clk: nuvoton: Add clock driver for ma35d1 clock controller
The clock controller generates clocks for the whole chip, including
system clocks and all peripheral clocks. This driver support ma35d1
clock gating, divider, and individual PLL configuration.
There are 6 PLLs in ma35d1 SoC:
- CA-PLL for the two Cortex-A35 CPU clock
- SYS-PLL for system bus, which comes from the companion MCU
and cannot be programmed by clock controller.
- DDR-PLL for DDR
- EPLL for GMAC and GFX, Display, and VDEC IPs.
- VPLL for video output pixel clock
- APLL for SDHC, I2S audio, and other IPs.
CA-PLL has only one operation mode.
DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3
operation modes: integer mode, fraction mode, and spread specturm mode.
Signed-off-by: Jacky Huang <ychuang3@nuvoton.com>
Acked-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2023-06-05 04:07:47 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright ( C ) 2023 Nuvoton Technology Corp .
* Author : Chi - Fang Li < cfli0 @ nuvoton . com >
*/
# include <linux/bitfield.h>
# include <linux/clk-provider.h>
# include <linux/container_of.h>
# include <linux/device.h>
# include <linux/io.h>
# include <linux/kernel.h>
# include <linux/math64.h>
# include <linux/slab.h>
# include <linux/units.h>
# include <dt-bindings/clock/nuvoton,ma35d1-clk.h>
2023-06-22 14:13:41 +00:00
# include "clk-ma35d1.h"
clk: nuvoton: Add clock driver for ma35d1 clock controller
The clock controller generates clocks for the whole chip, including
system clocks and all peripheral clocks. This driver support ma35d1
clock gating, divider, and individual PLL configuration.
There are 6 PLLs in ma35d1 SoC:
- CA-PLL for the two Cortex-A35 CPU clock
- SYS-PLL for system bus, which comes from the companion MCU
and cannot be programmed by clock controller.
- DDR-PLL for DDR
- EPLL for GMAC and GFX, Display, and VDEC IPs.
- VPLL for video output pixel clock
- APLL for SDHC, I2S audio, and other IPs.
CA-PLL has only one operation mode.
DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3
operation modes: integer mode, fraction mode, and spread specturm mode.
Signed-off-by: Jacky Huang <ychuang3@nuvoton.com>
Acked-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2023-06-05 04:07:47 +00:00
/* PLL frequency limits */
# define PLL_FREF_MAX_FREQ (200 * HZ_PER_MHZ)
# define PLL_FREF_MIN_FREQ (1 * HZ_PER_MHZ)
# define PLL_FREF_M_MAX_FREQ (40 * HZ_PER_MHZ)
# define PLL_FREF_M_MIN_FREQ (10 * HZ_PER_MHZ)
# define PLL_FCLK_MAX_FREQ (2400 * HZ_PER_MHZ)
# define PLL_FCLK_MIN_FREQ (600 * HZ_PER_MHZ)
# define PLL_FCLKO_MAX_FREQ (2400 * HZ_PER_MHZ)
# define PLL_FCLKO_MIN_FREQ (85700 * HZ_PER_KHZ)
# define PLL_SS_RATE 0x77
# define PLL_SLOPE 0x58CFA
# define REG_PLL_CTL0_OFFSET 0x0
# define REG_PLL_CTL1_OFFSET 0x4
# define REG_PLL_CTL2_OFFSET 0x8
/* bit fields for REG_CLK_PLL0CTL0, which is SMIC PLL design */
# define SPLL0_CTL0_FBDIV GENMASK(7, 0)
# define SPLL0_CTL0_INDIV GENMASK(11, 8)
# define SPLL0_CTL0_OUTDIV GENMASK(13, 12)
# define SPLL0_CTL0_PD BIT(16)
# define SPLL0_CTL0_BP BIT(17)
/* bit fields for REG_CLK_PLLxCTL0 ~ REG_CLK_PLLxCTL2, where x = 2 ~ 5 */
# define PLL_CTL0_FBDIV GENMASK(10, 0)
# define PLL_CTL0_INDIV GENMASK(17, 12)
# define PLL_CTL0_MODE GENMASK(19, 18)
# define PLL_CTL0_SSRATE GENMASK(30, 20)
# define PLL_CTL1_PD BIT(0)
# define PLL_CTL1_BP BIT(1)
# define PLL_CTL1_OUTDIV GENMASK(6, 4)
# define PLL_CTL1_FRAC GENMASK(31, 24)
# define PLL_CTL2_SLOPE GENMASK(23, 0)
# define INDIV_MIN 1
# define INDIV_MAX 63
# define FBDIV_MIN 16
# define FBDIV_MAX 2047
# define FBDIV_FRAC_MIN 1600
# define FBDIV_FRAC_MAX 204700
# define OUTDIV_MIN 1
# define OUTDIV_MAX 7
# define PLL_MODE_INT 0
# define PLL_MODE_FRAC 1
# define PLL_MODE_SS 2
struct ma35d1_clk_pll {
struct clk_hw hw ;
u32 id ;
u8 mode ;
void __iomem * ctl0_base ;
void __iomem * ctl1_base ;
void __iomem * ctl2_base ;
} ;
static inline struct ma35d1_clk_pll * to_ma35d1_clk_pll ( struct clk_hw * _hw )
{
return container_of ( _hw , struct ma35d1_clk_pll , hw ) ;
}
static unsigned long ma35d1_calc_smic_pll_freq ( u32 pll0_ctl0 ,
unsigned long parent_rate )
{
u32 m , n , p , outdiv ;
u64 pll_freq ;
if ( pll0_ctl0 & SPLL0_CTL0_BP )
return parent_rate ;
n = FIELD_GET ( SPLL0_CTL0_FBDIV , pll0_ctl0 ) ;
m = FIELD_GET ( SPLL0_CTL0_INDIV , pll0_ctl0 ) ;
p = FIELD_GET ( SPLL0_CTL0_OUTDIV , pll0_ctl0 ) ;
outdiv = 1 < < p ;
pll_freq = ( u64 ) parent_rate * n ;
div_u64 ( pll_freq , m * outdiv ) ;
return pll_freq ;
}
static unsigned long ma35d1_calc_pll_freq ( u8 mode , u32 * reg_ctl , unsigned long parent_rate )
{
unsigned long pll_freq , x ;
u32 m , n , p ;
if ( reg_ctl [ 1 ] & PLL_CTL1_BP )
return parent_rate ;
n = FIELD_GET ( PLL_CTL0_FBDIV , reg_ctl [ 0 ] ) ;
m = FIELD_GET ( PLL_CTL0_INDIV , reg_ctl [ 0 ] ) ;
p = FIELD_GET ( PLL_CTL1_OUTDIV , reg_ctl [ 1 ] ) ;
if ( mode = = PLL_MODE_INT ) {
pll_freq = ( u64 ) parent_rate * n ;
div_u64 ( pll_freq , m * p ) ;
} else {
x = FIELD_GET ( PLL_CTL1_FRAC , reg_ctl [ 1 ] ) ;
/* 2 decimal places floating to integer (ex. 1.23 to 123) */
n = n * 100 + ( ( x * 100 ) / FIELD_MAX ( PLL_CTL1_FRAC ) ) ;
pll_freq = div_u64 ( parent_rate * n , 100 * m * p ) ;
}
return pll_freq ;
}
static int ma35d1_pll_find_closest ( struct ma35d1_clk_pll * pll , unsigned long rate ,
unsigned long parent_rate , u32 * reg_ctl ,
unsigned long * freq )
{
unsigned long min_diff = ULONG_MAX ;
int fbdiv_min , fbdiv_max ;
int p , m , n ;
* freq = 0 ;
if ( rate < PLL_FCLKO_MIN_FREQ | | rate > PLL_FCLKO_MAX_FREQ )
return - EINVAL ;
if ( pll - > mode = = PLL_MODE_INT ) {
fbdiv_min = FBDIV_MIN ;
fbdiv_max = FBDIV_MAX ;
} else {
fbdiv_min = FBDIV_FRAC_MIN ;
fbdiv_max = FBDIV_FRAC_MAX ;
}
for ( m = INDIV_MIN ; m < = INDIV_MAX ; m + + ) {
for ( n = fbdiv_min ; n < = fbdiv_max ; n + + ) {
for ( p = OUTDIV_MIN ; p < = OUTDIV_MAX ; p + + ) {
unsigned long tmp , fout , fclk , diff ;
tmp = div_u64 ( parent_rate , m ) ;
if ( tmp < PLL_FREF_M_MIN_FREQ | |
tmp > PLL_FREF_M_MAX_FREQ )
continue ; /* constrain */
fclk = div_u64 ( parent_rate * n , m ) ;
/* for 2 decimal places */
if ( pll - > mode ! = PLL_MODE_INT )
fclk = div_u64 ( fclk , 100 ) ;
if ( fclk < PLL_FCLK_MIN_FREQ | |
fclk > PLL_FCLK_MAX_FREQ )
continue ; /* constrain */
fout = div_u64 ( fclk , p ) ;
if ( fout < PLL_FCLKO_MIN_FREQ | |
fout > PLL_FCLKO_MAX_FREQ )
continue ; /* constrain */
diff = abs ( rate - fout ) ;
if ( diff < min_diff ) {
reg_ctl [ 0 ] = FIELD_PREP ( PLL_CTL0_INDIV , m ) |
FIELD_PREP ( PLL_CTL0_FBDIV , n ) ;
reg_ctl [ 1 ] = FIELD_PREP ( PLL_CTL1_OUTDIV , p ) ;
* freq = fout ;
min_diff = diff ;
if ( min_diff = = 0 )
break ;
}
}
}
}
if ( * freq = = 0 )
return - EINVAL ; /* cannot find even one valid setting */
return 0 ;
}
static int ma35d1_clk_pll_set_rate ( struct clk_hw * hw , unsigned long rate ,
unsigned long parent_rate )
{
struct ma35d1_clk_pll * pll = to_ma35d1_clk_pll ( hw ) ;
u32 reg_ctl [ 3 ] = { 0 } ;
unsigned long pll_freq ;
int ret ;
if ( parent_rate < PLL_FREF_MIN_FREQ | | parent_rate > PLL_FREF_MAX_FREQ )
return - EINVAL ;
ret = ma35d1_pll_find_closest ( pll , rate , parent_rate , reg_ctl , & pll_freq ) ;
if ( ret ! = 0 )
return ret ;
switch ( pll - > mode ) {
case PLL_MODE_INT :
reg_ctl [ 0 ] | = FIELD_PREP ( PLL_CTL0_MODE , PLL_MODE_INT ) ;
break ;
case PLL_MODE_FRAC :
reg_ctl [ 0 ] | = FIELD_PREP ( PLL_CTL0_MODE , PLL_MODE_FRAC ) ;
break ;
case PLL_MODE_SS :
reg_ctl [ 0 ] | = FIELD_PREP ( PLL_CTL0_MODE , PLL_MODE_SS ) |
FIELD_PREP ( PLL_CTL0_SSRATE , PLL_SS_RATE ) ;
reg_ctl [ 2 ] = FIELD_PREP ( PLL_CTL2_SLOPE , PLL_SLOPE ) ;
break ;
}
reg_ctl [ 1 ] | = PLL_CTL1_PD ;
writel_relaxed ( reg_ctl [ 0 ] , pll - > ctl0_base ) ;
writel_relaxed ( reg_ctl [ 1 ] , pll - > ctl1_base ) ;
writel_relaxed ( reg_ctl [ 2 ] , pll - > ctl2_base ) ;
return 0 ;
}
static unsigned long ma35d1_clk_pll_recalc_rate ( struct clk_hw * hw , unsigned long parent_rate )
{
struct ma35d1_clk_pll * pll = to_ma35d1_clk_pll ( hw ) ;
u32 reg_ctl [ 3 ] ;
unsigned long pll_freq ;
if ( parent_rate < PLL_FREF_MIN_FREQ | | parent_rate > PLL_FREF_MAX_FREQ )
return 0 ;
switch ( pll - > id ) {
case CAPLL :
reg_ctl [ 0 ] = readl_relaxed ( pll - > ctl0_base ) ;
pll_freq = ma35d1_calc_smic_pll_freq ( reg_ctl [ 0 ] , parent_rate ) ;
return pll_freq ;
case DDRPLL :
case APLL :
case EPLL :
case VPLL :
reg_ctl [ 0 ] = readl_relaxed ( pll - > ctl0_base ) ;
reg_ctl [ 1 ] = readl_relaxed ( pll - > ctl1_base ) ;
pll_freq = ma35d1_calc_pll_freq ( pll - > mode , reg_ctl , parent_rate ) ;
return pll_freq ;
}
return 0 ;
}
static long ma35d1_clk_pll_round_rate ( struct clk_hw * hw , unsigned long rate ,
unsigned long * parent_rate )
{
struct ma35d1_clk_pll * pll = to_ma35d1_clk_pll ( hw ) ;
u32 reg_ctl [ 3 ] = { 0 } ;
unsigned long pll_freq ;
long ret ;
if ( * parent_rate < PLL_FREF_MIN_FREQ | | * parent_rate > PLL_FREF_MAX_FREQ )
return - EINVAL ;
ret = ma35d1_pll_find_closest ( pll , rate , * parent_rate , reg_ctl , & pll_freq ) ;
if ( ret < 0 )
return ret ;
switch ( pll - > id ) {
case CAPLL :
reg_ctl [ 0 ] = readl_relaxed ( pll - > ctl0_base ) ;
pll_freq = ma35d1_calc_smic_pll_freq ( reg_ctl [ 0 ] , * parent_rate ) ;
return pll_freq ;
case DDRPLL :
case APLL :
case EPLL :
case VPLL :
reg_ctl [ 0 ] = readl_relaxed ( pll - > ctl0_base ) ;
reg_ctl [ 1 ] = readl_relaxed ( pll - > ctl1_base ) ;
pll_freq = ma35d1_calc_pll_freq ( pll - > mode , reg_ctl , * parent_rate ) ;
return pll_freq ;
}
return 0 ;
}
static int ma35d1_clk_pll_is_prepared ( struct clk_hw * hw )
{
struct ma35d1_clk_pll * pll = to_ma35d1_clk_pll ( hw ) ;
u32 val = readl_relaxed ( pll - > ctl1_base ) ;
return ! ( val & PLL_CTL1_PD ) ;
}
static int ma35d1_clk_pll_prepare ( struct clk_hw * hw )
{
struct ma35d1_clk_pll * pll = to_ma35d1_clk_pll ( hw ) ;
u32 val ;
val = readl_relaxed ( pll - > ctl1_base ) ;
val & = ~ PLL_CTL1_PD ;
writel_relaxed ( val , pll - > ctl1_base ) ;
return 0 ;
}
static void ma35d1_clk_pll_unprepare ( struct clk_hw * hw )
{
struct ma35d1_clk_pll * pll = to_ma35d1_clk_pll ( hw ) ;
u32 val ;
val = readl_relaxed ( pll - > ctl1_base ) ;
val | = PLL_CTL1_PD ;
writel_relaxed ( val , pll - > ctl1_base ) ;
}
static const struct clk_ops ma35d1_clk_pll_ops = {
. is_prepared = ma35d1_clk_pll_is_prepared ,
. prepare = ma35d1_clk_pll_prepare ,
. unprepare = ma35d1_clk_pll_unprepare ,
. set_rate = ma35d1_clk_pll_set_rate ,
. recalc_rate = ma35d1_clk_pll_recalc_rate ,
. round_rate = ma35d1_clk_pll_round_rate ,
} ;
static const struct clk_ops ma35d1_clk_fixed_pll_ops = {
. recalc_rate = ma35d1_clk_pll_recalc_rate ,
. round_rate = ma35d1_clk_pll_round_rate ,
} ;
struct clk_hw * ma35d1_reg_clk_pll ( struct device * dev , u32 id , u8 u8mode , const char * name ,
struct clk_hw * parent_hw , void __iomem * base )
{
struct clk_parent_data pdata = { . index = 0 } ;
struct clk_init_data init = { } ;
struct ma35d1_clk_pll * pll ;
struct clk_hw * hw ;
int ret ;
pll = devm_kzalloc ( dev , sizeof ( * pll ) , GFP_KERNEL ) ;
if ( ! pll )
return ERR_PTR ( - ENOMEM ) ;
pll - > id = id ;
pll - > mode = u8mode ;
pll - > ctl0_base = base + REG_PLL_CTL0_OFFSET ;
pll - > ctl1_base = base + REG_PLL_CTL1_OFFSET ;
pll - > ctl2_base = base + REG_PLL_CTL2_OFFSET ;
init . name = name ;
init . flags = 0 ;
pdata . hw = parent_hw ;
init . parent_data = & pdata ;
init . num_parents = 1 ;
if ( id = = CAPLL | | id = = DDRPLL )
init . ops = & ma35d1_clk_fixed_pll_ops ;
else
init . ops = & ma35d1_clk_pll_ops ;
pll - > hw . init = & init ;
hw = & pll - > hw ;
ret = devm_clk_hw_register ( dev , hw ) ;
if ( ret )
return ERR_PTR ( ret ) ;
return hw ;
}
EXPORT_SYMBOL_GPL ( ma35d1_reg_clk_pll ) ;