linux/drivers/char/pcmcia/cm4000_cs.c

1925 lines
48 KiB
C
Raw Normal View History

/*
* A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
*
* cm4000_cs.c support.linux@omnikey.com
*
* Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
* Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
* Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality
* Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty
* Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments
*
* current version: 2.4.0gm4
*
* (C) 2000,2001,2002,2003,2004 Omnikey AG
*
* (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
* - Adhere to Kernel CodingStyle
* - Port to 2.6.13 "new" style PCMCIA
* - Check for copy_{from,to}_user return values
* - Use nonseekable_open()
* - add class interface for udev device creation
*
* All rights reserved. Licensed under dual BSD/GPL license.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/bitrev.h>
#include <linux/mutex.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>
#include <linux/cm4000_cs.h>
/* #define ATR_CSUM */
#define reader_to_dev(x) (&x->p_dev->dev)
/* n (debug level) is ignored */
/* additional debug output may be enabled by re-compiling with
* CM4000_DEBUG set */
/* #define CM4000_DEBUG */
#define DEBUGP(n, rdr, x, args...) do { \
dev_dbg(reader_to_dev(rdr), "%s:" x, \
__func__ , ## args); \
} while (0)
static DEFINE_MUTEX(cmm_mutex);
#define T_1SEC (HZ)
#define T_10MSEC msecs_to_jiffies(10)
#define T_20MSEC msecs_to_jiffies(20)
#define T_40MSEC msecs_to_jiffies(40)
#define T_50MSEC msecs_to_jiffies(50)
#define T_100MSEC msecs_to_jiffies(100)
#define T_500MSEC msecs_to_jiffies(500)
static void cm4000_release(struct pcmcia_device *link);
static int major; /* major number we get from the kernel */
/* note: the first state has to have number 0 always */
#define M_FETCH_ATR 0
#define M_TIMEOUT_WAIT 1
#define M_READ_ATR_LEN 2
#define M_READ_ATR 3
#define M_ATR_PRESENT 4
#define M_BAD_CARD 5
#define M_CARDOFF 6
#define LOCK_IO 0
#define LOCK_MONITOR 1
#define IS_AUTOPPS_ACT 6
#define IS_PROCBYTE_PRESENT 7
#define IS_INVREV 8
#define IS_ANY_T0 9
#define IS_ANY_T1 10
#define IS_ATR_PRESENT 11
#define IS_ATR_VALID 12
#define IS_CMM_ABSENT 13
#define IS_BAD_LENGTH 14
#define IS_BAD_CSUM 15
#define IS_BAD_CARD 16
#define REG_FLAGS0(x) (x + 0)
#define REG_FLAGS1(x) (x + 1)
#define REG_NUM_BYTES(x) (x + 2)
#define REG_BUF_ADDR(x) (x + 3)
#define REG_BUF_DATA(x) (x + 4)
#define REG_NUM_SEND(x) (x + 5)
#define REG_BAUDRATE(x) (x + 6)
#define REG_STOPBITS(x) (x + 7)
struct cm4000_dev {
struct pcmcia_device *p_dev;
unsigned char atr[MAX_ATR];
unsigned char rbuf[512];
unsigned char sbuf[512];
wait_queue_head_t devq; /* when removing cardman must not be
zeroed! */
wait_queue_head_t ioq; /* if IO is locked, wait on this Q */
wait_queue_head_t atrq; /* wait for ATR valid */
wait_queue_head_t readq; /* used by write to wake blk.read */
/* warning: do not move this fields.
* initialising to zero depends on it - see ZERO_DEV below. */
unsigned char atr_csum;
unsigned char atr_len_retry;
unsigned short atr_len;
unsigned short rlen; /* bytes avail. after write */
unsigned short rpos; /* latest read pos. write zeroes */
unsigned char procbyte; /* T=0 procedure byte */
unsigned char mstate; /* state of card monitor */
unsigned char cwarn; /* slow down warning */
unsigned char flags0; /* cardman IO-flags 0 */
unsigned char flags1; /* cardman IO-flags 1 */
unsigned int mdelay; /* variable monitor speeds, in jiffies */
unsigned int baudv; /* baud value for speed */
unsigned char ta1;
unsigned char proto; /* T=0, T=1, ... */
unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent
access */
unsigned char pts[4];
struct timer_list timer; /* used to keep monitor running */
int monitor_running;
};
#define ZERO_DEV(dev) \
memset(&dev->atr_csum,0, \
sizeof(struct cm4000_dev) - \
offsetof(struct cm4000_dev, atr_csum))
static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
static struct class *cmm_class;
/* This table doesn't use spaces after the comma between fields and thus
* violates CodingStyle. However, I don't really think wrapping it around will
* make it any clearer to read -HW */
static unsigned char fi_di_table[10][14] = {
/*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
/*DI */
/* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
/* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
/* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
/* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
/* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
/* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
/* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
/* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
};
#ifndef CM4000_DEBUG
#define xoutb outb
#define xinb inb
#else
static inline void xoutb(unsigned char val, unsigned short port)
{
pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
outb(val, port);
}
static inline unsigned char xinb(unsigned short port)
{
unsigned char val;
val = inb(port);
pr_debug("%.2x=inb(%.4x)\n", val, port);
return val;
}
#endif
static inline unsigned char invert_revert(unsigned char ch)
{
return bitrev8(~ch);
}
static void str_invert_revert(unsigned char *b, int len)
{
int i;
for (i = 0; i < len; i++)
b[i] = invert_revert(b[i]);
}
#define ATRLENCK(dev,pos) \
if (pos>=dev->atr_len || pos>=MAX_ATR) \
goto return_0;
static unsigned int calc_baudv(unsigned char fidi)
{
unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
fi_rfu = 372;
di_rfu = 1;
/* FI */
switch ((fidi >> 4) & 0x0F) {
case 0x00:
wcrcf = 372;
break;
case 0x01:
wcrcf = 372;
break;
case 0x02:
wcrcf = 558;
break;
case 0x03:
wcrcf = 744;
break;
case 0x04:
wcrcf = 1116;
break;
case 0x05:
wcrcf = 1488;
break;
case 0x06:
wcrcf = 1860;
break;
case 0x07:
wcrcf = fi_rfu;
break;
case 0x08:
wcrcf = fi_rfu;
break;
case 0x09:
wcrcf = 512;
break;
case 0x0A:
wcrcf = 768;
break;
case 0x0B:
wcrcf = 1024;
break;
case 0x0C:
wcrcf = 1536;
break;
case 0x0D:
wcrcf = 2048;
break;
default:
wcrcf = fi_rfu;
break;
}
/* DI */
switch (fidi & 0x0F) {
case 0x00:
wbrcf = di_rfu;
break;
case 0x01:
wbrcf = 1;
break;
case 0x02:
wbrcf = 2;
break;
case 0x03:
wbrcf = 4;
break;
case 0x04:
wbrcf = 8;
break;
case 0x05:
wbrcf = 16;
break;
case 0x06:
wbrcf = 32;
break;
case 0x07:
wbrcf = di_rfu;
break;
case 0x08:
wbrcf = 12;
break;
case 0x09:
wbrcf = 20;
break;
default:
wbrcf = di_rfu;
break;
}
return (wcrcf / wbrcf);
}
static unsigned short io_read_num_rec_bytes(unsigned int iobase,
unsigned short *s)
{
unsigned short tmp;
tmp = *s = 0;
do {
*s = tmp;
tmp = inb(REG_NUM_BYTES(iobase)) |
(inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
} while (tmp != *s);
return *s;
}
static int parse_atr(struct cm4000_dev *dev)
{
unsigned char any_t1, any_t0;
unsigned char ch, ifno;
int ix, done;
DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
if (dev->atr_len < 3) {
DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
return 0;
}
if (dev->atr[0] == 0x3f)
set_bit(IS_INVREV, &dev->flags);
else
clear_bit(IS_INVREV, &dev->flags);
ix = 1;
ifno = 1;
ch = dev->atr[1];
dev->proto = 0; /* XXX PROTO */
any_t1 = any_t0 = done = 0;
dev->ta1 = 0x11; /* defaults to 9600 baud */
do {
if (ifno == 1 && (ch & 0x10)) {
/* read first interface byte and TA1 is present */
dev->ta1 = dev->atr[2];
DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
ifno++;
} else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
dev->ta1 = 0x11;
ifno++;
}
DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
ix += ((ch & 0x10) >> 4) /* no of int.face chars */
+((ch & 0x20) >> 5)
+ ((ch & 0x40) >> 6)
+ ((ch & 0x80) >> 7);
/* ATRLENCK(dev,ix); */
if (ch & 0x80) { /* TDi */
ch = dev->atr[ix];
if ((ch & 0x0f)) {
any_t1 = 1;
DEBUGP(5, dev, "card is capable of T=1\n");
} else {
any_t0 = 1;
DEBUGP(5, dev, "card is capable of T=0\n");
}
} else
done = 1;
} while (!done);
DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
ix, dev->atr[1] & 15, any_t1);
if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
DEBUGP(5, dev, "length error\n");
return 0;
}
if (any_t0)
set_bit(IS_ANY_T0, &dev->flags);
if (any_t1) { /* compute csum */
dev->atr_csum = 0;
#ifdef ATR_CSUM
for (i = 1; i < dev->atr_len; i++)
dev->atr_csum ^= dev->atr[i];
if (dev->atr_csum) {
set_bit(IS_BAD_CSUM, &dev->flags);
DEBUGP(5, dev, "bad checksum\n");
goto return_0;
}
#endif
if (any_t0 == 0)
dev->proto = 1; /* XXX PROTO */
set_bit(IS_ANY_T1, &dev->flags);
}
return 1;
}
struct card_fixup {
char atr[12];
u_int8_t atr_len;
u_int8_t stopbits;
};
static struct card_fixup card_fixups[] = {
{ /* ACOS */
.atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
.atr_len = 7,
.stopbits = 0x03,
},
{ /* Motorola */
.atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
0x41, 0x81, 0x81 },
.atr_len = 11,
.stopbits = 0x04,
},
};
static void set_cardparameter(struct cm4000_dev *dev)
{
int i;
unsigned int iobase = dev->p_dev->resource[0]->start;
u_int8_t stopbits = 0x02; /* ISO default */
DEBUGP(3, dev, "-> set_cardparameter\n");
dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
xoutb(dev->flags1, REG_FLAGS1(iobase));
DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
/* set baudrate */
xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
((dev->baudv - 1) & 0xFF));
/* set stopbits */
for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
if (!memcmp(dev->atr, card_fixups[i].atr,
card_fixups[i].atr_len))
stopbits = card_fixups[i].stopbits;
}
xoutb(stopbits, REG_STOPBITS(iobase));
DEBUGP(3, dev, "<- set_cardparameter\n");
}
static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
{
unsigned long tmp, i;
unsigned short num_bytes_read;
unsigned char pts_reply[4];
ssize_t rc;
unsigned int iobase = dev->p_dev->resource[0]->start;
rc = 0;
DEBUGP(3, dev, "-> set_protocol\n");
DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
"ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
"ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
(unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
ptsreq->pts3);
/* Fill PTS structure */
dev->pts[0] = 0xff;
dev->pts[1] = 0x00;
tmp = ptsreq->protocol;
while ((tmp = (tmp >> 1)) > 0)
dev->pts[1]++;
dev->proto = dev->pts[1]; /* Set new protocol */
dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
/* Correct Fi/Di according to CM4000 Fi/Di table */
DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
/* set Fi/Di according to ATR TA(1) */
dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
/* Calculate PCK character */
dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
/* check card convention */
if (test_bit(IS_INVREV, &dev->flags))
str_invert_revert(dev->pts, 4);
/* reset SM */
xoutb(0x80, REG_FLAGS0(iobase));
/* Enable access to the message buffer */
DEBUGP(5, dev, "Enable access to the messages buffer\n");
dev->flags1 = 0x20 /* T_Active */
| (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
| ((dev->baudv >> 8) & 0x01); /* MSB-baud */
xoutb(dev->flags1, REG_FLAGS1(iobase));
DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
dev->flags1);
/* write challenge to the buffer */
DEBUGP(5, dev, "Write challenge to buffer: ");
for (i = 0; i < 4; i++) {
xoutb(i, REG_BUF_ADDR(iobase));
xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
#ifdef CM4000_DEBUG
pr_debug("0x%.2x ", dev->pts[i]);
}
pr_debug("\n");
#else
}
#endif
/* set number of bytes to write */
DEBUGP(5, dev, "Set number of bytes to write\n");
xoutb(0x04, REG_NUM_SEND(iobase));
/* Trigger CARDMAN CONTROLLER */
xoutb(0x50, REG_FLAGS0(iobase));
/* Monitor progress */
/* wait for xmit done */
DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
for (i = 0; i < 100; i++) {
if (inb(REG_FLAGS0(iobase)) & 0x08) {
DEBUGP(5, dev, "NumRecBytes is valid\n");
break;
}
mdelay(10);
}
if (i == 100) {
DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
"valid\n");
rc = -EIO;
goto exit_setprotocol;
}
DEBUGP(5, dev, "Reading NumRecBytes\n");
for (i = 0; i < 100; i++) {
io_read_num_rec_bytes(iobase, &num_bytes_read);
if (num_bytes_read >= 4) {
DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
break;
}
mdelay(10);
}
/* check whether it is a short PTS reply? */
if (num_bytes_read == 3)
i = 0;
if (i == 100) {
DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
rc = -EIO;
goto exit_setprotocol;
}
DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
xoutb(0x80, REG_FLAGS0(iobase));
/* Read PPS reply */
DEBUGP(5, dev, "Read PPS reply\n");
for (i = 0; i < num_bytes_read; i++) {
xoutb(i, REG_BUF_ADDR(iobase));
pts_reply[i] = inb(REG_BUF_DATA(iobase));
}
#ifdef CM4000_DEBUG
DEBUGP(2, dev, "PTSreply: ");
for (i = 0; i < num_bytes_read; i++) {
pr_debug("0x%.2x ", pts_reply[i]);
}
pr_debug("\n");
#endif /* CM4000_DEBUG */
DEBUGP(5, dev, "Clear Tactive in Flags1\n");
xoutb(0x20, REG_FLAGS1(iobase));
/* Compare ptsreq and ptsreply */
if ((dev->pts[0] == pts_reply[0]) &&
(dev->pts[1] == pts_reply[1]) &&
(dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
/* setcardparameter according to PPS */
dev->baudv = calc_baudv(dev->pts[2]);
set_cardparameter(dev);
} else if ((dev->pts[0] == pts_reply[0]) &&
((dev->pts[1] & 0xef) == pts_reply[1]) &&
((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
/* short PTS reply, set card parameter to default values */
dev->baudv = calc_baudv(0x11);
set_cardparameter(dev);
} else
rc = -EIO;
exit_setprotocol:
DEBUGP(3, dev, "<- set_protocol\n");
return rc;
}
static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
{
/* note: statemachine is assumed to be reset */
if (inb(REG_FLAGS0(iobase)) & 8) {
clear_bit(IS_ATR_VALID, &dev->flags);
set_bit(IS_CMM_ABSENT, &dev->flags);
return 0; /* detect CMM = 1 -> failure */
}
/* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
clear_bit(IS_ATR_VALID, &dev->flags);
set_bit(IS_CMM_ABSENT, &dev->flags);
return 0; /* detect CMM=0 -> failure */
}
/* clear detectCMM again by restoring original flags1 */
xoutb(dev->flags1, REG_FLAGS1(iobase));
return 1;
}
static void terminate_monitor(struct cm4000_dev *dev)
{
/* tell the monitor to stop and wait until
* it terminates.
*/
DEBUGP(3, dev, "-> terminate_monitor\n");
wait_event_interruptible(dev->devq,
test_and_set_bit(LOCK_MONITOR,
(void *)&dev->flags));
/* now, LOCK_MONITOR has been set.
* allow a last cycle in the monitor.
* the monitor will indicate that it has
* finished by clearing this bit.
*/
DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
msleep(25);
DEBUGP(5, dev, "Delete timer\n");
del_timer_sync(&dev->timer);
#ifdef CM4000_DEBUG
dev->monitor_running = 0;
#endif
DEBUGP(3, dev, "<- terminate_monitor\n");
}
/*
* monitor the card every 50msec. as a side-effect, retrieve the
* atr once a card is inserted. another side-effect of retrieving the
* atr is that the card will be powered on, so there is no need to
* power on the card explictely from the application: the driver
* is already doing that for you.
*/
static void monitor_card(unsigned long p)
{
struct cm4000_dev *dev = (struct cm4000_dev *) p;
unsigned int iobase = dev->p_dev->resource[0]->start;
unsigned short s;
struct ptsreq ptsreq;
int i, atrc;
DEBUGP(7, dev, "-> monitor_card\n");
/* if someone has set the lock for us: we're done! */
if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
DEBUGP(4, dev, "About to stop monitor\n");
/* no */
dev->rlen =
dev->rpos =
dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
clear_bit(LOCK_MONITOR, &dev->flags);
/* close et al. are sleeping on devq, so wake it */
wake_up_interruptible(&dev->devq);
DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
return;
}
/* try to lock io: if it is already locked, just add another timer */
if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
DEBUGP(4, dev, "Couldn't get IO lock\n");
goto return_with_timer;
}
/* is a card/a reader inserted at all ? */
dev->flags0 = xinb(REG_FLAGS0(iobase));
DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
DEBUGP(7, dev, "smartcard present: %s\n",
dev->flags0 & 1 ? "yes" : "no");
DEBUGP(7, dev, "cardman present: %s\n",
dev->flags0 == 0xff ? "no" : "yes");
if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
|| dev->flags0 == 0xff) { /* no cardman inserted */
/* no */
dev->rlen =
dev->rpos =
dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
if (dev->flags0 == 0xff) {
DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
set_bit(IS_CMM_ABSENT, &dev->flags);
} else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
"(card is removed)\n");
clear_bit(IS_CMM_ABSENT, &dev->flags);
}
goto release_io;
} else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
/* cardman and card present but cardman was absent before
* (after suspend with inserted card) */
DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
clear_bit(IS_CMM_ABSENT, &dev->flags);
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
goto release_io;
}
switch (dev->mstate) {
unsigned char flags0;
case M_CARDOFF:
DEBUGP(4, dev, "M_CARDOFF\n");
flags0 = inb(REG_FLAGS0(iobase));
if (flags0 & 0x02) {
/* wait until Flags0 indicate power is off */
dev->mdelay = T_10MSEC;
} else {
/* Flags0 indicate power off and no card inserted now;
* Reset CARDMAN CONTROLLER */
xoutb(0x80, REG_FLAGS0(iobase));
/* prepare for fetching ATR again: after card off ATR
* is read again automatically */
dev->rlen =
dev->rpos =
dev->atr_csum =
dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
/* minimal gap between CARDOFF and read ATR is 50msec */
dev->mdelay = T_50MSEC;
}
break;
case M_FETCH_ATR:
DEBUGP(4, dev, "M_FETCH_ATR\n");
xoutb(0x80, REG_FLAGS0(iobase));
DEBUGP(4, dev, "Reset BAUDV to 9600\n");
dev->baudv = 0x173; /* 9600 */
xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */
xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */
xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud
value */
/* warm start vs. power on: */
xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
dev->mdelay = T_40MSEC;
dev->mstate = M_TIMEOUT_WAIT;
break;
case M_TIMEOUT_WAIT:
DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
/* numRecBytes */
io_read_num_rec_bytes(iobase, &dev->atr_len);
dev->mdelay = T_10MSEC;
dev->mstate = M_READ_ATR_LEN;
break;
case M_READ_ATR_LEN:
DEBUGP(4, dev, "M_READ_ATR_LEN\n");
/* infinite loop possible, since there is no timeout */
#define MAX_ATR_LEN_RETRY 100
if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */
dev->mdelay = T_10MSEC;
dev->mstate = M_READ_ATR;
}
} else {
dev->atr_len = s;
dev->atr_len_retry = 0; /* set new timeout */
}
DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
break;
case M_READ_ATR:
DEBUGP(4, dev, "M_READ_ATR\n");
xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
for (i = 0; i < dev->atr_len; i++) {
xoutb(i, REG_BUF_ADDR(iobase));
dev->atr[i] = inb(REG_BUF_DATA(iobase));
}
/* Deactivate T_Active flags */
DEBUGP(4, dev, "Deactivate T_Active flags\n");
dev->flags1 = 0x01;
xoutb(dev->flags1, REG_FLAGS1(iobase));
/* atr is present (which doesn't mean it's valid) */
set_bit(IS_ATR_PRESENT, &dev->flags);
if (dev->atr[0] == 0x03)
str_invert_revert(dev->atr, dev->atr_len);
atrc = parse_atr(dev);
if (atrc == 0) { /* atr invalid */
dev->mdelay = 0;
dev->mstate = M_BAD_CARD;
} else {
dev->mdelay = T_50MSEC;
dev->mstate = M_ATR_PRESENT;
set_bit(IS_ATR_VALID, &dev->flags);
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
DEBUGP(4, dev, "monitor_card: ATR valid\n");
/* if ta1 == 0x11, no PPS necessary (default values) */
/* do not do PPS with multi protocol cards */
if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
(dev->ta1 != 0x11) &&
!(test_bit(IS_ANY_T0, &dev->flags) &&
test_bit(IS_ANY_T1, &dev->flags))) {
DEBUGP(4, dev, "Perform AUTOPPS\n");
set_bit(IS_AUTOPPS_ACT, &dev->flags);
ptsreq.protocol = (0x01 << dev->proto);
ptsreq.flags = 0x01;
ptsreq.pts1 = 0x00;
ptsreq.pts2 = 0x00;
ptsreq.pts3 = 0x00;
if (set_protocol(dev, &ptsreq) == 0) {
DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
clear_bit(IS_AUTOPPS_ACT, &dev->flags);
wake_up_interruptible(&dev->atrq);
} else {
DEBUGP(4, dev, "AUTOPPS failed: "
"repower using defaults\n");
/* prepare for repowering */
clear_bit(IS_ATR_PRESENT, &dev->flags);
clear_bit(IS_ATR_VALID, &dev->flags);
dev->rlen =
dev->rpos =
dev->atr_csum =
dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
dev->mdelay = T_50MSEC;
}
} else {
/* for cards which use slightly different
* params (extra guard time) */
set_cardparameter(dev);
if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
DEBUGP(4, dev, "AUTOPPS already active "
"2nd try:use default values\n");
if (dev->ta1 == 0x11)
DEBUGP(4, dev, "No AUTOPPS necessary "
"TA(1)==0x11\n");
if (test_bit(IS_ANY_T0, &dev->flags)
&& test_bit(IS_ANY_T1, &dev->flags))
DEBUGP(4, dev, "Do NOT perform AUTOPPS "
"with multiprotocol cards\n");
clear_bit(IS_AUTOPPS_ACT, &dev->flags);
wake_up_interruptible(&dev->atrq);
}
} else {
DEBUGP(4, dev, "ATR invalid\n");
wake_up_interruptible(&dev->atrq);
}
break;
case M_BAD_CARD:
DEBUGP(4, dev, "M_BAD_CARD\n");
/* slow down warning, but prompt immediately after insertion */
if (dev->cwarn == 0 || dev->cwarn == 10) {
set_bit(IS_BAD_CARD, &dev->flags);
dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
if (test_bit(IS_BAD_CSUM, &dev->flags)) {
DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
"be zero) failed\n", dev->atr_csum);
}
#ifdef CM4000_DEBUG
else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
DEBUGP(4, dev, "ATR length error\n");
} else {
DEBUGP(4, dev, "card damaged or wrong way "
"inserted\n");
}
#endif
dev->cwarn = 0;
wake_up_interruptible(&dev->atrq); /* wake open */
}
dev->cwarn++;
dev->mdelay = T_100MSEC;
dev->mstate = M_FETCH_ATR;
break;
default:
DEBUGP(7, dev, "Unknown action\n");
break; /* nothing */
}
release_io:
DEBUGP(7, dev, "release_io\n");
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq); /* whoever needs IO */
return_with_timer:
DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
mod_timer(&dev->timer, jiffies + dev->mdelay);
clear_bit(LOCK_MONITOR, &dev->flags);
}
/* Interface to userland (file_operations) */
static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
loff_t *ppos)
{
struct cm4000_dev *dev = filp->private_data;
unsigned int iobase = dev->p_dev->resource[0]->start;
ssize_t rc;
int i, j, k;
DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
if (count == 0) /* according to manpage */
return 0;
if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
test_bit(IS_CMM_ABSENT, &dev->flags))
return -ENODEV;
if (test_bit(IS_BAD_CSUM, &dev->flags))
return -EIO;
/* also see the note about this in cmm_write */
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
return -EIO;
/* this one implements blocking IO */
if (wait_event_interruptible
(dev->readq,
((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
/* lock io */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
rc = 0;
dev->flags0 = inb(REG_FLAGS0(iobase));
if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
|| dev->flags0 == 0xff) { /* no cardman inserted */
clear_bit(IS_ATR_VALID, &dev->flags);
if (dev->flags0 & 1) {
set_bit(IS_CMM_ABSENT, &dev->flags);
rc = -ENODEV;
} else {
rc = -EIO;
}
goto release_io;
}
DEBUGP(4, dev, "begin read answer\n");
j = min(count, (size_t)(dev->rlen - dev->rpos));
k = dev->rpos;
if (k + j > 255)
j = 256 - k;
DEBUGP(4, dev, "read1 j=%d\n", j);
for (i = 0; i < j; i++) {
xoutb(k++, REG_BUF_ADDR(iobase));
dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
}
j = min(count, (size_t)(dev->rlen - dev->rpos));
if (k + j > 255) {
DEBUGP(4, dev, "read2 j=%d\n", j);
dev->flags1 |= 0x10; /* MSB buf addr set */
xoutb(dev->flags1, REG_FLAGS1(iobase));
for (; i < j; i++) {
xoutb(k++, REG_BUF_ADDR(iobase));
dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
}
}
if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
DEBUGP(4, dev, "T=0 and count > buffer\n");
dev->rbuf[i] = dev->rbuf[i - 1];
dev->rbuf[i - 1] = dev->procbyte;
j++;
}
count = j;
dev->rpos = dev->rlen + 1;
/* Clear T1Active */
DEBUGP(4, dev, "Clear T1Active\n");
dev->flags1 &= 0xdf;
xoutb(dev->flags1, REG_FLAGS1(iobase));
xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
/* last check before exit */
if (!io_detect_cm4000(iobase, dev)) {
rc = -ENODEV;
goto release_io;
}
if (test_bit(IS_INVREV, &dev->flags) && count > 0)
str_invert_revert(dev->rbuf, count);
if (copy_to_user(buf, dev->rbuf, count))
rc = -EFAULT;
release_io:
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
DEBUGP(2, dev, "<- cmm_read returns: rc = %Zi\n",
(rc < 0 ? rc : count));
return rc < 0 ? rc : count;
}
static ssize_t cmm_write(struct file *filp, const char __user *buf,
size_t count, loff_t *ppos)
{
struct cm4000_dev *dev = filp->private_data;
unsigned int iobase = dev->p_dev->resource[0]->start;
unsigned short s;
unsigned char tmp;
unsigned char infolen;
unsigned char sendT0;
unsigned short nsend;
unsigned short nr;
ssize_t rc;
int i;
DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
if (count == 0) /* according to manpage */
return 0;
if (dev->proto == 0 && count < 4) {
/* T0 must have at least 4 bytes */
DEBUGP(4, dev, "T0 short write\n");
return -EIO;
}
nr = count & 0x1ff; /* max bytes to write */
sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
test_bit(IS_CMM_ABSENT, &dev->flags))
return -ENODEV;
if (test_bit(IS_BAD_CSUM, &dev->flags)) {
DEBUGP(4, dev, "bad csum\n");
return -EIO;
}
/*
* wait for atr to become valid.
* note: it is important to lock this code. if we dont, the monitor
* could be run between test_bit and the call to sleep on the
* atr-queue. if *then* the monitor detects atr valid, it will wake up
* any process on the atr-queue, *but* since we have been interrupted,
* we do not yet sleep on this queue. this would result in a missed
* wake_up and the calling process would sleep forever (until
* interrupted). also, do *not* restore_flags before sleep_on, because
* this could result in the same situation!
*/
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
DEBUGP(4, dev, "invalid ATR\n");
return -EIO;
}
/* lock io */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
return -EFAULT;
rc = 0;
dev->flags0 = inb(REG_FLAGS0(iobase));
if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
|| dev->flags0 == 0xff) { /* no cardman inserted */
clear_bit(IS_ATR_VALID, &dev->flags);
if (dev->flags0 & 1) {
set_bit(IS_CMM_ABSENT, &dev->flags);
rc = -ENODEV;
} else {
DEBUGP(4, dev, "IO error\n");
rc = -EIO;
}
goto release_io;
}
xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
if (!io_detect_cm4000(iobase, dev)) {
rc = -ENODEV;
goto release_io;
}
/* reflect T=0 send/read mode in flags1 */
dev->flags1 |= (sendT0);
set_cardparameter(dev);
/* dummy read, reset flag procedure received */
tmp = inb(REG_FLAGS1(iobase));
dev->flags1 = 0x20 /* T_Active */
| (sendT0)
| (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */
| (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
xoutb(dev->flags1, REG_FLAGS1(iobase));
/* xmit data */
DEBUGP(4, dev, "Xmit data\n");
for (i = 0; i < nr; i++) {
if (i >= 256) {
dev->flags1 = 0x20 /* T_Active */
| (sendT0) /* SendT0 */
/* inverse parity: */
| (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
| (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
| 0x10; /* set address high */
DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
"high\n", dev->flags1);
xoutb(dev->flags1, REG_FLAGS1(iobase));
}
if (test_bit(IS_INVREV, &dev->flags)) {
DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
"-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
invert_revert(dev->sbuf[i]));
xoutb(i, REG_BUF_ADDR(iobase));
xoutb(invert_revert(dev->sbuf[i]),
REG_BUF_DATA(iobase));
} else {
xoutb(i, REG_BUF_ADDR(iobase));
xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
}
}
DEBUGP(4, dev, "Xmit done\n");
if (dev->proto == 0) {
/* T=0 proto: 0 byte reply */
if (nr == 4) {
DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
xoutb(i, REG_BUF_ADDR(iobase));
if (test_bit(IS_INVREV, &dev->flags))
xoutb(0xff, REG_BUF_DATA(iobase));
else
xoutb(0x00, REG_BUF_DATA(iobase));
}
/* numSendBytes */
if (sendT0)
nsend = nr;
else {
if (nr == 4)
nsend = 5;
else {
nsend = 5 + (unsigned char)dev->sbuf[4];
if (dev->sbuf[4] == 0)
nsend += 0x100;
}
}
} else
nsend = nr;
/* T0: output procedure byte */
if (test_bit(IS_INVREV, &dev->flags)) {
DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
"0x%.2x\n", invert_revert(dev->sbuf[1]));
xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
} else {
DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
}
DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
(unsigned char)(nsend & 0xff));
xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
0x40 /* SM_Active */
| (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
|(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
|(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
xoutb(0x40 /* SM_Active */
| (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
|(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
|(nsend & 0x100) >> 8, /* MSB numSendBytes */
REG_FLAGS0(iobase));
/* wait for xmit done */
if (dev->proto == 1) {
DEBUGP(4, dev, "Wait for xmit done\n");
for (i = 0; i < 1000; i++) {
if (inb(REG_FLAGS0(iobase)) & 0x08)
break;
msleep_interruptible(10);
}
if (i == 1000) {
DEBUGP(4, dev, "timeout waiting for xmit done\n");
rc = -EIO;
goto release_io;
}
}
/* T=1: wait for infoLen */
infolen = 0;
if (dev->proto) {
/* wait until infoLen is valid */
for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */
io_read_num_rec_bytes(iobase, &s);
if (s >= 3) {
infolen = inb(REG_FLAGS1(iobase));
DEBUGP(4, dev, "infolen=%d\n", infolen);
break;
}
msleep_interruptible(10);
}
if (i == 6000) {
DEBUGP(4, dev, "timeout waiting for infoLen\n");
rc = -EIO;
goto release_io;
}
} else
clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
/* numRecBytes | bit9 of numRecytes */
io_read_num_rec_bytes(iobase, &dev->rlen);
for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */
if (dev->proto) {
if (dev->rlen >= infolen + 4)
break;
}
msleep_interruptible(10);
/* numRecBytes | bit9 of numRecytes */
io_read_num_rec_bytes(iobase, &s);
if (s > dev->rlen) {
DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
i = 0; /* reset timeout */
dev->rlen = s;
}
/* T=0: we are done when numRecBytes doesn't
* increment any more and NoProcedureByte
* is set and numRecBytes == bytes sent + 6
* (header bytes + data + 1 for sw2)
* except when the card replies an error
* which means, no data will be sent back.
*/
else if (dev->proto == 0) {
if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
/* no procedure byte received since last read */
DEBUGP(1, dev, "NoProcedure byte set\n");
/* i=0; */
} else {
/* procedure byte received since last read */
DEBUGP(1, dev, "NoProcedure byte unset "
"(reset timeout)\n");
dev->procbyte = inb(REG_FLAGS1(iobase));
DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
dev->procbyte);
i = 0; /* resettimeout */
}
if (inb(REG_FLAGS0(iobase)) & 0x08) {
DEBUGP(1, dev, "T0Done flag (read reply)\n");
break;
}
}
if (dev->proto)
infolen = inb(REG_FLAGS1(iobase));
}
if (i == 600) {
DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
rc = -EIO;
goto release_io;
} else {
if (dev->proto == 0) {
DEBUGP(1, dev, "Wait for T0Done bit to be set\n");
for (i = 0; i < 1000; i++) {
if (inb(REG_FLAGS0(iobase)) & 0x08)
break;
msleep_interruptible(10);
}
if (i == 1000) {
DEBUGP(1, dev, "timeout waiting for T0Done\n");
rc = -EIO;
goto release_io;
}
dev->procbyte = inb(REG_FLAGS1(iobase));
DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
dev->procbyte);
io_read_num_rec_bytes(iobase, &dev->rlen);
DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
}
}
/* T=1: read offset=zero, T=0: read offset=after challenge */
dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n",
dev->rlen, dev->rpos, nr);
release_io:
DEBUGP(4, dev, "Reset SM\n");
xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
if (rc < 0) {
DEBUGP(4, dev, "Write failed but clear T_Active\n");
dev->flags1 &= 0xdf;
xoutb(dev->flags1, REG_FLAGS1(iobase));
}
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
wake_up_interruptible(&dev->readq); /* tell read we have data */
/* ITSEC E2: clear write buffer */
memset((char *)dev->sbuf, 0, 512);
/* return error or actually written bytes */
DEBUGP(2, dev, "<- cmm_write\n");
return rc < 0 ? rc : nr;
}
static void start_monitor(struct cm4000_dev *dev)
{
DEBUGP(3, dev, "-> start_monitor\n");
if (!dev->monitor_running) {
DEBUGP(5, dev, "create, init and add timer\n");
setup_timer(&dev->timer, monitor_card, (unsigned long)dev);
dev->monitor_running = 1;
mod_timer(&dev->timer, jiffies);
} else
DEBUGP(5, dev, "monitor already running\n");
DEBUGP(3, dev, "<- start_monitor\n");
}
static void stop_monitor(struct cm4000_dev *dev)
{
DEBUGP(3, dev, "-> stop_monitor\n");
if (dev->monitor_running) {
DEBUGP(5, dev, "stopping monitor\n");
terminate_monitor(dev);
/* reset monitor SM */
clear_bit(IS_ATR_VALID, &dev->flags);
clear_bit(IS_ATR_PRESENT, &dev->flags);
} else
DEBUGP(5, dev, "monitor already stopped\n");
DEBUGP(3, dev, "<- stop_monitor\n");
}
static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct cm4000_dev *dev = filp->private_data;
unsigned int iobase = dev->p_dev->resource[0]->start;
struct inode *inode = file_inode(filp);
struct pcmcia_device *link;
int size;
int rc;
void __user *argp = (void __user *)arg;
#ifdef CM4000_DEBUG
char *ioctl_names[CM_IOC_MAXNR + 1] = {
[_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
[_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
[_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
[_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
[_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
};
DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
iminor(inode), ioctl_names[_IOC_NR(cmd)]);
#endif
mutex_lock(&cmm_mutex);
rc = -ENODEV;
link = dev_table[iminor(inode)];
if (!pcmcia_dev_present(link)) {
DEBUGP(4, dev, "DEV_OK false\n");
goto out;
}
if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
DEBUGP(4, dev, "CMM_ABSENT flag set\n");
goto out;
}
rc = -EINVAL;
if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
DEBUGP(4, dev, "ioctype mismatch\n");
goto out;
}
if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
DEBUGP(4, dev, "iocnr mismatch\n");
goto out;
}
size = _IOC_SIZE(cmd);
rc = -EFAULT;
DEBUGP(4, dev, "iocdir=%.4x iocr=%.4x iocw=%.4x iocsize=%d cmd=%.4x\n",
_IOC_DIR(cmd), _IOC_READ, _IOC_WRITE, size, cmd);
if (_IOC_DIR(cmd) & _IOC_READ) {
if (!access_ok(VERIFY_WRITE, argp, size))
goto out;
}
if (_IOC_DIR(cmd) & _IOC_WRITE) {
if (!access_ok(VERIFY_READ, argp, size))
goto out;
}
rc = 0;
switch (cmd) {
case CM_IOCGSTATUS:
DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
{
int status;
/* clear other bits, but leave inserted & powered as
* they are */
status = dev->flags0 & 3;
if (test_bit(IS_ATR_PRESENT, &dev->flags))
status |= CM_ATR_PRESENT;
if (test_bit(IS_ATR_VALID, &dev->flags))
status |= CM_ATR_VALID;
if (test_bit(IS_CMM_ABSENT, &dev->flags))
status |= CM_NO_READER;
if (test_bit(IS_BAD_CARD, &dev->flags))
status |= CM_BAD_CARD;
if (copy_to_user(argp, &status, sizeof(int)))
rc = -EFAULT;
}
break;
case CM_IOCGATR:
DEBUGP(4, dev, "... in CM_IOCGATR\n");
{
struct atreq __user *atreq = argp;
int tmp;
/* allow nonblocking io and being interrupted */
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
!= 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
rc = -EFAULT;
if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
tmp = -1;
if (copy_to_user(&(atreq->atr_len), &tmp,
sizeof(int)))
break;
} else {
if (copy_to_user(atreq->atr, dev->atr,
dev->atr_len))
break;
tmp = dev->atr_len;
if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
break;
}
rc = 0;
break;
}
case CM_IOCARDOFF:
#ifdef CM4000_DEBUG
DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
if (dev->flags0 & 0x01) {
DEBUGP(4, dev, " Card inserted\n");
} else {
DEBUGP(2, dev, " No card inserted\n");
}
if (dev->flags0 & 0x02) {
DEBUGP(4, dev, " Card powered\n");
} else {
DEBUGP(2, dev, " Card not powered\n");
}
#endif
/* is a card inserted and powered? */
if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
/* get IO lock */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
== 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
/* Set Flags0 = 0x42 */
DEBUGP(4, dev, "Set Flags0=0x42 \n");
xoutb(0x42, REG_FLAGS0(iobase));
clear_bit(IS_ATR_PRESENT, &dev->flags);
clear_bit(IS_ATR_VALID, &dev->flags);
dev->mstate = M_CARDOFF;
clear_bit(LOCK_IO, &dev->flags);
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
}
/* release lock */
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
rc = 0;
break;
case CM_IOCSPTS:
{
struct ptsreq krnptsreq;
if (copy_from_user(&krnptsreq, argp,
sizeof(struct ptsreq))) {
rc = -EFAULT;
break;
}
rc = 0;
DEBUGP(4, dev, "... in CM_IOCSPTS\n");
/* wait for ATR to get valid */
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
!= 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
/* get IO lock */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
== 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
/* auto power_on again */
dev->mstate = M_FETCH_ATR;
clear_bit(IS_ATR_VALID, &dev->flags);
}
/* release lock */
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
}
break;
#ifdef CM4000_DEBUG
case CM_IOSDBGLVL:
rc = -ENOTTY;
break;
#endif
default:
DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
rc = -ENOTTY;
}
out:
mutex_unlock(&cmm_mutex);
return rc;
}
static int cmm_open(struct inode *inode, struct file *filp)
{
struct cm4000_dev *dev;
struct pcmcia_device *link;
int minor = iminor(inode);
int ret;
if (minor >= CM4000_MAX_DEV)
return -ENODEV;
mutex_lock(&cmm_mutex);
link = dev_table[minor];
if (link == NULL || !pcmcia_dev_present(link)) {
ret = -ENODEV;
goto out;
}
if (link->open) {
ret = -EBUSY;
goto out;
}
dev = link->priv;
filp->private_data = dev;
DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
imajor(inode), minor, current->comm, current->pid);
/* init device variables, they may be "polluted" after close
* or, the device may never have been closed (i.e. open failed)
*/
ZERO_DEV(dev);
/* opening will always block since the
* monitor will be started by open, which
* means we have to wait for ATR becoming
* valid = block until valid (or card
* inserted)
*/
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto out;
}
dev->mdelay = T_50MSEC;
/* start monitoring the cardstatus */
start_monitor(dev);
link->open = 1; /* only one open per device */
DEBUGP(2, dev, "<- cmm_open\n");
ret = nonseekable_open(inode, filp);
out:
mutex_unlock(&cmm_mutex);
return ret;
}
static int cmm_close(struct inode *inode, struct file *filp)
{
struct cm4000_dev *dev;
struct pcmcia_device *link;
int minor = iminor(inode);
if (minor >= CM4000_MAX_DEV)
return -ENODEV;
link = dev_table[minor];
if (link == NULL)
return -ENODEV;
dev = link->priv;
DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
imajor(inode), minor);
stop_monitor(dev);
ZERO_DEV(dev);
link->open = 0; /* only one open per device */
wake_up(&dev->devq); /* socket removed? */
DEBUGP(2, dev, "cmm_close\n");
return 0;
}
static void cmm_cm4000_release(struct pcmcia_device * link)
{
struct cm4000_dev *dev = link->priv;
/* dont terminate the monitor, rather rely on
* close doing that for us.
*/
DEBUGP(3, dev, "-> cmm_cm4000_release\n");
while (link->open) {
printk(KERN_INFO MODULE_NAME ": delaying release until "
"process has terminated\n");
/* note: don't interrupt us:
* close the applications which own
* the devices _first_ !
*/
wait_event(dev->devq, (link->open == 0));
}
/* dev->devq=NULL; this cannot be zeroed earlier */
DEBUGP(3, dev, "<- cmm_cm4000_release\n");
return;
}
/*==== Interface to PCMCIA Layer =======================================*/
static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
{
return pcmcia_request_io(p_dev);
}
static int cm4000_config(struct pcmcia_device * link, int devno)
{
struct cm4000_dev *dev;
link->config_flags |= CONF_AUTO_SET_IO;
/* read the config-tuples */
if (pcmcia_loop_config(link, cm4000_config_check, NULL))
goto cs_release;
if (pcmcia_enable_device(link))
goto cs_release;
dev = link->priv;
return 0;
cs_release:
cm4000_release(link);
return -ENODEV;
}
static int cm4000_suspend(struct pcmcia_device *link)
{
struct cm4000_dev *dev;
dev = link->priv;
stop_monitor(dev);
return 0;
}
static int cm4000_resume(struct pcmcia_device *link)
{
struct cm4000_dev *dev;
dev = link->priv;
if (link->open)
start_monitor(dev);
return 0;
}
static void cm4000_release(struct pcmcia_device *link)
{
cmm_cm4000_release(link); /* delay release until device closed */
pcmcia_disable_device(link);
}
static int cm4000_probe(struct pcmcia_device *link)
{
struct cm4000_dev *dev;
int i, ret;
for (i = 0; i < CM4000_MAX_DEV; i++)
if (dev_table[i] == NULL)
break;
if (i == CM4000_MAX_DEV) {
printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
return -ENODEV;
}
/* create a new cm4000_cs device */
dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
if (dev == NULL)
return -ENOMEM;
dev->p_dev = link;
link->priv = dev;
dev_table[i] = link;
init_waitqueue_head(&dev->devq);
init_waitqueue_head(&dev->ioq);
init_waitqueue_head(&dev->atrq);
init_waitqueue_head(&dev->readq);
ret = cm4000_config(link, i);
if (ret) {
dev_table[i] = NULL;
kfree(dev);
return ret;
}
device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
return 0;
}
static void cm4000_detach(struct pcmcia_device *link)
{
struct cm4000_dev *dev = link->priv;
int devno;
/* find device */
for (devno = 0; devno < CM4000_MAX_DEV; devno++)
if (dev_table[devno] == link)
break;
if (devno == CM4000_MAX_DEV)
return;
stop_monitor(dev);
cm4000_release(link);
dev_table[devno] = NULL;
kfree(dev);
device_destroy(cmm_class, MKDEV(major, devno));
return;
}
static const struct file_operations cm4000_fops = {
.owner = THIS_MODULE,
.read = cmm_read,
.write = cmm_write,
.unlocked_ioctl = cmm_ioctl,
.open = cmm_open,
.release= cmm_close,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 18:52:59 +02:00
.llseek = no_llseek,
};
static const struct pcmcia_device_id cm4000_ids[] = {
PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
static struct pcmcia_driver cm4000_driver = {
.owner = THIS_MODULE,
.name = "cm4000_cs",
.probe = cm4000_probe,
.remove = cm4000_detach,
.suspend = cm4000_suspend,
.resume = cm4000_resume,
.id_table = cm4000_ids,
};
static int __init cmm_init(void)
{
int rc;
cmm_class = class_create(THIS_MODULE, "cardman_4000");
if (IS_ERR(cmm_class))
return PTR_ERR(cmm_class);
major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
if (major < 0) {
printk(KERN_WARNING MODULE_NAME
": could not get major number\n");
class_destroy(cmm_class);
return major;
}
rc = pcmcia_register_driver(&cm4000_driver);
if (rc < 0) {
unregister_chrdev(major, DEVICE_NAME);
class_destroy(cmm_class);
return rc;
}
return 0;
}
static void __exit cmm_exit(void)
{
pcmcia_unregister_driver(&cm4000_driver);
unregister_chrdev(major, DEVICE_NAME);
class_destroy(cmm_class);
};
module_init(cmm_init);
module_exit(cmm_exit);
MODULE_LICENSE("Dual BSD/GPL");