linux/drivers/gpu/drm/i915/i915_request.h

726 lines
23 KiB
C
Raw Normal View History

/*
* Copyright © 2008-2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef I915_REQUEST_H
#define I915_REQUEST_H
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 13:00:45 +01:00
#include <linux/dma-fence.h>
#include <linux/hrtimer.h>
drm/i915: Defer semaphore priority bumping to a workqueue Since the semaphore fence may be signaled from inside an interrupt handler from inside a request holding its request->lock, we cannot then enter into the engine->active.lock for processing the semaphore priority bump as we may traverse our call tree and end up on another held request. CPU 0: [ 2243.218864] _raw_spin_lock_irqsave+0x9a/0xb0 [ 2243.218867] i915_schedule_bump_priority+0x49/0x80 [i915] [ 2243.218869] semaphore_notify+0x6d/0x98 [i915] [ 2243.218871] __i915_sw_fence_complete+0x61/0x420 [i915] [ 2243.218874] ? kmem_cache_free+0x211/0x290 [ 2243.218876] i915_sw_fence_complete+0x58/0x80 [i915] [ 2243.218879] dma_i915_sw_fence_wake+0x3e/0x80 [i915] [ 2243.218881] signal_irq_work+0x571/0x690 [i915] [ 2243.218883] irq_work_run_list+0xd7/0x120 [ 2243.218885] irq_work_run+0x1d/0x50 [ 2243.218887] smp_irq_work_interrupt+0x21/0x30 [ 2243.218889] irq_work_interrupt+0xf/0x20 CPU 1: [ 2242.173107] _raw_spin_lock+0x8f/0xa0 [ 2242.173110] __i915_request_submit+0x64/0x4a0 [i915] [ 2242.173112] __execlists_submission_tasklet+0x8ee/0x2120 [i915] [ 2242.173114] ? i915_sched_lookup_priolist+0x1e3/0x2b0 [i915] [ 2242.173117] execlists_submit_request+0x2e8/0x2f0 [i915] [ 2242.173119] submit_notify+0x8f/0xc0 [i915] [ 2242.173121] __i915_sw_fence_complete+0x61/0x420 [i915] [ 2242.173124] ? _raw_spin_unlock_irqrestore+0x39/0x40 [ 2242.173137] i915_sw_fence_complete+0x58/0x80 [i915] [ 2242.173140] i915_sw_fence_commit+0x16/0x20 [i915] Closes: https://gitlab.freedesktop.org/drm/intel/issues/1318 Fixes: b7404c7ecb38 ("drm/i915: Bump ready tasks ahead of busywaits") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: <stable@vger.kernel.org> # v5.2+ Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200310101720.9944-1-chris@chris-wilson.co.uk
2020-03-10 10:17:20 +00:00
#include <linux/irq_work.h>
#include <linux/llist.h>
#include <linux/lockdep.h>
#include "gem/i915_gem_context_types.h"
drm/i915/execlists: Preempt-to-busy When using a global seqno, we required a precise stop-the-workd event to handle preemption and unwind the global seqno counter. To accomplish this, we would preempt to a special out-of-band context and wait for the machine to report that it was idle. Given an idle machine, we could very precisely see which requests had completed and which we needed to feed back into the run queue. However, now that we have scrapped the global seqno, we no longer need to precisely unwind the global counter and only track requests by their per-context seqno. This allows us to loosely unwind inflight requests while scheduling a preemption, with the enormous caveat that the requests we put back on the run queue are still _inflight_ (until the preemption request is complete). This makes request tracking much more messy, as at any point then we can see a completed request that we believe is not currently scheduled for execution. We also have to be careful not to rewind RING_TAIL past RING_HEAD on preempting to the running context, and for this we use a semaphore to prevent completion of the request before continuing. To accomplish this feat, we change how we track requests scheduled to the HW. Instead of appending our requests onto a single list as we submit, we track each submission to ELSP as its own block. Then upon receiving the CS preemption event, we promote the pending block to the inflight block (discarding what was previously being tracked). As normal CS completion events arrive, we then remove stale entries from the inflight tracker. v2: Be a tinge paranoid and ensure we flush the write into the HWS page for the GPU semaphore to pick in a timely fashion. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190620142052.19311-1-chris@chris-wilson.co.uk
2019-06-20 15:20:51 +01:00
#include "gt/intel_context_types.h"
#include "gt/intel_engine_types.h"
#include "gt/intel_timeline_types.h"
#include "i915_gem.h"
#include "i915_scheduler.h"
#include "i915_selftest.h"
#include "i915_sw_fence.h"
#include "i915_vma_snapshot.h"
drm/i915/scheduler: Support user-defined priorities Use a priority stored in the context as the initial value when submitting a request. This allows us to change the default priority on a per-context basis, allowing different contexts to be favoured with GPU time at the expense of lower importance work. The user can adjust the context's priority via I915_CONTEXT_PARAM_PRIORITY, with more positive values being higher priority (they will be serviced earlier, after their dependencies have been resolved). Any prerequisite work for an execbuf will have its priority raised to match the new request as required. Normal users can specify any value in the range of -1023 to 0 [default], i.e. they can reduce the priority of their workloads (and temporarily boost it back to normal if so desired). Privileged users can specify any value in the range of -1023 to 1023, [default is 0], i.e. they can raise their priority above all overs and so potentially starve the system. Note that the existing schedulers are not fair, nor load balancing, the execution is strictly by priority on a first-come, first-served basis, and the driver may choose to boost some requests above the range available to users. This priority was originally based around nice(2), but evolved to allow clients to adjust their priority within a small range, and allow for a privileged high priority range. For example, this can be used to implement EGL_IMG_context_priority https://www.khronos.org/registry/egl/extensions/IMG/EGL_IMG_context_priority.txt EGL_CONTEXT_PRIORITY_LEVEL_IMG determines the priority level of the context to be created. This attribute is a hint, as an implementation may not support multiple contexts at some priority levels and system policy may limit access to high priority contexts to appropriate system privilege level. The default value for EGL_CONTEXT_PRIORITY_LEVEL_IMG is EGL_CONTEXT_PRIORITY_MEDIUM_IMG." so we can map PRIORITY_HIGH -> 1023 [privileged, will failback to 0] PRIORITY_MED -> 0 [default] PRIORITY_LOW -> -1023 They also map onto the priorities used by VkQueue (and a VkQueue is essentially a timeline, our i915_gem_context under full-ppgtt). v2: s/CAP_SYS_ADMIN/CAP_SYS_NICE/ v3: Report min/max user priorities as defines in the uapi, and rebase internal priorities on the exposed values. Testcase: igt/gem_exec_schedule Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171003203453.15692-9-chris@chris-wilson.co.uk
2017-10-03 21:34:53 +01:00
#include <uapi/drm/i915_drm.h>
struct drm_file;
struct drm_i915_gem_object;
struct drm_printer;
struct i915_deps;
struct i915_request;
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
struct i915_capture_list {
struct i915_vma_snapshot *vma_snapshot;
struct i915_capture_list *next;
};
void i915_request_free_capture_list(struct i915_capture_list *capture);
#else
#define i915_request_free_capture_list(_a) do {} while (0)
#endif
#define RQ_TRACE(rq, fmt, ...) do { \
const struct i915_request *rq__ = (rq); \
ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt, \
rq__->fence.context, rq__->fence.seqno, \
hwsp_seqno(rq__), ##__VA_ARGS__); \
} while (0)
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
enum {
/*
* I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
*
* Set by __i915_request_submit() on handing over to HW, and cleared
* by __i915_request_unsubmit() if we preempt this request.
*
* Finally cleared for consistency on retiring the request, when
* we know the HW is no longer running this request.
*
* See i915_request_is_active()
*/
I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
/*
* I915_FENCE_FLAG_PQUEUE - this request is ready for execution
*
* Using the scheduler, when a request is ready for execution it is put
* into the priority queue, and removed from that queue when transferred
* to the HW runlists. We want to track its membership within the
* priority queue so that we can easily check before rescheduling.
*
* See i915_request_in_priority_queue()
*/
I915_FENCE_FLAG_PQUEUE,
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
/*
* I915_FENCE_FLAG_HOLD - this request is currently on hold
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
*
* This request has been suspended, pending an ongoing investigation.
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
*/
I915_FENCE_FLAG_HOLD,
/*
* I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
* breadcrumb that marks the end of semaphore waits and start of the
* user payload.
*/
I915_FENCE_FLAG_INITIAL_BREADCRUMB,
/*
* I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
*
* Internal bookkeeping used by the breadcrumb code to track when
* a request is on the various signal_list.
*/
I915_FENCE_FLAG_SIGNAL,
/*
* I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
*
* The execution of some requests should not be interrupted. This is
* a sensitive operation as it makes the request super important,
* blocking other higher priority work. Abuse of this flag will
* lead to quality of service issues.
*/
I915_FENCE_FLAG_NOPREEMPT,
/*
* I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
*
* A high priority sentinel request may be submitted to clear the
* submission queue. As it will be the only request in-flight, upon
* execution all other active requests will have been preempted and
* unsubmitted. This preemptive pulse is used to re-evaluate the
* in-flight requests, particularly in cases where an active context
* is banned and those active requests need to be cancelled.
*/
I915_FENCE_FLAG_SENTINEL,
/*
* I915_FENCE_FLAG_BOOST - upclock the gpu for this request
*
* Some requests are more important than others! In particular, a
* request that the user is waiting on is typically required for
* interactive latency, for which we want to minimise by upclocking
* the GPU. Here we track such boost requests on a per-request basis.
*/
I915_FENCE_FLAG_BOOST,
/*
* I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
* parent-child relationship (parallel submission, multi-lrc) should
* trigger a submission to the GuC rather than just moving the context
* tail.
*/
I915_FENCE_FLAG_SUBMIT_PARALLEL,
drm/i915: Multi-BB execbuf Allow multiple batch buffers to be submitted in a single execbuf IOCTL after a context has been configured with the 'set_parallel' extension. The number batches is implicit based on the contexts configuration. This is implemented with a series of loops. First a loop is used to find all the batches, a loop to pin all the HW contexts, a loop to create all the requests, a loop to submit (emit BB start, etc...) all the requests, a loop to tie the requests to the VMAs they touch, and finally a loop to commit the requests to the backend. A composite fence is also created for the generated requests to return to the user and to stick in dma resv slots. No behavior from the existing IOCTL should be changed aside from when throttling because the ring for a context is full. In this situation, i915 will now wait while holding the object locks. This change was done because the code is much simpler to wait while holding the locks and we believe there isn't a huge benefit of dropping these locks. If this proves false we can restructure the code to drop the locks during the wait. IGT: https://patchwork.freedesktop.org/patch/447008/?series=93071&rev=1 media UMD: https://github.com/intel/media-driver/pull/1252 v2: (Matthew Brost) - Return proper error value if i915_request_create fails v3: (John Harrison) - Add comment explaining create / add order loops + locking - Update commit message explaining different in IOCTL behavior - Line wrap some comments - eb_add_request returns void - Return -EINVAL rather triggering BUG_ON if cmd parser used (Checkpatch) - Check eb->batch_len[*current_batch] v4: (CI) - Set batch len if passed if via execbuf args - Call __i915_request_skip after __i915_request_commit (Kernel test robot) - Initialize rq to NULL in eb_pin_timeline v5: (John Harrison) - Fix typo in comments near bb order loops Signed-off-by: Matthew Brost <matthew.brost@intel.com> Reviewed-by: John Harrison <John.C.Harrison@Intel.com> Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211014172005.27155-21-matthew.brost@intel.com
2021-10-14 10:20:00 -07:00
/*
* I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
* parent-child relationship (parallel submission, multi-lrc) that
* hit an error while generating requests in the execbuf IOCTL.
* Indicates this request should be skipped as another request in
* submission / relationship encoutered an error.
*/
I915_FENCE_FLAG_SKIP_PARALLEL,
/*
* I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
* fence (dma_fence_array) and i915 generated for parallel submission.
*/
I915_FENCE_FLAG_COMPOSITE,
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
};
/**
* Request queue structure.
*
* The request queue allows us to note sequence numbers that have been emitted
* and may be associated with active buffers to be retired.
*
* By keeping this list, we can avoid having to do questionable sequence
* number comparisons on buffer last_read|write_seqno. It also allows an
* emission time to be associated with the request for tracking how far ahead
* of the GPU the submission is.
*
drm/i915: Do not overwrite the request with zero on reallocation When using RCU lookup for the request, commit 0eafec6d3244 ("drm/i915: Enable lockless lookup of request tracking via RCU"), we acknowledge that we may race with another thread that could have reallocated the request. In order for the first thread not to blow up, the second thread must not clear the request completed before overwriting it. In the RCU lookup, we allow for the engine/seqno to be replaced but we do not allow for it to be zeroed. The choice we make is to either add extra checking to the RCU lookup, or embrace the inherent races (as intended). It is more complicated as we need to manually clear everything we depend upon being zero initialised, but we benefit from not emiting the memset() to clear the entire frequently allocated structure (that memset turns up in throughput profiles). And at the same time, the lookup remains flexible for future adjustments. v2: Old style LRC requires another variable to be initialize. (The danger inherent in not zeroing everything.) v3: request->batch also needs to be cleared v4: signaling.tsk is no long used unset, but pid still exists Fixes: 0eafec6d3244 ("drm/i915: Enable lockless lookup of request...") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470731014-6894-2-git-send-email-chris@chris-wilson.co.uk
2016-08-09 09:23:34 +01:00
* When modifying this structure be very aware that we perform a lockless
* RCU lookup of it that may race against reallocation of the struct
* from the slab freelist. We intentionally do not zero the structure on
* allocation so that the lookup can use the dangling pointers (and is
* cogniscent that those pointers may be wrong). Instead, everything that
* needs to be initialised must be done so explicitly.
*
* The requests are reference counted.
*/
struct i915_request {
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 13:00:45 +01:00
struct dma_fence fence;
spinlock_t lock;
/**
* Context and ring buffer related to this request
* Contexts are refcounted, so when this request is associated with a
* context, we must increment the context's refcount, to guarantee that
* it persists while any request is linked to it. Requests themselves
* are also refcounted, so the request will only be freed when the last
* reference to it is dismissed, and the code in
* i915_request_free() will then decrement the refcount on the
* context.
*/
struct intel_engine_cs *engine;
struct intel_context *context;
struct intel_ring *ring;
drm/i915: Mark i915_request.timeline as a volatile, rcu pointer The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-09-19 12:19:10 +01:00
struct intel_timeline __rcu *timeline;
drm/i915/gt: Split the breadcrumb spinlock between global and contexts As we funnel more and more contexts into the breadcrumbs on an engine, the hold time of b->irq_lock grows. As we may then contend with the b->irq_lock during request submission, this increases the burden upon the engine->active.lock and so directly impacts both our execution latency and client latency. If we split the b->irq_lock by introducing a per-context spinlock to manage the signalers within a context, we then only need the b->irq_lock for enabling/disabling the interrupt and can avoid taking the lock for walking the list of contexts within the signal worker. Even with the current setup, this greatly reduces the number of times we have to take and fight for b->irq_lock. Furthermore, this closes the race between enabling the signaling context while it is in the process of being signaled and removed: <4>[ 416.208555] list_add corruption. prev->next should be next (ffff8881951d5910), but was dead000000000100. (prev=ffff8882781bb870). <4>[ 416.208573] WARNING: CPU: 7 PID: 0 at lib/list_debug.c:28 __list_add_valid+0x4d/0x70 <4>[ 416.208575] Modules linked in: i915(+) vgem snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio mei_hdcp x86_pkg_temp_thermal coretemp ax88179_178a usbnet mii crct10dif_pclmul snd_intel_dspcfg crc32_pclmul snd_hda_codec snd_hwdep ghash_clmulni_intel snd_hda_core e1000e snd_pcm ptp pps_core mei_me mei prime_numbers intel_lpss_pci [last unloaded: i915] <4>[ 416.208611] CPU: 7 PID: 0 Comm: swapper/7 Tainted: G U 5.8.0-CI-CI_DRM_8852+ #1 <4>[ 416.208614] Hardware name: Intel Corporation Ice Lake Client Platform/IceLake Y LPDDR4x T4 RVP TLC, BIOS ICLSFWR1.R00.3212.A00.1905212112 05/21/2019 <4>[ 416.208627] RIP: 0010:__list_add_valid+0x4d/0x70 <4>[ 416.208631] Code: c3 48 89 d1 48 c7 c7 60 18 33 82 48 89 c2 e8 ea e0 b6 ff 0f 0b 31 c0 c3 48 89 c1 4c 89 c6 48 c7 c7 b0 18 33 82 e8 d3 e0 b6 ff <0f> 0b 31 c0 c3 48 89 f2 4c 89 c1 48 89 fe 48 c7 c7 00 19 33 82 e8 <4>[ 416.208633] RSP: 0018:ffffc90000280e18 EFLAGS: 00010086 <4>[ 416.208636] RAX: 0000000000000000 RBX: ffff888250a44880 RCX: 0000000000000105 <4>[ 416.208639] RDX: 0000000000000105 RSI: ffffffff82320c5b RDI: 00000000ffffffff <4>[ 416.208641] RBP: ffff8882781bb870 R08: 0000000000000000 R09: 0000000000000001 <4>[ 416.208643] R10: 00000000054d2957 R11: 000000006abbd991 R12: ffff8881951d58c8 <4>[ 416.208646] R13: ffff888286073880 R14: ffff888286073848 R15: ffff8881951d5910 <4>[ 416.208669] FS: 0000000000000000(0000) GS:ffff88829c180000(0000) knlGS:0000000000000000 <4>[ 416.208671] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 416.208673] CR2: 0000556231326c48 CR3: 0000000005610001 CR4: 0000000000760ee0 <4>[ 416.208675] PKRU: 55555554 <4>[ 416.208677] Call Trace: <4>[ 416.208679] <IRQ> <4>[ 416.208751] i915_request_enable_breadcrumb+0x278/0x400 [i915] <4>[ 416.208839] __i915_request_submit+0xca/0x2a0 [i915] <4>[ 416.208892] __execlists_submission_tasklet+0x480/0x1830 [i915] <4>[ 416.208942] execlists_submission_tasklet+0xc4/0x130 [i915] <4>[ 416.208947] tasklet_action_common.isra.17+0x6c/0x1c0 <4>[ 416.208954] __do_softirq+0xdf/0x498 <4>[ 416.208960] ? handle_fasteoi_irq+0x150/0x150 <4>[ 416.208964] asm_call_on_stack+0xf/0x20 <4>[ 416.208966] </IRQ> <4>[ 416.208969] do_softirq_own_stack+0xa1/0xc0 <4>[ 416.208972] irq_exit_rcu+0xb5/0xc0 <4>[ 416.208976] common_interrupt+0xf7/0x260 <4>[ 416.208980] asm_common_interrupt+0x1e/0x40 <4>[ 416.208985] RIP: 0010:cpuidle_enter_state+0xb6/0x410 <4>[ 416.208987] Code: 00 31 ff e8 9c 3e 89 ff 80 7c 24 0b 00 74 12 9c 58 f6 c4 02 0f 85 31 03 00 00 31 ff e8 e3 6c 90 ff e8 fe a4 94 ff fb 45 85 ed <0f> 88 c7 02 00 00 49 63 c5 4c 2b 24 24 48 8d 14 40 48 8d 14 90 48 <4>[ 416.208989] RSP: 0018:ffffc90000143e70 EFLAGS: 00000206 <4>[ 416.208991] RAX: 0000000000000007 RBX: ffffe8ffffda8070 RCX: 0000000000000000 <4>[ 416.208993] RDX: 0000000000000000 RSI: ffffffff8238b4ee RDI: ffffffff8233184f <4>[ 416.208995] RBP: ffffffff826b4e00 R08: 0000000000000000 R09: 0000000000000000 <4>[ 416.208997] R10: 0000000000000001 R11: 0000000000000000 R12: 00000060e7f24a8f <4>[ 416.208998] R13: 0000000000000003 R14: 0000000000000003 R15: 0000000000000003 <4>[ 416.209012] cpuidle_enter+0x24/0x40 <4>[ 416.209016] do_idle+0x22f/0x2d0 <4>[ 416.209022] cpu_startup_entry+0x14/0x20 <4>[ 416.209025] start_secondary+0x158/0x1a0 <4>[ 416.209030] secondary_startup_64+0xa4/0xb0 <4>[ 416.209039] irq event stamp: 10186977 <4>[ 416.209042] hardirqs last enabled at (10186976): [<ffffffff810b9363>] tasklet_action_common.isra.17+0xe3/0x1c0 <4>[ 416.209044] hardirqs last disabled at (10186977): [<ffffffff81a5e5ed>] _raw_spin_lock_irqsave+0xd/0x50 <4>[ 416.209047] softirqs last enabled at (10186968): [<ffffffff810b9a1a>] irq_enter_rcu+0x6a/0x70 <4>[ 416.209049] softirqs last disabled at (10186969): [<ffffffff81c00f4f>] asm_call_on_stack+0xf/0x20 <4>[ 416.209317] list_del corruption, ffff8882781bb870->next is LIST_POISON1 (dead000000000100) <4>[ 416.209317] WARNING: CPU: 7 PID: 46 at lib/list_debug.c:47 __list_del_entry_valid+0x4e/0x90 <4>[ 416.209317] Modules linked in: i915(+) vgem snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio mei_hdcp x86_pkg_temp_thermal coretemp ax88179_178a usbnet mii crct10dif_pclmul snd_intel_dspcfg crc32_pclmul snd_hda_codec snd_hwdep ghash_clmulni_intel snd_hda_core e1000e snd_pcm ptp pps_core mei_me mei prime_numbers intel_lpss_pci [last unloaded: i915] <4>[ 416.209317] CPU: 7 PID: 46 Comm: ksoftirqd/7 Tainted: G U W 5.8.0-CI-CI_DRM_8852+ #1 <4>[ 416.209317] Hardware name: Intel Corporation Ice Lake Client Platform/IceLake Y LPDDR4x T4 RVP TLC, BIOS ICLSFWR1.R00.3212.A00.1905212112 05/21/2019 <4>[ 416.209317] RIP: 0010:__list_del_entry_valid+0x4e/0x90 <4>[ 416.209317] Code: 2e 48 8b 32 48 39 fe 75 3a 48 8b 50 08 48 39 f2 75 48 b8 01 00 00 00 c3 48 89 fe 48 89 c2 48 c7 c7 38 19 33 82 e8 62 e0 b6 ff <0f> 0b 31 c0 c3 48 89 fe 48 c7 c7 70 19 33 82 e8 4e e0 b6 ff 0f 0b <4>[ 416.209317] RSP: 0018:ffffc90000280de8 EFLAGS: 00010086 <4>[ 416.209317] RAX: 0000000000000000 RBX: ffff8882781bb848 RCX: 0000000000010104 <4>[ 416.209317] RDX: 0000000000010104 RSI: ffffffff8238b4ee RDI: 00000000ffffffff <4>[ 416.209317] RBP: ffff8882781bb880 R08: 0000000000000000 R09: 0000000000000001 <4>[ 416.209317] R10: 000000009fb6666e R11: 00000000feca9427 R12: ffffc90000280e18 <4>[ 416.209317] R13: ffff8881951d5930 R14: dead0000000000d8 R15: ffff8882781bb880 <4>[ 416.209317] FS: 0000000000000000(0000) GS:ffff88829c180000(0000) knlGS:0000000000000000 <4>[ 416.209317] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 416.209317] CR2: 0000556231326c48 CR3: 0000000005610001 CR4: 0000000000760ee0 <4>[ 416.209317] PKRU: 55555554 <4>[ 416.209317] Call Trace: <4>[ 416.209317] <IRQ> <4>[ 416.209317] remove_signaling_context.isra.13+0xd/0x70 [i915] <4>[ 416.209513] signal_irq_work+0x1f7/0x4b0 [i915] This is caused by virtual engines where although we take the breadcrumb lock on each of the active engines, they may be different engines on different requests, It turns out that the b->irq_lock was not a sufficient proxy for the engine->active.lock in the case of more than one request, so introduce an explicit lock around ce->signals. v2: ce->signal_lock is acquired with only RCU protection and so must be treated carefully and not cleared during reallocation. We also then need to confirm that the ce we lock is the same as we found in the breadcrumb list. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/2276 Fixes: c18636f76344 ("drm/i915: Remove requirement for holding i915_request.lock for breadcrumbs") Fixes: 2854d866327a ("drm/i915/gt: Replace intel_engine_transfer_stale_breadcrumbs") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201126140407.31952-4-chris@chris-wilson.co.uk
2020-11-26 14:04:06 +00:00
struct list_head signal_link;
struct llist_node signal_node;
drm/i915: Limit the backpressure for i915_request allocation If we try and fail to allocate a i915_request, we apply some backpressure on the clients to throttle the memory allocations coming from i915.ko. Currently, we wait until completely idle, but this is far too heavy and leads to some situations where the only escape is to declare a client hung and reset the GPU. The intent is to only ratelimit the allocation requests and to allow ourselves to recycle requests and memory from any long queues built up by a client hog. Although the system memory is inherently a global resources, we don't want to overly penalize an unlucky client to pay the price of reaping a hog. To reduce the influence of one client on another, we can instead of waiting for the entire GPU to idle, impose a barrier on the local client. (One end goal for request allocation is for scalability to many concurrent allocators; simultaneous execbufs.) To prevent ourselves from getting caught out by long running requests (requests that may never finish without userspace intervention, whom we are blocking) we need to impose a finite timeout, ideally shorter than hangcheck. A long time ago Paul McKenney suggested that RCU users should ratelimit themselves using judicious use of cond_synchronize_rcu(). This gives us the opportunity to reduce our indefinite wait for the GPU to idle to a wait for the RCU grace period of the previous allocation along this timeline to expire, satisfying both the local and finite properties we desire for our ratelimiting. There are still a few global steps (reclaim not least amongst those!) when we exhaust the immediate slab pool, at least now the wait is itself decoupled from struct_mutex for our glorious highly parallel future! Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=106680 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180914080017.30308-1-chris@chris-wilson.co.uk
2018-09-14 09:00:15 +01:00
/*
* The rcu epoch of when this request was allocated. Used to judiciously
* apply backpressure on future allocations to ensure that under
* mempressure there is sufficient RCU ticks for us to reclaim our
* RCU protected slabs.
*/
unsigned long rcustate;
/*
* We pin the timeline->mutex while constructing the request to
* ensure that no caller accidentally drops it during construction.
* The timeline->mutex must be held to ensure that only this caller
* can use the ring and manipulate the associated timeline during
* construction.
*/
struct pin_cookie cookie;
/*
* Fences for the various phases in the request's lifetime.
*
* The submit fence is used to await upon all of the request's
* dependencies. When it is signaled, the request is ready to run.
* It is used by the driver to then queue the request for execution.
*/
struct i915_sw_fence submit;
union {
wait_queue_entry_t submitq;
struct i915_sw_dma_fence_cb dmaq;
struct i915_request_duration_cb {
struct dma_fence_cb cb;
ktime_t emitted;
} duration;
};
struct llist_head execute_cb;
drm/i915: Bump ready tasks ahead of busywaits Consider two tasks that are running in parallel on a pair of engines (vcs0, vcs1), but then must complete on a shared engine (rcs0). To maximise throughput, we want to run the first ready task on rcs0 (i.e. the first task that completes on either of vcs0 or vcs1). When using semaphores, however, we will instead queue onto rcs in submission order. To resolve this incorrect ordering, we want to re-evaluate the priority queue when each of the request is ready. Normally this happens because we only insert into the priority queue requests that are ready, but with semaphores we are inserting ahead of their readiness and to compensate we penalize those tasks with reduced priority (so that tasks that do not need to busywait should naturally be run first). However, given a series of tasks that each use semaphores, the queue degrades into submission fifo rather than readiness fifo, and so to counter this we give a small boost to semaphore users as their dependent tasks are completed (and so we no longer require any busywait prior to running the user task as they are then ready themselves). v2: Fixup irqsave for schedule_lock (Tvrtko) Testcase: igt/gem_exec_schedule/semaphore-codependency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Cc: Dmitry Ermilov <dmitry.ermilov@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190409152922.23894-1-chris@chris-wilson.co.uk
2019-04-09 16:29:22 +01:00
struct i915_sw_fence semaphore;
/**
* @submit_work: complete submit fence from an IRQ if needed for
* locking hierarchy reasons.
*/
struct irq_work submit_work;
/*
* A list of everyone we wait upon, and everyone who waits upon us.
* Even though we will not be submitted to the hardware before the
* submit fence is signaled (it waits for all external events as well
* as our own requests), the scheduler still needs to know the
* dependency tree for the lifetime of the request (from execbuf
* to retirement), i.e. bidirectional dependency information for the
* request not tied to individual fences.
*/
struct i915_sched_node sched;
struct i915_dependency dep;
intel_engine_mask_t execution_mask;
/*
* A convenience pointer to the current breadcrumb value stored in
* the HW status page (or our timeline's local equivalent). The full
* path would be rq->hw_context->ring->timeline->hwsp_seqno.
*/
const u32 *hwsp_seqno;
/** Position in the ring of the start of the request */
u32 head;
drm/i915/ringbuffer: Fix context restore upon reset The discovery with trying to enable full-ppgtt was that we were completely failing to the load both the mm and context following the reset. Although we were performing mmio to set the PP_DIR (per-process GTT) and CCID (context), these were taking no effect (the assumption was that this would trigger reload of the context and restore the page tables). It was not until we performed the LRI + MI_SET_CONTEXT in a following context switch would anything occur. Since we are then required to reset the context image and PP_DIR using CS commands, we place those commands into every batch. The hardware should recognise the no-ops and eliminate the expensive context loads, but we still have to pay the cost of using cross-powerwell register writes. In practice, this has no effect on actual context switch times, and only adds a few hundred nanoseconds to no-op switches. We can improve the latter by eliminating the w/a around known no-op switches, but there is an ulterior motive to keeping them. Always emitting the context switch at the beginning of the request (and relying on HW to skip unneeded switches) does have one key advantage. Should we implement request reordering on Haswell, we will not know in advance what the previous executing context was on the GPU and so we would not be able to elide the MI_SET_CONTEXT commands ourselves and always have to emit them. Having our hand forced now actually prepares us for later. Now since that context and mm follow the request, we no longer (and not for a long time since requests took over!) require a trace point to tell when we write the switch into the ring, since it is always. (This is even more important when you remember that simply writing into the ring bears no relation to the current mm.) v2: Sandybridge has to agree to use LRI as well. Testcase: igt/drv_selftests/live_hangcheck Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Cc: Matthew Auld <matthew.william.auld@gmail.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180611110845.31890-1-chris@chris-wilson.co.uk
2018-06-11 12:08:44 +01:00
/** Position in the ring of the start of the user packets */
u32 infix;
/**
* Position in the ring of the start of the postfix.
* This is required to calculate the maximum available ring space
* without overwriting the postfix.
*/
u32 postfix;
/** Position in the ring of the end of the whole request */
u32 tail;
/** Position in the ring of the end of any workarounds after the tail */
u32 wa_tail;
/** Preallocate space in the ring for the emitting the request */
u32 reserved_space;
/** Batch buffer pointer for selftest internal use. */
I915_SELFTEST_DECLARE(struct i915_vma *batch);
struct i915_vma_snapshot batch_snapshot;
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
/**
* Additional buffers requested by userspace to be captured upon
* a GPU hang. The vma/obj on this list are protected by their
* active reference - all objects on this list must also be
* on the active_list (of their final request).
*/
struct i915_capture_list *capture_list;
#endif
/** Time at which this request was emitted, in jiffies. */
unsigned long emitted_jiffies;
/** timeline->request entry for this request */
struct list_head link;
/** Watchdog support fields. */
struct i915_request_watchdog {
struct llist_node link;
struct hrtimer timer;
} watchdog;
/**
* @guc_fence_link: Requests may need to be stalled when using GuC
* submission waiting for certain GuC operations to complete. If that is
* the case, stalled requests are added to a per context list of stalled
* requests. The below list_head is the link in that list. Protected by
* ce->guc_state.lock.
*/
struct list_head guc_fence_link;
/**
* @guc_prio: Priority level while the request is in flight. Differs
* from i915 scheduler priority. See comment above
* I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
* ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
* GUC_PRIO_FINI) outside the GuC priority range are used to indicate
* if the priority has not been initialized yet or if no more updates
* are possible because the request has completed.
*/
#define GUC_PRIO_INIT 0xff
#define GUC_PRIO_FINI 0xfe
u8 guc_prio;
I915_SELFTEST_DECLARE(struct {
struct list_head link;
unsigned long delay;
} mock;)
};
#define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 13:00:45 +01:00
extern const struct dma_fence_ops i915_fence_ops;
static inline bool dma_fence_is_i915(const struct dma_fence *fence)
{
return fence->ops == &i915_fence_ops;
}
struct kmem_cache *i915_request_slab_cache(void);
struct i915_request * __must_check
__i915_request_create(struct intel_context *ce, gfp_t gfp);
struct i915_request * __must_check
i915_request_create(struct intel_context *ce);
void __i915_request_skip(struct i915_request *rq);
bool i915_request_set_error_once(struct i915_request *rq, int error);
struct i915_request *i915_request_mark_eio(struct i915_request *rq);
struct i915_request *__i915_request_commit(struct i915_request *request);
drm/i915: Push the wakeref->count deferral to the backend If the backend wishes to defer the wakeref parking, make it responsible for unlocking the wakeref (i.e. bumping the counter). This allows it to time the unlock much more carefully in case it happens to needs the wakeref to be active during its deferral. For instance, during engine parking we may choose to emit an idle barrier (a request). To do so, we borrow the engine->kernel_context timeline and to ensure exclusive access we keep the engine->wakeref.count as 0. However, to submit that request to HW may require a intel_engine_pm_get() (e.g. to keep the submission tasklet alive) and before we allow that we have to rewake our wakeref to avoid a recursive deadlock. <4> [257.742916] IRQs not enabled as expected <4> [257.742930] WARNING: CPU: 0 PID: 0 at kernel/softirq.c:169 __local_bh_enable_ip+0xa9/0x100 <4> [257.742936] Modules linked in: vgem snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic i915 btusb btrtl btbcm btintel snd_hda_intel snd_intel_nhlt bluetooth snd_hda_codec coretemp snd_hwdep crct10dif_pclmul snd_hda_core crc32_pclmul ecdh_generic ecc ghash_clmulni_intel snd_pcm r8169 realtek lpc_ich prime_numbers i2c_hid <4> [257.742991] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G U W 5.3.0-rc3-g5d0a06cd532c-drmtip_340+ #1 <4> [257.742998] Hardware name: GIGABYTE GB-BXBT-1900/MZBAYAB-00, BIOS F6 02/17/2015 <4> [257.743008] RIP: 0010:__local_bh_enable_ip+0xa9/0x100 <4> [257.743017] Code: 37 5b 5d c3 8b 80 50 08 00 00 85 c0 75 a9 80 3d 0b be 25 01 00 75 a0 48 c7 c7 f3 0c 06 ac c6 05 fb bd 25 01 01 e8 77 84 ff ff <0f> 0b eb 89 48 89 ef e8 3b 41 06 00 eb 98 e8 e4 5c f4 ff 5b 5d c3 <4> [257.743025] RSP: 0018:ffffa78600003cb8 EFLAGS: 00010086 <4> [257.743035] RAX: 0000000000000000 RBX: 0000000000000200 RCX: 0000000000010302 <4> [257.743042] RDX: 0000000080010302 RSI: 0000000000000000 RDI: 00000000ffffffff <4> [257.743050] RBP: ffffffffc0494bb3 R08: 0000000000000000 R09: 0000000000000001 <4> [257.743058] R10: 0000000014c8f0e9 R11: 00000000fee2ff8e R12: ffffa23ba8c38008 <4> [257.743065] R13: ffffa23bacc579c0 R14: ffffa23bb7db0f60 R15: ffffa23b9cc8c430 <4> [257.743074] FS: 0000000000000000(0000) GS:ffffa23bbba00000(0000) knlGS:0000000000000000 <4> [257.743082] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4> [257.743089] CR2: 00007fe477b20778 CR3: 000000011f72a000 CR4: 00000000001006f0 <4> [257.743096] Call Trace: <4> [257.743104] <IRQ> <4> [257.743265] __i915_request_commit+0x240/0x5d0 [i915] <4> [257.743427] ? __i915_request_create+0x228/0x4c0 [i915] <4> [257.743584] __engine_park+0x64/0x250 [i915] <4> [257.743730] ____intel_wakeref_put_last+0x1c/0x70 [i915] <4> [257.743878] i915_sample+0x2ee/0x310 [i915] <4> [257.744030] ? i915_pmu_cpu_offline+0xb0/0xb0 [i915] <4> [257.744040] __hrtimer_run_queues+0x11e/0x4b0 <4> [257.744068] hrtimer_interrupt+0xea/0x250 <4> [257.744079] ? lockdep_hardirqs_off+0x79/0xd0 <4> [257.744101] smp_apic_timer_interrupt+0x96/0x280 <4> [257.744114] apic_timer_interrupt+0xf/0x20 <4> [257.744125] RIP: 0010:__do_softirq+0xb3/0x4ae v2: Keep the priority_hint assert v3: That assert was desperately trying to point out my bug. Sorry, little assert. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111378 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190813190705.23869-1-chris@chris-wilson.co.uk
2019-08-13 20:07:05 +01:00
void __i915_request_queue(struct i915_request *rq,
const struct i915_sched_attr *attr);
void __i915_request_queue_bh(struct i915_request *rq);
bool i915_request_retire(struct i915_request *rq);
void i915_request_retire_upto(struct i915_request *rq);
static inline struct i915_request *
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 13:00:45 +01:00
to_request(struct dma_fence *fence)
{
/* We assume that NULL fence/request are interoperable */
BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
return container_of(fence, struct i915_request, fence);
}
static inline struct i915_request *
i915_request_get(struct i915_request *rq)
{
return to_request(dma_fence_get(&rq->fence));
}
static inline struct i915_request *
i915_request_get_rcu(struct i915_request *rq)
drm/i915: Enable lockless lookup of request tracking via RCU If we enable RCU for the requests (providing a grace period where we can inspect a "dead" request before it is freed), we can allow callers to carefully perform lockless lookup of an active request. However, by enabling deferred freeing of requests, we can potentially hog a lot of memory when dealing with tens of thousands of requests per second - with a quick insertion of a synchronize_rcu() inside our shrinker callback, that issue disappears. v2: Currently, it is our responsibility to handle reclaim i.e. to avoid hogging memory with the delayed slab frees. At the moment, we wait for a grace period in the shrinker, and block for all RCU callbacks on oom. Suggested alternatives focus on flushing our RCU callback when we have a certain number of outstanding request frees, and blocking on that flush after a second high watermark. (So rather than wait for the system to run out of memory, we stop issuing requests - both are nondeterministic.) Paul E. McKenney wrote: Another approach is synchronize_rcu() after some largish number of requests. The advantage of this approach is that it throttles the production of callbacks at the source. The corresponding disadvantage is that it slows things up. Another approach is to use call_rcu(), but if the previous call_rcu() is still in flight, block waiting for it. Yet another approach is the get_state_synchronize_rcu() / cond_synchronize_rcu() pair. The idea is to do something like this: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); You would of course do an initial get_state_synchronize_rcu() to get things going. This would not block unless there was less than one grace period's worth of time between invocations. But this assumes a busy system, where there is almost always a grace period in flight. But you can make that happen as follows: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); call_rcu(&my_rcu_head, noop_function); Note that you need additional code to make sure that the old callback has completed before doing a new one. Setting and clearing a flag with appropriate memory ordering control suffices (e.g,. smp_load_acquire() and smp_store_release()). v3: More comments on compiler and processor order of operations within the RCU lookup and discover we can use rcu_access_pointer() here instead. v4: Wrap i915_gem_active_get_rcu() to take the rcu_read_lock itself. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470324762-2545-25-git-send-email-chris@chris-wilson.co.uk
2016-08-04 16:32:41 +01:00
{
return to_request(dma_fence_get_rcu(&rq->fence));
drm/i915: Enable lockless lookup of request tracking via RCU If we enable RCU for the requests (providing a grace period where we can inspect a "dead" request before it is freed), we can allow callers to carefully perform lockless lookup of an active request. However, by enabling deferred freeing of requests, we can potentially hog a lot of memory when dealing with tens of thousands of requests per second - with a quick insertion of a synchronize_rcu() inside our shrinker callback, that issue disappears. v2: Currently, it is our responsibility to handle reclaim i.e. to avoid hogging memory with the delayed slab frees. At the moment, we wait for a grace period in the shrinker, and block for all RCU callbacks on oom. Suggested alternatives focus on flushing our RCU callback when we have a certain number of outstanding request frees, and blocking on that flush after a second high watermark. (So rather than wait for the system to run out of memory, we stop issuing requests - both are nondeterministic.) Paul E. McKenney wrote: Another approach is synchronize_rcu() after some largish number of requests. The advantage of this approach is that it throttles the production of callbacks at the source. The corresponding disadvantage is that it slows things up. Another approach is to use call_rcu(), but if the previous call_rcu() is still in flight, block waiting for it. Yet another approach is the get_state_synchronize_rcu() / cond_synchronize_rcu() pair. The idea is to do something like this: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); You would of course do an initial get_state_synchronize_rcu() to get things going. This would not block unless there was less than one grace period's worth of time between invocations. But this assumes a busy system, where there is almost always a grace period in flight. But you can make that happen as follows: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); call_rcu(&my_rcu_head, noop_function); Note that you need additional code to make sure that the old callback has completed before doing a new one. Setting and clearing a flag with appropriate memory ordering control suffices (e.g,. smp_load_acquire() and smp_store_release()). v3: More comments on compiler and processor order of operations within the RCU lookup and discover we can use rcu_access_pointer() here instead. v4: Wrap i915_gem_active_get_rcu() to take the rcu_read_lock itself. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470324762-2545-25-git-send-email-chris@chris-wilson.co.uk
2016-08-04 16:32:41 +01:00
}
static inline void
i915_request_put(struct i915_request *rq)
{
dma_fence_put(&rq->fence);
}
int i915_request_await_object(struct i915_request *to,
struct drm_i915_gem_object *obj,
bool write);
int i915_request_await_dma_fence(struct i915_request *rq,
struct dma_fence *fence);
int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps);
int i915_request_await_execution(struct i915_request *rq,
struct dma_fence *fence);
void i915_request_add(struct i915_request *rq);
bool __i915_request_submit(struct i915_request *request);
void i915_request_submit(struct i915_request *request);
void __i915_request_unsubmit(struct i915_request *request);
void i915_request_unsubmit(struct i915_request *request);
void i915_request_cancel(struct i915_request *rq, int error);
long i915_request_wait_timeout(struct i915_request *rq,
unsigned int flags,
long timeout)
__attribute__((nonnull(1)));
long i915_request_wait(struct i915_request *rq,
unsigned int flags,
long timeout)
drm/i915: Refactor activity tracking for requests With the introduction of requests, we amplified the number of atomic refcounted objects we use and update every execbuffer; from none to several references, and a set of references that need to be changed. We also introduced interesting side-effects in the order of retiring requests and objects. Instead of independently tracking the last request for an object, track the active objects for each request. The object will reside in the buffer list of its most recent active request and so we reduce the kref interchange to a list_move. Now retirements are entirely driven by the request, dramatically simplifying activity tracking on the object themselves, and removing the ambiguity between retiring objects and retiring requests. Furthermore with the consolidation of managing the activity tracking centrally, we can look forward to using RCU to enable lockless lookup of the current active requests for an object. In the future, we will be able to query the status or wait upon rendering to an object without even touching the struct_mutex BKL. All told, less code, simpler and faster, and more extensible. v2: Add a typedef for the function pointer for convenience later. v3: Make the noop retirement callback explicit. Allow passing NULL to the init_request_active() which is expanded to a common noop function. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 07:52:35 +01:00
__attribute__((nonnull(1)));
#define I915_WAIT_INTERRUPTIBLE BIT(0)
#define I915_WAIT_PRIORITY BIT(1) /* small priority bump for the request */
#define I915_WAIT_ALL BIT(2) /* used by i915_gem_object_wait() */
drm/i915: Refactor activity tracking for requests With the introduction of requests, we amplified the number of atomic refcounted objects we use and update every execbuffer; from none to several references, and a set of references that need to be changed. We also introduced interesting side-effects in the order of retiring requests and objects. Instead of independently tracking the last request for an object, track the active objects for each request. The object will reside in the buffer list of its most recent active request and so we reduce the kref interchange to a list_move. Now retirements are entirely driven by the request, dramatically simplifying activity tracking on the object themselves, and removing the ambiguity between retiring objects and retiring requests. Furthermore with the consolidation of managing the activity tracking centrally, we can look forward to using RCU to enable lockless lookup of the current active requests for an object. In the future, we will be able to query the status or wait upon rendering to an object without even touching the struct_mutex BKL. All told, less code, simpler and faster, and more extensible. v2: Add a typedef for the function pointer for convenience later. v3: Make the noop retirement callback explicit. Allow passing NULL to the init_request_active() which is expanded to a common noop function. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 07:52:35 +01:00
void i915_request_show(struct drm_printer *m,
const struct i915_request *rq,
const char *prefix,
int indent);
static inline bool i915_request_signaled(const struct i915_request *rq)
{
/* The request may live longer than its HWSP, so check flags first! */
return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
}
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
static inline bool i915_request_is_active(const struct i915_request *rq)
{
return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
}
static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
{
return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
}
static inline bool
i915_request_has_initial_breadcrumb(const struct i915_request *rq)
{
return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
}
/**
* Returns true if seq1 is later than seq2.
*/
static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
{
return (s32)(seq1 - seq2) >= 0;
}
static inline u32 __hwsp_seqno(const struct i915_request *rq)
{
drm/i915: Mark up unlocked update of i915_request.hwsp_seqno During i915_request_retire() we decouple the i915_request.hwsp_seqno from the intel_timeline so that it may be freed before the request is released. However, we need to warn the compiler that the pointer may update under its nose. [ 171.438899] BUG: KCSAN: data-race in i915_request_await_dma_fence [i915] / i915_request_retire [i915] [ 171.438920] [ 171.438932] write to 0xffff8881e7e28ce0 of 8 bytes by task 148 on cpu 2: [ 171.439174] i915_request_retire+0x1ea/0x660 [i915] [ 171.439408] retire_requests+0x7a/0xd0 [i915] [ 171.439640] engine_retire+0xa1/0xe0 [i915] [ 171.439657] process_one_work+0x3b1/0x690 [ 171.439671] worker_thread+0x80/0x670 [ 171.439685] kthread+0x19a/0x1e0 [ 171.439701] ret_from_fork+0x1f/0x30 [ 171.439721] [ 171.439739] read to 0xffff8881e7e28ce0 of 8 bytes by task 696 on cpu 1: [ 171.439990] i915_request_await_dma_fence+0x162/0x520 [i915] [ 171.440230] i915_request_await_object+0x2fe/0x470 [i915] [ 171.440467] i915_gem_do_execbuffer+0x45dc/0x4c20 [i915] [ 171.440704] i915_gem_execbuffer2_ioctl+0x2c3/0x580 [i915] [ 171.440722] drm_ioctl_kernel+0xe4/0x120 [ 171.440736] drm_ioctl+0x297/0x4c7 [ 171.440750] ksys_ioctl+0x89/0xb0 [ 171.440766] __x64_sys_ioctl+0x42/0x60 [ 171.440788] do_syscall_64+0x6e/0x2c0 [ 171.440802] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200309110934.868-1-chris@chris-wilson.co.uk
2020-03-09 11:09:30 +00:00
const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
return READ_ONCE(*hwsp);
}
/**
* hwsp_seqno - the current breadcrumb value in the HW status page
* @rq: the request, to chase the relevant HW status page
*
* The emphasis in naming here is that hwsp_seqno() is not a property of the
* request, but an indication of the current HW state (associated with this
* request). Its value will change as the GPU executes more requests.
*
* Returns the current breadcrumb value in the associated HW status page (or
* the local timeline's equivalent) for this request. The request itself
* has the associated breadcrumb value of rq->fence.seqno, when the HW
* status page has that breadcrumb or later, this request is complete.
*/
static inline u32 hwsp_seqno(const struct i915_request *rq)
{
u32 seqno;
rcu_read_lock(); /* the HWSP may be freed at runtime */
seqno = __hwsp_seqno(rq);
rcu_read_unlock();
return seqno;
}
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
static inline bool __i915_request_has_started(const struct i915_request *rq)
{
2020-12-18 12:24:21 +00:00
return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
}
/**
* i915_request_started - check if the request has begun being executed
* @rq: the request
*
drm/i915: Use HW semaphores for inter-engine synchronisation on gen8+ Having introduced per-context seqno, we now have a means to identity progress across the system without feel of rollback as befell the global_seqno. That is we can program a MI_SEMAPHORE_WAIT operation in advance of submission safe in the knowledge that our target seqno and address is stable. However, since we are telling the GPU to busy-spin on the target address until it matches the signaling seqno, we only want to do so when we are sure that busy-spin will be completed quickly. To achieve this we only submit the request to HW once the signaler is itself executing (modulo preemption causing us to wait longer), and we only do so for default and above priority requests (so that idle priority tasks never themselves hog the GPU waiting for others). As might be reasonably expected, HW semaphores excel in inter-engine synchronisation microbenchmarks (where the 3x reduced latency / increased throughput more than offset the power cost of spinning on a second ring) and have significant improvement (can be up to ~10%, most see no change) for single clients that utilize multiple engines (typically media players and transcoders), without regressing multiple clients that can saturate the system or changing the power envelope dramatically. v3: Drop the older NEQ branch, now we pin the signaler's HWSP anyway. v4: Tell the world and include it as part of scheduler caps. Testcase: igt/gem_exec_whisper Testcase: igt/benchmarks/gem_wsim Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190301170901.8340-3-chris@chris-wilson.co.uk
2019-03-01 17:09:00 +00:00
* If the timeline is not using initial breadcrumbs, a request is
* considered started if the previous request on its timeline (i.e.
* context) has been signaled.
*
* If the timeline is using semaphores, it will also be emitting an
* "initial breadcrumb" after the semaphores are complete and just before
* it began executing the user payload. A request can therefore be active
* on the HW and not yet started as it is still busywaiting on its
* dependencies (via HW semaphores).
*
* If the request has started, its dependencies will have been signaled
* (either by fences or by semaphores) and it will have begun processing
* the user payload.
*
* However, even if a request has started, it may have been preempted and
* so no longer active, or it may have already completed.
*
* See also i915_request_is_active().
*
* Returns true if the request has begun executing the user payload, or
* has completed:
*/
static inline bool i915_request_started(const struct i915_request *rq)
{
2020-12-18 12:24:21 +00:00
bool result;
if (i915_request_signaled(rq))
return true;
2020-12-18 12:24:21 +00:00
result = true;
rcu_read_lock(); /* the HWSP may be freed at runtime */
if (likely(!i915_request_signaled(rq)))
/* Remember: started but may have since been preempted! */
result = __i915_request_has_started(rq);
rcu_read_unlock();
return result;
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
}
/**
* i915_request_is_running - check if the request may actually be executing
* @rq: the request
*
* Returns true if the request is currently submitted to hardware, has passed
* its start point (i.e. the context is setup and not busywaiting). Note that
* it may no longer be running by the time the function returns!
*/
static inline bool i915_request_is_running(const struct i915_request *rq)
{
2020-12-18 12:24:21 +00:00
bool result;
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-29 20:52:29 +00:00
if (!i915_request_is_active(rq))
return false;
2020-12-18 12:24:21 +00:00
rcu_read_lock();
result = __i915_request_has_started(rq) && i915_request_is_active(rq);
rcu_read_unlock();
return result;
}
/**
* i915_request_is_ready - check if the request is ready for execution
* @rq: the request
*
* Upon construction, the request is instructed to wait upon various
* signals before it is ready to be executed by the HW. That is, we do
* not want to start execution and read data before it is written. In practice,
* this is controlled with a mixture of interrupts and semaphores. Once
* the submit fence is completed, the backend scheduler will place the
* request into its queue and from there submit it for execution. So we
* can detect when a request is eligible for execution (and is under control
* of the scheduler) by querying where it is in any of the scheduler's lists.
*
* Returns true if the request is ready for execution (it may be inflight),
* false otherwise.
*/
static inline bool i915_request_is_ready(const struct i915_request *rq)
{
return !list_empty(&rq->sched.link);
}
2020-12-18 12:24:21 +00:00
static inline bool __i915_request_is_complete(const struct i915_request *rq)
{
return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
}
static inline bool i915_request_completed(const struct i915_request *rq)
{
2020-12-18 12:24:21 +00:00
bool result;
if (i915_request_signaled(rq))
return true;
2020-12-18 12:24:21 +00:00
result = true;
rcu_read_lock(); /* the HWSP may be freed at runtime */
if (likely(!i915_request_signaled(rq)))
result = __i915_request_is_complete(rq);
rcu_read_unlock();
return result;
}
static inline void i915_request_mark_complete(struct i915_request *rq)
{
drm/i915: Mark up unlocked update of i915_request.hwsp_seqno During i915_request_retire() we decouple the i915_request.hwsp_seqno from the intel_timeline so that it may be freed before the request is released. However, we need to warn the compiler that the pointer may update under its nose. [ 171.438899] BUG: KCSAN: data-race in i915_request_await_dma_fence [i915] / i915_request_retire [i915] [ 171.438920] [ 171.438932] write to 0xffff8881e7e28ce0 of 8 bytes by task 148 on cpu 2: [ 171.439174] i915_request_retire+0x1ea/0x660 [i915] [ 171.439408] retire_requests+0x7a/0xd0 [i915] [ 171.439640] engine_retire+0xa1/0xe0 [i915] [ 171.439657] process_one_work+0x3b1/0x690 [ 171.439671] worker_thread+0x80/0x670 [ 171.439685] kthread+0x19a/0x1e0 [ 171.439701] ret_from_fork+0x1f/0x30 [ 171.439721] [ 171.439739] read to 0xffff8881e7e28ce0 of 8 bytes by task 696 on cpu 1: [ 171.439990] i915_request_await_dma_fence+0x162/0x520 [i915] [ 171.440230] i915_request_await_object+0x2fe/0x470 [i915] [ 171.440467] i915_gem_do_execbuffer+0x45dc/0x4c20 [i915] [ 171.440704] i915_gem_execbuffer2_ioctl+0x2c3/0x580 [i915] [ 171.440722] drm_ioctl_kernel+0xe4/0x120 [ 171.440736] drm_ioctl+0x297/0x4c7 [ 171.440750] ksys_ioctl+0x89/0xb0 [ 171.440766] __x64_sys_ioctl+0x42/0x60 [ 171.440788] do_syscall_64+0x6e/0x2c0 [ 171.440802] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200309110934.868-1-chris@chris-wilson.co.uk
2020-03-09 11:09:30 +00:00
WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
(u32 *)&rq->fence.seqno);
}
static inline bool i915_request_has_waitboost(const struct i915_request *rq)
{
return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
}
static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
{
/* Preemption should only be disabled very rarely */
return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
}
static inline bool i915_request_has_sentinel(const struct i915_request *rq)
{
return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
}
static inline bool i915_request_on_hold(const struct i915_request *rq)
{
return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
}
static inline void i915_request_set_hold(struct i915_request *rq)
{
set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
}
static inline void i915_request_clear_hold(struct i915_request *rq)
{
clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
}
drm/i915: Mark i915_request.timeline as a volatile, rcu pointer The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-09-19 12:19:10 +01:00
static inline struct intel_timeline *
i915_request_timeline(const struct i915_request *rq)
drm/i915: Mark i915_request.timeline as a volatile, rcu pointer The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-09-19 12:19:10 +01:00
{
/* Valid only while the request is being constructed (or retired). */
return rcu_dereference_protected(rq->timeline,
drm/i915: Don't disable interrupts and pretend a lock as been acquired in __timeline_mark_lock(). This is a revert of commits d67739268cf0e ("drm/i915/gt: Mark up the nested engine-pm timeline lock as irqsafe") 6c69a45445af9 ("drm/i915/gt: Mark context->active_count as protected by timeline->mutex") 6dcb85a0ad990 ("drm/i915: Hold irq-off for the entire fake lock period") The existing code leads to a different behaviour depending on whether lockdep is enabled or not. Any following lock that is acquired without disabling interrupts (but needs to) will not be noticed by lockdep. This it not just a lockdep annotation but is used but an actual mutex_t that is properly used as a lock but in case of __timeline_mark_lock() lockdep is only told that it is acquired but no lock has been acquired. It appears that its purpose is just satisfy the lockdep_assert_held() check in intel_context_mark_active(). The other problem with disabling interrupts is that on PREEMPT_RT interrupts are also disabled which leads to problems for instance later during memory allocation. Add a CONTEXT_IS_PARKING bit to intel_engine_cs and set_bit/clear_bit it instead of mutex_acquire/mutex_release. Use test_bit in the two identified spots which relied on the lockdep annotation. Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/YbO8Ie1Nj7XcQPNQ@linutronix.de
2021-12-10 21:44:17 +01:00
lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) ||
test_bit(CONTEXT_IS_PARKING, &rq->context->flags));
drm/i915: Mark i915_request.timeline as a volatile, rcu pointer The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-09-19 12:19:10 +01:00
}
static inline struct i915_gem_context *
i915_request_gem_context(const struct i915_request *rq)
{
/* Valid only while the request is being constructed (or retired). */
return rcu_dereference_protected(rq->context->gem_context, true);
}
drm/i915: Mark i915_request.timeline as a volatile, rcu pointer The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-09-19 12:19:10 +01:00
static inline struct intel_timeline *
i915_request_active_timeline(const struct i915_request *rq)
drm/i915: Mark i915_request.timeline as a volatile, rcu pointer The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-09-19 12:19:10 +01:00
{
/*
* When in use during submission, we are protected by a guarantee that
* the context/timeline is pinned and must remain pinned until after
* this submission.
*/
return rcu_dereference_protected(rq->timeline,
lockdep_is_held(&rq->engine->sched_engine->lock));
drm/i915: Mark i915_request.timeline as a volatile, rcu pointer The request->timeline is only valid until the request is retired (i.e. before it is completed). Upon retiring the request, the context may be unpinned and freed, and along with it the timeline may be freed. We therefore need to be very careful when chasing rq->timeline that the pointer does not disappear beneath us. The vast majority of users are in a protected context, either during request construction or retirement, where the timeline->mutex is held and the timeline cannot disappear. It is those few off the beaten path (where we access a second timeline) that need extra scrutiny -- to be added in the next patch after first adding the warnings about dangerous access. One complication, where we cannot use the timeline->mutex itself, is during request submission onto hardware (under spinlocks). Here, we want to check on the timeline to finalize the breadcrumb, and so we need to impose a second rule to ensure that the request->timeline is indeed valid. As we are submitting the request, it's context and timeline must be pinned, as it will be used by the hardware. Since it is pinned, we know the request->timeline must still be valid, and we cannot submit the idle barrier until after we release the engine->active.lock, ergo while submitting and holding that spinlock, a second thread cannot release the timeline. v2: Don't be lazy inside selftests; hold the timeline->mutex for as long as we need it, and tidy up acquiring the timeline with a bit of refactoring (i915_active_add_request) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
2019-09-19 12:19:10 +01:00
}
drm/i915: Do not share hwsp across contexts any more, v8. Instead of sharing pages with breadcrumbs, give each timeline a single page. This allows unrelated timelines not to share locks any more during command submission. As an additional benefit, seqno wraparound no longer requires i915_vma_pin, which means we no longer need to worry about a potential -EDEADLK at a point where we are ready to submit. Changes since v1: - Fix erroneous i915_vma_acquire that should be a i915_vma_release (ickle). - Extra check for completion in intel_read_hwsp(). Changes since v2: - Fix inconsistent indent in hwsp_alloc() (kbuild) - memset entire cacheline to 0. Changes since v3: - Do same in intel_timeline_reset_seqno(), and clflush for good measure. Changes since v4: - Use refcounting on timeline, instead of relying on i915_active. - Fix waiting on kernel requests. Changes since v5: - Bump amount of slots to maximum (256), for best wraparounds. - Add hwsp_offset to i915_request to fix potential wraparound hang. - Ensure timeline wrap test works with the changes. - Assign hwsp in intel_timeline_read_hwsp() within the rcu lock to fix a hang. Changes since v6: - Rename i915_request_active_offset to i915_request_active_seqno(), and elaborate the function. (tvrtko) Changes since v7: - Move hunk to where it belongs. (jekstrand) - Replace CACHELINE_BYTES with TIMELINE_SEQNO_BYTES. (jekstrand) Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Thomas Hellström <thomas.hellstrom@intel.com> #v1 Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20210323155059.628690-2-maarten.lankhorst@linux.intel.com
2021-03-23 16:49:50 +01:00
static inline u32
i915_request_active_seqno(const struct i915_request *rq)
{
u32 hwsp_phys_base =
page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
/*
* Because of wraparound, we cannot simply take tl->hwsp_offset,
* but instead use the fact that the relative for vaddr is the
* offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
* and combine them with the relative offset in rq->hwsp_seqno.
*
* As rw->hwsp_seqno is rewritten when signaled, this only works
* when the request isn't signaled yet, but at that point you
* no longer need the offset.
*/
return hwsp_phys_base + hwsp_relative_offset;
}
bool
i915_request_active_engine(struct i915_request *rq,
struct intel_engine_cs **active);
void i915_request_notify_execute_cb_imm(struct i915_request *rq);
enum i915_request_state {
I915_REQUEST_UNKNOWN = 0,
I915_REQUEST_COMPLETE,
I915_REQUEST_PENDING,
I915_REQUEST_QUEUED,
I915_REQUEST_ACTIVE,
};
enum i915_request_state i915_test_request_state(struct i915_request *rq);
void i915_request_module_exit(void);
int i915_request_module_init(void);
#endif /* I915_REQUEST_H */