
value = abs(val1) * int_pow(10, -exp);
value += abs(val2) / divisor;
} else {
divisor = int_pow(10, exp);
value = abs(val1) / divisor;
}
if (sign < 0)
value = ((1LL << (size * 8)) - value);
return value;
}
s32 hid_sensor_read_poll_value(struct hid_sensor_common *st)
{
s32 value = 0;
int ret;
ret = sensor_hub_get_feature(st->hsdev,
st->poll.report_id,
st->poll.index, sizeof(value), &value);
if (ret < 0 || value < 0) {
return -EINVAL;
} else {
if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
value = value * 1000;
}
return value;
}
EXPORT_SYMBOL(hid_sensor_read_poll_value);
int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st,
int *val1, int *val2)
{
s32 value;
int ret;
ret = sensor_hub_get_feature(st->hsdev,
st->poll.report_id,
st->poll.index, sizeof(value), &value);
if (ret < 0 || value < 0) {
*val1 = *val2 = 0;
return -EINVAL;
} else {
if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
simple_div(1000, value, val1, val2);
else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
simple_div(1, value, val1, val2);
else {
*val1 = *val2 = 0;
return -EINVAL;
}
}
return IIO_VAL_INT_PLUS_MICRO;
}
EXPORT_SYMBOL(hid_sensor_read_samp_freq_value);
int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st,
int val1, int val2)
{
s32 value;
int ret;
if (val1 < 0 || val2 < 0)
return -EINVAL;
value = val1 * HZ_PER_MHZ + val2;
if (value) {
if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
value = NSEC_PER_SEC / value;
else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
value = USEC_PER_SEC / value;
else
value = 0;
}
ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id,
st->poll.index, sizeof(value), &value);
if (ret < 0 || value < 0)
return -EINVAL;
ret = sensor_hub_get_feature(st->hsdev,
st->poll.report_id,
st->poll.index, sizeof(value), &value);
if (ret < 0 || value < 0)
return -EINVAL;
st->poll_interval = value;
return 0;
}
EXPORT_SYMBOL(hid_sensor_write_samp_freq_value);
int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st,
int *val1, int *val2)
{
s32 value;
int ret;
ret = sensor_hub_get_feature(st->hsdev,
st->sensitivity.report_id,
st->sensitivity.index, sizeof(value),
&value);
if (ret < 0 || value < 0) {
*val1 = *val2 = 0;
return -EINVAL;
} else {
convert_from_vtf_format(value, st->sensitivity.size,
st->sensitivity.unit_expo,
val1, val2);
}
return IIO_VAL_INT_PLUS_MICRO;
}
EXPORT_SYMBOL(hid_sensor_read_raw_hyst_value);
int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st,
int val1, int val2)
{
s32 value;
int ret;
if (val1 < 0 || val2 < 0)
return -EINVAL;
value = convert_to_vtf_format(st->sensitivity.size,
st->sensitivity.unit_expo,
val1, val2);
ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id,
st->sensitivity.index, sizeof(value),
&value);
if (ret < 0 || value < 0)
return -EINVAL;
ret = sensor_hub_get_feature(st->hsdev,
st->sensitivity.report_id,
st->sensitivity.index, sizeof(value),
&value);
if (ret < 0 || value < 0)
return -EINVAL;
st->raw_hystersis = value;
return 0;
}
EXPORT_SYMBOL(hid_sensor_write_raw_hyst_value);
/*
* This fuction applies the unit exponent to the scale.
* For example:
* 9.806650000 ->exp:2-> val0[980]val1[665000000]
* 9.000806000 ->exp:2-> val0[900]val1[80600000]
* 0.174535293 ->exp:2-> val0[17]val1[453529300]
* 1.001745329 ->exp:0-> val0[1]val1[1745329]
* 1.001745329 ->exp:2-> val0[100]val1[174532900]
* 1.001745329 ->exp:4-> val0[10017]val1[453290000]
* 9.806650000 ->exp:-2-> val0[0]val1[98066500]
*/
static void adjust_exponent_nano(int *val0, int *val1, int scale0,
int scale1, int exp)
{
int divisor;
int i;
int x;
int res;
int rem;
if (exp > 0) {
*val0 = scale0 * int_pow(10, exp);
res = 0;
if (exp > 9) {
*val1 = 0;
return;
}
for (i = 0; i < exp; ++i) {
divisor = int_pow(10, 8 - i);
x = scale1 / divisor;
res += int_pow(10, exp - 1 - i) * x;
scale1 = scale1 % divisor;
}
*val0 += res;
*val1 = scale1 * int_pow(10, exp);
} else if (exp < 0) {
exp = abs(exp);
if (exp > 9) {
*val0 = *val1 = 0;
return;
}
divisor = int_pow(10, exp);
*val0 = scale0 / divisor;
rem = scale0 % divisor;
res = 0;
for (i = 0; i < (9 - exp); ++i) {
divisor = int_pow(10, 8 - i);
x = scale1 / divisor;
res += int_pow(10, 8 - exp - i) * x;
scale1 = scale1 % divisor;
}
*val1 = rem * int_pow(10, 9 - exp) + res;
} else {
*val0 = scale0;
*val1 = scale1;
}
}
int hid_sensor_format_scale(u32 usage_id,
struct hid_sensor_hub_attribute_info *attr_info,
int *val0, int *val1)
{
int i;
int exp;
*val0 = 1;
*val1 = 0;
for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) {
if (unit_conversion[i].usage_id == usage_id &&
unit_conversion[i].unit == attr_info->units) {
exp = hid_sensor_convert_exponent(
attr_info->unit_expo);
adjust_exponent_nano(val0, val1,
unit_conversion[i].scale_val0,
unit_conversion[i].scale_val1, exp);
break;
}
}
return IIO_VAL_INT_PLUS_NANO;
}
EXPORT_SYMBOL(hid_sensor_format_scale);
int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st,
int64_t raw_value)
{
return st->timestamp_ns_scale * raw_value;
}
EXPORT_SYMBOL(hid_sensor_convert_timestamp);
static
int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
struct hid_sensor_common *st)
{
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_PROP_REPORT_INTERVAL,
&st->poll);
/* Default unit of measure is milliseconds */
if (st->poll.units == 0)
st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND;
st->poll_interval = -1;
return 0;
}
static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
struct hid_sensor_common *st)
{
sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT,
usage_id,
HID_USAGE_SENSOR_PROP_REPORT_LATENCY,
&st->report_latency);
hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n",
st->report_latency.index, st->report_latency.report_id);
}
int hid_sensor_get_report_latency(struct hid_sensor_common *st)
{
int ret;
int value;
ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id,
st->report_latency.index, sizeof(value),
&value);
if (ret < 0)
return ret;
return value;
}
EXPORT_SYMBOL(hid_sensor_get_report_latency);
int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms)
{
return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id,
st->report_latency.index,
sizeof(latency_ms), &latency_ms);
}
EXPORT_SYMBOL(hid_sensor_set_report_latency);
bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st)
{
return st->report_latency.index > 0 && st->report_latency.report_id > 0;
}
EXPORT_SYMBOL(hid_sensor_batch_mode_supported);
int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
struct hid_sensor_common *st)
{
struct hid_sensor_hub_attribute_info timestamp;
s32 value;
int ret;
hid_sensor_get_reporting_interval(hsdev, usage_id, st);
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_PROP_REPORT_STATE,
&st->report_state);
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_PROY_POWER_STATE,
&st->power_state);
st->power_state.logical_minimum = 1;
st->report_state.logical_minimum = 1;
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS,
&st->sensitivity);
st->raw_hystersis = -1;
sensor_hub_input_get_attribute_info(hsdev,
HID_INPUT_REPORT, usage_id,
HID_USAGE_SENSOR_TIME_TIMESTAMP,
&timestamp);
if (timestamp.index >= 0 && timestamp.report_id) {
int val0, val1;
hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP,
&timestamp, &val0, &val1);
st->timestamp_ns_scale = val0;
} else
st->timestamp_ns_scale = 1000000000;
hid_sensor_get_report_latency_info(hsdev, usage_id, st);
hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n",
st->poll.index, st->poll.report_id,
st->report_state.index, st->report_state.report_id,
st->power_state.index, st->power_state.report_id,
st->sensitivity.index, st->sensitivity.report_id,
timestamp.index, timestamp.report_id);
ret = sensor_hub_get_feature(hsdev,
st->power_state.report_id,
st->power_state.index, sizeof(value), &value);
if (ret < 0)
return ret;
if (value < 0)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(hid_sensor_parse_common_attributes);
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
MODULE_DESCRIPTION("HID Sensor common attribute processing");
MODULE_LICENSE("GPL");