2019-05-19 13:08:20 +01:00
// SPDX-License-Identifier: GPL-2.0-only
2020-06-04 16:50:08 -07:00
# define pr_fmt(fmt) "prime numbers: " fmt
2016-12-22 14:45:14 +00:00
# include <linux/module.h>
# include <linux/mutex.h>
# include <linux/prime_numbers.h>
# include <linux/slab.h>
# define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
struct primes {
struct rcu_head rcu ;
unsigned long last , sz ;
unsigned long primes [ ] ;
} ;
# if BITS_PER_LONG == 64
static const struct primes small_primes = {
. last = 61 ,
. sz = 64 ,
. primes = {
BIT ( 2 ) |
BIT ( 3 ) |
BIT ( 5 ) |
BIT ( 7 ) |
BIT ( 11 ) |
BIT ( 13 ) |
BIT ( 17 ) |
BIT ( 19 ) |
BIT ( 23 ) |
BIT ( 29 ) |
BIT ( 31 ) |
BIT ( 37 ) |
BIT ( 41 ) |
BIT ( 43 ) |
BIT ( 47 ) |
BIT ( 53 ) |
BIT ( 59 ) |
BIT ( 61 )
}
} ;
# elif BITS_PER_LONG == 32
static const struct primes small_primes = {
. last = 31 ,
. sz = 32 ,
. primes = {
BIT ( 2 ) |
BIT ( 3 ) |
BIT ( 5 ) |
BIT ( 7 ) |
BIT ( 11 ) |
BIT ( 13 ) |
BIT ( 17 ) |
BIT ( 19 ) |
BIT ( 23 ) |
BIT ( 29 ) |
BIT ( 31 )
}
} ;
# else
# error "unhandled BITS_PER_LONG"
# endif
static DEFINE_MUTEX ( lock ) ;
static const struct primes __rcu * primes = RCU_INITIALIZER ( & small_primes ) ;
static unsigned long selftest_max ;
static bool slow_is_prime_number ( unsigned long x )
{
unsigned long y = int_sqrt ( x ) ;
while ( y > 1 ) {
if ( ( x % y ) = = 0 )
break ;
y - - ;
}
return y = = 1 ;
}
static unsigned long slow_next_prime_number ( unsigned long x )
{
while ( x < ULONG_MAX & & ! slow_is_prime_number ( + + x ) )
;
return x ;
}
static unsigned long clear_multiples ( unsigned long x ,
unsigned long * p ,
unsigned long start ,
unsigned long end )
{
unsigned long m ;
m = 2 * x ;
if ( m < start )
m = roundup ( start , x ) ;
while ( m < end ) {
__clear_bit ( m , p ) ;
m + = x ;
}
return x ;
}
static bool expand_to_next_prime ( unsigned long x )
{
const struct primes * p ;
struct primes * new ;
unsigned long sz , y ;
/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
* there is always at least one prime p between n and 2 n - 2.
* Equivalently , if n > 1 , then there is always at least one prime p
* such that n < p < 2 n .
*
* http : //mathworld.wolfram.com/BertrandsPostulate.html
* https : //en.wikipedia.org/wiki/Bertrand's_postulate
*/
sz = 2 * x ;
if ( sz < x )
return false ;
sz = round_up ( sz , BITS_PER_LONG ) ;
2017-01-13 23:51:19 +00:00
new = kmalloc ( sizeof ( * new ) + bitmap_size ( sz ) ,
GFP_KERNEL | __GFP_NOWARN ) ;
2016-12-22 14:45:14 +00:00
if ( ! new )
return false ;
mutex_lock ( & lock ) ;
p = rcu_dereference_protected ( primes , lockdep_is_held ( & lock ) ) ;
if ( x < p - > last ) {
kfree ( new ) ;
goto unlock ;
}
/* Where memory permits, track the primes using the
* Sieve of Eratosthenes . The sieve is to remove all multiples of known
* primes from the set , what remains in the set is therefore prime .
*/
bitmap_fill ( new - > primes , sz ) ;
bitmap_copy ( new - > primes , p - > primes , p - > sz ) ;
for ( y = 2UL ; y < sz ; y = find_next_bit ( new - > primes , sz , y + 1 ) )
new - > last = clear_multiples ( y , new - > primes , p - > sz , sz ) ;
new - > sz = sz ;
BUG_ON ( new - > last < = x ) ;
rcu_assign_pointer ( primes , new ) ;
if ( p ! = & small_primes )
kfree_rcu ( ( struct primes * ) p , rcu ) ;
unlock :
mutex_unlock ( & lock ) ;
return true ;
}
static void free_primes ( void )
{
const struct primes * p ;
mutex_lock ( & lock ) ;
p = rcu_dereference_protected ( primes , lockdep_is_held ( & lock ) ) ;
if ( p ! = & small_primes ) {
rcu_assign_pointer ( primes , & small_primes ) ;
kfree_rcu ( ( struct primes * ) p , rcu ) ;
}
mutex_unlock ( & lock ) ;
}
/**
* next_prime_number - return the next prime number
* @ x : the starting point for searching to test
*
* A prime number is an integer greater than 1 that is only divisible by
* itself and 1. The set of prime numbers is computed using the Sieve of
* Eratoshenes ( on finding a prime , all multiples of that prime are removed
* from the set ) enabling a fast lookup of the next prime number larger than
* @ x . If the sieve fails ( memory limitation ) , the search falls back to using
* slow trial - divison , up to the value of ULONG_MAX ( which is reported as the
* final prime as a sentinel ) .
*
* Returns : the next prime number larger than @ x
*/
unsigned long next_prime_number ( unsigned long x )
{
const struct primes * p ;
rcu_read_lock ( ) ;
p = rcu_dereference ( primes ) ;
while ( x > = p - > last ) {
rcu_read_unlock ( ) ;
if ( ! expand_to_next_prime ( x ) )
return slow_next_prime_number ( x ) ;
rcu_read_lock ( ) ;
p = rcu_dereference ( primes ) ;
}
x = find_next_bit ( p - > primes , p - > last , x + 1 ) ;
rcu_read_unlock ( ) ;
return x ;
}
EXPORT_SYMBOL ( next_prime_number ) ;
/**
* is_prime_number - test whether the given number is prime
* @ x : the number to test
*
* A prime number is an integer greater than 1 that is only divisible by
* itself and 1. Internally a cache of prime numbers is kept ( to speed up
* searching for sequential primes , see next_prime_number ( ) ) , but if the number
* falls outside of that cache , its primality is tested using trial - divison .
*
* Returns : true if @ x is prime , false for composite numbers .
*/
bool is_prime_number ( unsigned long x )
{
const struct primes * p ;
bool result ;
rcu_read_lock ( ) ;
p = rcu_dereference ( primes ) ;
while ( x > = p - > sz ) {
rcu_read_unlock ( ) ;
if ( ! expand_to_next_prime ( x ) )
return slow_is_prime_number ( x ) ;
rcu_read_lock ( ) ;
p = rcu_dereference ( primes ) ;
}
result = test_bit ( x , p - > primes ) ;
rcu_read_unlock ( ) ;
return result ;
}
EXPORT_SYMBOL ( is_prime_number ) ;
static void dump_primes ( void )
{
const struct primes * p ;
char * buf ;
buf = kmalloc ( PAGE_SIZE , GFP_KERNEL ) ;
rcu_read_lock ( ) ;
p = rcu_dereference ( primes ) ;
if ( buf )
bitmap_print_to_pagebuf ( true , buf , p - > primes , p - > sz ) ;
2020-06-04 16:50:08 -07:00
pr_info ( " primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s \n " ,
2016-12-22 14:45:14 +00:00
p - > last , p - > sz , p - > primes [ BITS_TO_LONGS ( p - > sz ) - 1 ] , buf ) ;
rcu_read_unlock ( ) ;
kfree ( buf ) ;
}
static int selftest ( unsigned long max )
{
unsigned long x , last ;
if ( ! max )
return 0 ;
for ( last = 0 , x = 2 ; x < max ; x + + ) {
bool slow = slow_is_prime_number ( x ) ;
bool fast = is_prime_number ( x ) ;
if ( slow ! = fast ) {
2020-06-04 16:50:08 -07:00
pr_err ( " inconsistent result for is-prime(%lu): slow=%s, fast=%s! \n " ,
2016-12-22 14:45:14 +00:00
x , slow ? " yes " : " no " , fast ? " yes " : " no " ) ;
goto err ;
}
if ( ! slow )
continue ;
if ( next_prime_number ( last ) ! = x ) {
2020-06-04 16:50:08 -07:00
pr_err ( " incorrect result for next-prime(%lu): expected %lu, got %lu \n " ,
2016-12-22 14:45:14 +00:00
last , x , next_prime_number ( last ) ) ;
goto err ;
}
last = x ;
}
2020-06-04 16:50:08 -07:00
pr_info ( " %s(%lu) passed, last prime was %lu \n " , __func__ , x , last ) ;
2016-12-22 14:45:14 +00:00
return 0 ;
err :
dump_primes ( ) ;
return - EINVAL ;
}
static int __init primes_init ( void )
{
return selftest ( selftest_max ) ;
}
static void __exit primes_exit ( void )
{
free_primes ( ) ;
}
module_init ( primes_init ) ;
module_exit ( primes_exit ) ;
module_param_named ( selftest , selftest_max , ulong , 0400 ) ;
MODULE_AUTHOR ( " Intel Corporation " ) ;
MODULE_LICENSE ( " GPL " ) ;