linux/fs/crypto/inline_crypt.c

366 lines
11 KiB
C
Raw Normal View History

fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Inline encryption support for fscrypt
*
* Copyright 2019 Google LLC
*/
/*
* With "inline encryption", the block layer handles the decryption/encryption
* as part of the bio, instead of the filesystem doing the crypto itself via
* crypto API. See Documentation/block/inline-encryption.rst. fscrypt still
* provides the key and IV to use.
*/
#include <linux/blk-crypto.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/sched/mm.h>
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 09:18:13 +03:00
#include <linux/slab.h>
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
#include "fscrypt_private.h"
struct fscrypt_blk_crypto_key {
struct blk_crypto_key base;
int num_devs;
struct request_queue *devs[];
};
static int fscrypt_get_num_devices(struct super_block *sb)
{
if (sb->s_cop->get_num_devices)
return sb->s_cop->get_num_devices(sb);
return 1;
}
static void fscrypt_get_devices(struct super_block *sb, int num_devs,
struct request_queue **devs)
{
if (num_devs == 1)
devs[0] = bdev_get_queue(sb->s_bdev);
else
sb->s_cop->get_devices(sb, devs);
}
static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
{
struct super_block *sb = ci->ci_inode->i_sb;
unsigned int flags = fscrypt_policy_flags(&ci->ci_policy);
int ino_bits = 64, lblk_bits = 64;
if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
return offsetofend(union fscrypt_iv, nonce);
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)
return sizeof(__le64);
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)
return sizeof(__le32);
/* Default case: IVs are just the file logical block number */
if (sb->s_cop->get_ino_and_lblk_bits)
sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
return DIV_ROUND_UP(lblk_bits, 8);
}
/* Enable inline encryption for this file if supported. */
int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
{
const struct inode *inode = ci->ci_inode;
struct super_block *sb = inode->i_sb;
struct blk_crypto_config crypto_cfg;
int num_devs;
struct request_queue **devs;
int i;
/* The file must need contents encryption, not filenames encryption */
if (!fscrypt_needs_contents_encryption(inode))
return 0;
/* The crypto mode must have a blk-crypto counterpart */
if (ci->ci_mode->blk_crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
return 0;
/* The filesystem must be mounted with -o inlinecrypt */
if (!(sb->s_flags & SB_INLINECRYPT))
return 0;
/*
* When a page contains multiple logically contiguous filesystem blocks,
* some filesystem code only calls fscrypt_mergeable_bio() for the first
* block in the page. This is fine for most of fscrypt's IV generation
* strategies, where contiguous blocks imply contiguous IVs. But it
* doesn't work with IV_INO_LBLK_32. For now, simply exclude
* IV_INO_LBLK_32 with blocksize != PAGE_SIZE from inline encryption.
*/
if ((fscrypt_policy_flags(&ci->ci_policy) &
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) &&
sb->s_blocksize != PAGE_SIZE)
return 0;
/*
* On all the filesystem's devices, blk-crypto must support the crypto
* configuration that the file would use.
*/
crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
crypto_cfg.data_unit_size = sb->s_blocksize;
crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
num_devs = fscrypt_get_num_devices(sb);
devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL);
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
if (!devs)
return -ENOMEM;
fscrypt_get_devices(sb, num_devs, devs);
for (i = 0; i < num_devs; i++) {
if (!blk_crypto_config_supported(devs[i], &crypto_cfg))
goto out_free_devs;
}
ci->ci_inlinecrypt = true;
out_free_devs:
kfree(devs);
return 0;
}
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key,
const struct fscrypt_info *ci)
{
const struct inode *inode = ci->ci_inode;
struct super_block *sb = inode->i_sb;
enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
int num_devs = fscrypt_get_num_devices(sb);
int queue_refs = 0;
struct fscrypt_blk_crypto_key *blk_key;
int err;
int i;
blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_KERNEL);
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
if (!blk_key)
return -ENOMEM;
blk_key->num_devs = num_devs;
fscrypt_get_devices(sb, num_devs, blk_key->devs);
err = blk_crypto_init_key(&blk_key->base, raw_key, crypto_mode,
fscrypt_get_dun_bytes(ci), sb->s_blocksize);
if (err) {
fscrypt_err(inode, "error %d initializing blk-crypto key", err);
goto fail;
}
/*
* We have to start using blk-crypto on all the filesystem's devices.
* We also have to save all the request_queue's for later so that the
* key can be evicted from them. This is needed because some keys
* aren't destroyed until after the filesystem was already unmounted
* (namely, the per-mode keys in struct fscrypt_master_key).
*/
for (i = 0; i < num_devs; i++) {
if (!blk_get_queue(blk_key->devs[i])) {
fscrypt_err(inode, "couldn't get request_queue");
err = -EAGAIN;
goto fail;
}
queue_refs++;
err = blk_crypto_start_using_key(&blk_key->base,
blk_key->devs[i]);
if (err) {
fscrypt_err(inode,
"error %d starting to use blk-crypto", err);
goto fail;
}
}
/*
* Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
* I.e., here we publish ->blk_key with a RELEASE barrier so that
* concurrent tasks can ACQUIRE it. Note that this concurrency is only
* possible for per-mode keys, not for per-file keys.
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
*/
smp_store_release(&prep_key->blk_key, blk_key);
return 0;
fail:
for (i = 0; i < queue_refs; i++)
blk_put_queue(blk_key->devs[i]);
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 09:18:13 +03:00
kfree_sensitive(blk_key);
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
return err;
}
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
{
struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
int i;
if (blk_key) {
for (i = 0; i < blk_key->num_devs; i++) {
blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
blk_put_queue(blk_key->devs[i]);
}
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 09:18:13 +03:00
kfree_sensitive(blk_key);
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
}
}
bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
return inode->i_crypt_info->ci_inlinecrypt;
}
EXPORT_SYMBOL_GPL(__fscrypt_inode_uses_inline_crypto);
static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
{
union fscrypt_iv iv;
int i;
fscrypt_generate_iv(&iv, lblk_num, ci);
BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++)
dun[i] = le64_to_cpu(iv.dun[i]);
}
/**
* fscrypt_set_bio_crypt_ctx() - prepare a file contents bio for inline crypto
* @bio: a bio which will eventually be submitted to the file
* @inode: the file's inode
* @first_lblk: the first file logical block number in the I/O
* @gfp_mask: memory allocation flags - these must be a waiting mask so that
* bio_crypt_set_ctx can't fail.
*
* If the contents of the file should be encrypted (or decrypted) with inline
* encryption, then assign the appropriate encryption context to the bio.
*
* Normally the bio should be newly allocated (i.e. no pages added yet), as
* otherwise fscrypt_mergeable_bio() won't work as intended.
*
* The encryption context will be freed automatically when the bio is freed.
*/
void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
u64 first_lblk, gfp_t gfp_mask)
{
const struct fscrypt_info *ci;
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
if (!fscrypt_inode_uses_inline_crypto(inode))
return;
ci = inode->i_crypt_info;
fscrypt: add inline encryption support Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-02 04:56:05 +03:00
fscrypt_generate_dun(ci, first_lblk, dun);
bio_crypt_set_ctx(bio, &ci->ci_enc_key.blk_key->base, dun, gfp_mask);
}
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
/* Extract the inode and logical block number from a buffer_head. */
static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh,
const struct inode **inode_ret,
u64 *lblk_num_ret)
{
struct page *page = bh->b_page;
const struct address_space *mapping;
const struct inode *inode;
/*
* The ext4 journal (jbd2) can submit a buffer_head it directly created
* for a non-pagecache page. fscrypt doesn't care about these.
*/
mapping = page_mapping(page);
if (!mapping)
return false;
inode = mapping->host;
*inode_ret = inode;
*lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) +
(bh_offset(bh) >> inode->i_blkbits);
return true;
}
/**
* fscrypt_set_bio_crypt_ctx_bh() - prepare a file contents bio for inline
* crypto
* @bio: a bio which will eventually be submitted to the file
* @first_bh: the first buffer_head for which I/O will be submitted
* @gfp_mask: memory allocation flags
*
* Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead
* of an inode and block number directly.
*/
void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
const struct buffer_head *first_bh,
gfp_t gfp_mask)
{
const struct inode *inode;
u64 first_lblk;
if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk))
fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask);
}
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh);
/**
* fscrypt_mergeable_bio() - test whether data can be added to a bio
* @bio: the bio being built up
* @inode: the inode for the next part of the I/O
* @next_lblk: the next file logical block number in the I/O
*
* When building a bio which may contain data which should undergo inline
* encryption (or decryption) via fscrypt, filesystems should call this function
* to ensure that the resulting bio contains only contiguous data unit numbers.
* This will return false if the next part of the I/O cannot be merged with the
* bio because either the encryption key would be different or the encryption
* data unit numbers would be discontiguous.
*
* fscrypt_set_bio_crypt_ctx() must have already been called on the bio.
*
* Return: true iff the I/O is mergeable
*/
bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
u64 next_lblk)
{
const struct bio_crypt_ctx *bc = bio->bi_crypt_context;
u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
if (!!bc != fscrypt_inode_uses_inline_crypto(inode))
return false;
if (!bc)
return true;
/*
* Comparing the key pointers is good enough, as all I/O for each key
* uses the same pointer. I.e., there's currently no need to support
* merging requests where the keys are the same but the pointers differ.
*/
if (bc->bc_key != &inode->i_crypt_info->ci_enc_key.blk_key->base)
return false;
fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun);
}
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio);
/**
* fscrypt_mergeable_bio_bh() - test whether data can be added to a bio
* @bio: the bio being built up
* @next_bh: the next buffer_head for which I/O will be submitted
*
* Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of
* an inode and block number directly.
*
* Return: true iff the I/O is mergeable
*/
bool fscrypt_mergeable_bio_bh(struct bio *bio,
const struct buffer_head *next_bh)
{
const struct inode *inode;
u64 next_lblk;
if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk))
return !bio->bi_crypt_context;
return fscrypt_mergeable_bio(bio, inode, next_lblk);
}
EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh);