linux/scripts/Makefile

61 lines
2.0 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
# SPDX-License-Identifier: GPL-2.0
###
# scripts contains sources for various helper programs used throughout
# the kernel for the build process.
hostprogs-always-$(CONFIG_KALLSYMS) += kallsyms
hostprogs-always-$(BUILD_C_RECORDMCOUNT) += recordmcount
hostprogs-always-$(CONFIG_BUILDTIME_TABLE_SORT) += sorttable
hostprogs-always-$(CONFIG_ASN1) += asn1_compiler
hostprogs-always-$(CONFIG_MODULE_SIG_FORMAT) += sign-file
hostprogs-always-$(CONFIG_SYSTEM_EXTRA_CERTIFICATE) += insert-sys-cert
rust: support running Rust documentation tests as KUnit ones Rust has documentation tests: these are typically examples of usage of any item (e.g. function, struct, module...). They are very convenient because they are just written alongside the documentation. For instance: /// Sums two numbers. /// /// ``` /// assert_eq!(mymod::f(10, 20), 30); /// ``` pub fn f(a: i32, b: i32) -> i32 { a + b } In userspace, the tests are collected and run via `rustdoc`. Using the tool as-is would be useful already, since it allows to compile-test most tests (thus enforcing they are kept in sync with the code they document) and run those that do not depend on in-kernel APIs. However, by transforming the tests into a KUnit test suite, they can also be run inside the kernel. Moreover, the tests get to be compiled as other Rust kernel objects instead of targeting userspace. On top of that, the integration with KUnit means the Rust support gets to reuse the existing testing facilities. For instance, the kernel log would look like: KTAP version 1 1..1 KTAP version 1 # Subtest: rust_doctests_kernel 1..59 # rust_doctest_kernel_build_assert_rs_0.location: rust/kernel/build_assert.rs:13 ok 1 rust_doctest_kernel_build_assert_rs_0 # rust_doctest_kernel_build_assert_rs_1.location: rust/kernel/build_assert.rs:56 ok 2 rust_doctest_kernel_build_assert_rs_1 # rust_doctest_kernel_init_rs_0.location: rust/kernel/init.rs:122 ok 3 rust_doctest_kernel_init_rs_0 ... # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 ok 59 rust_doctest_kernel_types_rs_2 # rust_doctests_kernel: pass:59 fail:0 skip:0 total:59 # Totals: pass:59 fail:0 skip:0 total:59 ok 1 rust_doctests_kernel Therefore, add support for running Rust documentation tests in KUnit. Some other notes about the current implementation and support follow. The transformation is performed by a couple scripts written as Rust hostprogs. Tests using the `?` operator are also supported as usual, e.g.: /// ``` /// # use kernel::{spawn_work_item, workqueue}; /// spawn_work_item!(workqueue::system(), || pr_info!("x"))?; /// # Ok::<(), Error>(()) /// ``` The tests are also compiled with Clippy under `CLIPPY=1`, just like normal code, thus also benefitting from extra linting. The names of the tests are currently automatically generated. This allows to reduce the burden for documentation writers, while keeping them fairly stable for bisection. This is an improvement over the `rustdoc`-generated names, which include the line number; but ideally we would like to get `rustdoc` to provide the Rust item path and a number (for multiple examples in a single documented Rust item). In order for developers to easily see from which original line a failed doctests came from, a KTAP diagnostic line is printed to the log, containing the location (file and line) of the original test (i.e. instead of the location in the generated Rust file): # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 This line follows the syntax for declaring test metadata in the proposed KTAP v2 spec [1], which may be used for the proposed KUnit test attributes API [2]. Thus hopefully this will make migration easier later on (suggested by David [3]). The original line in that test attribute is figured out by providing an anchor (suggested by Boqun [4]). The original file is found by walking the filesystem, checking directory prefixes to reduce the amount of combinations to check, and it is only done once per file. Ambiguities are detected and reported. A notable difference from KUnit C tests is that the Rust tests appear to assert using the usual `assert!` and `assert_eq!` macros from the Rust standard library (`core`). We provide a custom version that forwards the call to KUnit instead. Importantly, these macros do not require passing context, unlike the KUnit C ones (i.e. `struct kunit *`). This makes them easier to use, and readers of the documentation do not need to care about which testing framework is used. In addition, it may allow us to test third-party code more easily in the future. However, a current limitation is that KUnit does not support assertions in other tasks. Thus we presently simply print an error to the kernel log if an assertion actually failed. This should be revisited to properly fail the test, perhaps saving the context somewhere else, or letting KUnit handle it. Link: https://lore.kernel.org/lkml/20230420205734.1288498-1-rmoar@google.com/ [1] Link: https://lore.kernel.org/linux-kselftest/20230707210947.1208717-1-rmoar@google.com/ [2] Link: https://lore.kernel.org/rust-for-linux/CABVgOSkOLO-8v6kdAGpmYnZUb+LKOX0CtYCo-Bge7r_2YTuXDQ@mail.gmail.com/ [3] Link: https://lore.kernel.org/rust-for-linux/ZIps86MbJF%2FiGIzd@boqun-archlinux/ [4] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Reviewed-by: David Gow <davidgow@google.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2023-07-18 08:27:51 +03:00
hostprogs-always-$(CONFIG_RUST_KERNEL_DOCTESTS) += rustdoc_test_builder
hostprogs-always-$(CONFIG_RUST_KERNEL_DOCTESTS) += rustdoc_test_gen
Kbuild: add Rust support Having most of the new files in place, we now enable Rust support in the build system, including `Kconfig` entries related to Rust, the Rust configuration printer and a few other bits. Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com> Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com> Co-developed-by: Finn Behrens <me@kloenk.de> Signed-off-by: Finn Behrens <me@kloenk.de> Co-developed-by: Adam Bratschi-Kaye <ark.email@gmail.com> Signed-off-by: Adam Bratschi-Kaye <ark.email@gmail.com> Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com> Co-developed-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Co-developed-by: Sven Van Asbroeck <thesven73@gmail.com> Signed-off-by: Sven Van Asbroeck <thesven73@gmail.com> Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Co-developed-by: Boris-Chengbiao Zhou <bobo1239@web.de> Signed-off-by: Boris-Chengbiao Zhou <bobo1239@web.de> Co-developed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Co-developed-by: Douglas Su <d0u9.su@outlook.com> Signed-off-by: Douglas Su <d0u9.su@outlook.com> Co-developed-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Signed-off-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Co-developed-by: Antonio Terceiro <antonio.terceiro@linaro.org> Signed-off-by: Antonio Terceiro <antonio.terceiro@linaro.org> Co-developed-by: Daniel Xu <dxu@dxuuu.xyz> Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Co-developed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Signed-off-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Co-developed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2021-07-03 17:42:57 +03:00
ifneq ($(or $(CONFIG_X86_64),$(CONFIG_LOONGARCH)),)
always-$(CONFIG_RUST) += target.json
filechk_rust_target = $< < include/config/auto.conf
$(obj)/target.json: scripts/generate_rust_target include/config/auto.conf FORCE
$(call filechk,rust_target)
endif
hostprogs += generate_rust_target
Kbuild: add Rust support Having most of the new files in place, we now enable Rust support in the build system, including `Kconfig` entries related to Rust, the Rust configuration printer and a few other bits. Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com> Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com> Co-developed-by: Finn Behrens <me@kloenk.de> Signed-off-by: Finn Behrens <me@kloenk.de> Co-developed-by: Adam Bratschi-Kaye <ark.email@gmail.com> Signed-off-by: Adam Bratschi-Kaye <ark.email@gmail.com> Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com> Co-developed-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Co-developed-by: Sven Van Asbroeck <thesven73@gmail.com> Signed-off-by: Sven Van Asbroeck <thesven73@gmail.com> Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Co-developed-by: Boris-Chengbiao Zhou <bobo1239@web.de> Signed-off-by: Boris-Chengbiao Zhou <bobo1239@web.de> Co-developed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Co-developed-by: Douglas Su <d0u9.su@outlook.com> Signed-off-by: Douglas Su <d0u9.su@outlook.com> Co-developed-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Signed-off-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Co-developed-by: Antonio Terceiro <antonio.terceiro@linaro.org> Signed-off-by: Antonio Terceiro <antonio.terceiro@linaro.org> Co-developed-by: Daniel Xu <dxu@dxuuu.xyz> Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Co-developed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Signed-off-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Co-developed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2021-07-03 17:42:57 +03:00
generate_rust_target-rust := y
rust: support running Rust documentation tests as KUnit ones Rust has documentation tests: these are typically examples of usage of any item (e.g. function, struct, module...). They are very convenient because they are just written alongside the documentation. For instance: /// Sums two numbers. /// /// ``` /// assert_eq!(mymod::f(10, 20), 30); /// ``` pub fn f(a: i32, b: i32) -> i32 { a + b } In userspace, the tests are collected and run via `rustdoc`. Using the tool as-is would be useful already, since it allows to compile-test most tests (thus enforcing they are kept in sync with the code they document) and run those that do not depend on in-kernel APIs. However, by transforming the tests into a KUnit test suite, they can also be run inside the kernel. Moreover, the tests get to be compiled as other Rust kernel objects instead of targeting userspace. On top of that, the integration with KUnit means the Rust support gets to reuse the existing testing facilities. For instance, the kernel log would look like: KTAP version 1 1..1 KTAP version 1 # Subtest: rust_doctests_kernel 1..59 # rust_doctest_kernel_build_assert_rs_0.location: rust/kernel/build_assert.rs:13 ok 1 rust_doctest_kernel_build_assert_rs_0 # rust_doctest_kernel_build_assert_rs_1.location: rust/kernel/build_assert.rs:56 ok 2 rust_doctest_kernel_build_assert_rs_1 # rust_doctest_kernel_init_rs_0.location: rust/kernel/init.rs:122 ok 3 rust_doctest_kernel_init_rs_0 ... # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 ok 59 rust_doctest_kernel_types_rs_2 # rust_doctests_kernel: pass:59 fail:0 skip:0 total:59 # Totals: pass:59 fail:0 skip:0 total:59 ok 1 rust_doctests_kernel Therefore, add support for running Rust documentation tests in KUnit. Some other notes about the current implementation and support follow. The transformation is performed by a couple scripts written as Rust hostprogs. Tests using the `?` operator are also supported as usual, e.g.: /// ``` /// # use kernel::{spawn_work_item, workqueue}; /// spawn_work_item!(workqueue::system(), || pr_info!("x"))?; /// # Ok::<(), Error>(()) /// ``` The tests are also compiled with Clippy under `CLIPPY=1`, just like normal code, thus also benefitting from extra linting. The names of the tests are currently automatically generated. This allows to reduce the burden for documentation writers, while keeping them fairly stable for bisection. This is an improvement over the `rustdoc`-generated names, which include the line number; but ideally we would like to get `rustdoc` to provide the Rust item path and a number (for multiple examples in a single documented Rust item). In order for developers to easily see from which original line a failed doctests came from, a KTAP diagnostic line is printed to the log, containing the location (file and line) of the original test (i.e. instead of the location in the generated Rust file): # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 This line follows the syntax for declaring test metadata in the proposed KTAP v2 spec [1], which may be used for the proposed KUnit test attributes API [2]. Thus hopefully this will make migration easier later on (suggested by David [3]). The original line in that test attribute is figured out by providing an anchor (suggested by Boqun [4]). The original file is found by walking the filesystem, checking directory prefixes to reduce the amount of combinations to check, and it is only done once per file. Ambiguities are detected and reported. A notable difference from KUnit C tests is that the Rust tests appear to assert using the usual `assert!` and `assert_eq!` macros from the Rust standard library (`core`). We provide a custom version that forwards the call to KUnit instead. Importantly, these macros do not require passing context, unlike the KUnit C ones (i.e. `struct kunit *`). This makes them easier to use, and readers of the documentation do not need to care about which testing framework is used. In addition, it may allow us to test third-party code more easily in the future. However, a current limitation is that KUnit does not support assertions in other tasks. Thus we presently simply print an error to the kernel log if an assertion actually failed. This should be revisited to properly fail the test, perhaps saving the context somewhere else, or letting KUnit handle it. Link: https://lore.kernel.org/lkml/20230420205734.1288498-1-rmoar@google.com/ [1] Link: https://lore.kernel.org/linux-kselftest/20230707210947.1208717-1-rmoar@google.com/ [2] Link: https://lore.kernel.org/rust-for-linux/CABVgOSkOLO-8v6kdAGpmYnZUb+LKOX0CtYCo-Bge7r_2YTuXDQ@mail.gmail.com/ [3] Link: https://lore.kernel.org/rust-for-linux/ZIps86MbJF%2FiGIzd@boqun-archlinux/ [4] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Reviewed-by: David Gow <davidgow@google.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2023-07-18 08:27:51 +03:00
rustdoc_test_builder-rust := y
rustdoc_test_gen-rust := y
HOSTCFLAGS_sorttable.o = -I$(srctree)/tools/include
HOSTLDLIBS_sorttable = -lpthread
HOSTCFLAGS_asn1_compiler.o = -I$(srctree)/include
HOSTCFLAGS_sign-file.o = $(shell $(HOSTPKG_CONFIG) --cflags libcrypto 2> /dev/null)
HOSTLDLIBS_sign-file = $(shell $(HOSTPKG_CONFIG) --libs libcrypto 2> /dev/null || echo -lcrypto)
ifdef CONFIG_UNWINDER_ORC
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),loongarch)
SRCARCH := loongarch
endif
HOSTCFLAGS_sorttable.o += -I$(srctree)/tools/arch/$(SRCARCH)/include
HOSTCFLAGS_sorttable.o += -DUNWINDER_ORC_ENABLED
endif
ftrace: Have architectures opt-in for mcount build time sorting First S390 complained that the sorting of the mcount sections at build time caused the kernel to crash on their architecture. Now PowerPC is complaining about it too. And also ARM64 appears to be having issues. It may be necessary to also update the relocation table for the values in the mcount table. Not only do we have to sort the table, but also update the relocations that may be applied to the items in the table. If the system is not relocatable, then it is fine to sort, but if it is, some architectures may have issues (although x86 does not as it shifts all addresses the same). Add a HAVE_BUILDTIME_MCOUNT_SORT that an architecture can set to say it is safe to do the sorting at build time. Also update the config to compile in build time sorting in the sorttable code in scripts/ to depend on CONFIG_BUILDTIME_MCOUNT_SORT. Link: https://lore.kernel.org/all/944D10DA-8200-4BA9-8D0A-3BED9AA99F82@linux.ibm.com/ Link: https://lkml.kernel.org/r/20220127153821.3bc1ac6e@gandalf.local.home Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Yinan Liu <yinan@linux.alibaba.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Kees Cook <keescook@chromium.org> Reported-by: Sachin Sant <sachinp@linux.ibm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64] Tested-by: Sachin Sant <sachinp@linux.ibm.com> Fixes: 72b3942a173c ("scripts: ftrace - move the sort-processing in ftrace_init") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2022-01-25 17:19:10 +03:00
ifdef CONFIG_BUILDTIME_MCOUNT_SORT
HOSTCFLAGS_sorttable.o += -DMCOUNT_SORT_ENABLED
endif
# The following programs are only built on demand
hostprogs += unifdef
# The module linker script is preprocessed on demand
targets += module.lds
subdir-$(CONFIG_GCC_PLUGINS) += gcc-plugins
subdir-$(CONFIG_MODVERSIONS) += genksyms
selinux: add support for installing a dummy policy (v2) In August 2006 I posted a patch generating a minimal SELinux policy. This week, David P. Quigley posted an updated version of that as a patch against the kernel. It also had nice logic for auto-installing the policy. Following is David's original patch intro (preserved especially bc it has stats on the generated policies): se interested in the changes there were only two significant changes. The first is that the iteration through the list of classes used NULL as a sentinel value. The problem with this is that the class_to_string array actually has NULL entries in its table as place holders for the user space object classes. The second change was that it would seem at some point the initial sids table was NULL terminated. This is no longer the case so that iteration has to be done on array length instead of looking for NULL. Some statistics on the policy that it generates: The policy consists of 523 lines which contain no blank lines. Of those 523 lines 453 of them are class, permission, and initial sid definitions. These lines are usually little to no concern to the policy developer since they will not be adding object classes or permissions. Of the remaining 70 lines there is one type, one role, and one user statement. The remaining lines are broken into three portions. The first group are TE allow rules which make up 29 of the remaining lines, the second is assignment of labels to the initial sids which consist of 27 lines, and file system labeling statements which are the remaining 11. In addition to the policy.conf generated there is a single file_contexts file containing two lines which labels the entire system with base_t. This policy generates a policy.23 binary that is 7920 bytes. (then a few versions later...): The new policy is 587 lines (stripped of blank lines) with 476 of those lines being the boilerplate that I mentioned last time. The remaining 111 lines have the 3 lines for type, user, and role, 70 lines for the allow rules (one for each object class including user space object classes), 27 lines to assign types to the initial sids, and 11 lines for file system labeling. The policy binary is 9194 bytes. Changelog: Aug 26: Added Documentation/SELinux.txt Aug 26: Incorporated a set of comments by Stephen Smalley: 1. auto-setup SELINUXTYPE=dummy 2. don't auto-install if selinux is enabled with non-dummy policy 3. don't re-compute policy version 4. /sbin/setfiles not /usr/sbin/setfiles Aug 22: As per JMorris comments, made sure make distclean cleans up the mdp directory. Removed a check for file_contexts which is now created in the same file as the check, making it superfluous. Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: David Quigley <dpquigl@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-26 23:47:57 +04:00
subdir-$(CONFIG_SECURITY_SELINUX) += selinux
# Let clean descend into subdirs
subdir- += basic dtc gdb kconfig mod