linux/lib/reed_solomon/decode_rs.c

266 lines
6.7 KiB
C
Raw Normal View History

rslib: Add SPDX identifiers The Reed-Solomon library is based on code from Phil Karn who granted permission to import it into the kernel under the GPL V2. See commit 15b5423757a7 ("Shared Reed-Solomon ECC library") in the history git tree at: git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git ... The encoder/decoder code is lifted from the GPL'd userspace RS-library written by Phil Karn. I modified/wrapped it to provide the different functions which we need in the MTD/NAND code. ... Signed-Off-By: Thomas Gleixner <tglx@linutronix.de> Signed-Off-By: David Woodhouse <dwmw2@infradead.org> "No objections at all. Just keep the authorship notices." -- Phil Karn Add the proper SPDX identifiers according to Documentation/process/license-rules.rst. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Boris Brezillon <boris.brezillon@free-electrons.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Segher Boessenkool <segher@kernel.crashing.org> Cc: Kernel Hardening <kernel-hardening@lists.openwall.com> Cc: Richard Weinberger <richard@nod.at> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Andrew Morton <akpm@linuxfoundation.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alasdair Kergon <agk@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-04-22 18:23:50 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Generic Reed Solomon encoder / decoder library
*
* Copyright 2002, Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL)
*
* Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
*
* Generic data width independent code which is included by the wrappers.
*/
{
struct rs_codec *rs = rsc->codec;
int deg_lambda, el, deg_omega;
int i, j, r, k, pad;
int nn = rs->nn;
int nroots = rs->nroots;
int fcr = rs->fcr;
int prim = rs->prim;
int iprim = rs->iprim;
uint16_t *alpha_to = rs->alpha_to;
uint16_t *index_of = rs->index_of;
uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
/* Err+Eras Locator poly and syndrome poly The maximum value
* of nroots is 8. So the necessary stack size will be about
* 220 bytes max.
*/
uint16_t lambda[nroots + 1], syn[nroots];
uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
uint16_t root[nroots], reg[nroots + 1], loc[nroots];
int count = 0;
uint16_t msk = (uint16_t) rs->nn;
/* Check length parameter for validity */
pad = nn - nroots - len;
BUG_ON(pad < 0 || pad >= nn);
/* Does the caller provide the syndrome ? */
if (s != NULL)
goto decode;
/* form the syndromes; i.e., evaluate data(x) at roots of
* g(x) */
for (i = 0; i < nroots; i++)
syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
for (j = 1; j < len; j++) {
for (i = 0; i < nroots; i++) {
if (syn[i] == 0) {
syn[i] = (((uint16_t) data[j]) ^
invmsk) & msk;
} else {
syn[i] = ((((uint16_t) data[j]) ^
invmsk) & msk) ^
alpha_to[rs_modnn(rs, index_of[syn[i]] +
(fcr + i) * prim)];
}
}
}
for (j = 0; j < nroots; j++) {
for (i = 0; i < nroots; i++) {
if (syn[i] == 0) {
syn[i] = ((uint16_t) par[j]) & msk;
} else {
syn[i] = (((uint16_t) par[j]) & msk) ^
alpha_to[rs_modnn(rs, index_of[syn[i]] +
(fcr+i)*prim)];
}
}
}
s = syn;
/* Convert syndromes to index form, checking for nonzero condition */
syn_error = 0;
for (i = 0; i < nroots; i++) {
syn_error |= s[i];
s[i] = index_of[s[i]];
}
if (!syn_error) {
/* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
count = 0;
goto finish;
}
decode:
memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
lambda[0] = 1;
if (no_eras > 0) {
/* Init lambda to be the erasure locator polynomial */
lambda[1] = alpha_to[rs_modnn(rs,
prim * (nn - 1 - eras_pos[0]))];
for (i = 1; i < no_eras; i++) {
u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
for (j = i + 1; j > 0; j--) {
tmp = index_of[lambda[j - 1]];
if (tmp != nn) {
lambda[j] ^=
alpha_to[rs_modnn(rs, u + tmp)];
}
}
}
}
for (i = 0; i < nroots + 1; i++)
b[i] = index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = no_eras;
el = no_eras;
while (++r <= nroots) { /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for (i = 0; i < r; i++) {
if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
discr_r ^=
alpha_to[rs_modnn(rs,
index_of[lambda[i]] +
s[r - i - 1])];
}
}
discr_r = index_of[discr_r]; /* Index form */
if (discr_r == nn) {
/* 2 lines below: B(x) <-- x*B(x) */
memmove (&b[1], b, nroots * sizeof (b[0]));
b[0] = nn;
} else {
/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
t[0] = lambda[0];
for (i = 0; i < nroots; i++) {
if (b[i] != nn) {
t[i + 1] = lambda[i + 1] ^
alpha_to[rs_modnn(rs, discr_r +
b[i])];
} else
t[i + 1] = lambda[i + 1];
}
if (2 * el <= r + no_eras - 1) {
el = r + no_eras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for (i = 0; i <= nroots; i++) {
b[i] = (lambda[i] == 0) ? nn :
rs_modnn(rs, index_of[lambda[i]]
- discr_r + nn);
}
} else {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1], b, nroots * sizeof(b[0]));
b[0] = nn;
}
memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for (i = 0; i < nroots + 1; i++) {
lambda[i] = index_of[lambda[i]];
if (lambda[i] != nn)
deg_lambda = i;
}
/* Find roots of error+erasure locator polynomial by Chien search */
memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
count = 0; /* Number of roots of lambda(x) */
for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
q = 1; /* lambda[0] is always 0 */
for (j = deg_lambda; j > 0; j--) {
if (reg[j] != nn) {
reg[j] = rs_modnn(rs, reg[j] + j);
q ^= alpha_to[reg[j]];
}
}
if (q != 0)
continue; /* Not a root */
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = k;
/* If we've already found max possible roots,
* abort the search to save time
*/
if (++count == deg_lambda)
break;
}
if (deg_lambda != count) {
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
count = -EBADMSG;
goto finish;
}
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**nroots). in index form. Also find deg(omega).
*/
deg_omega = deg_lambda - 1;
for (i = 0; i <= deg_omega; i++) {
tmp = 0;
for (j = i; j >= 0; j--) {
if ((s[i - j] != nn) && (lambda[j] != nn))
tmp ^=
alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
}
omega[i] = index_of[tmp];
}
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for (j = count - 1; j >= 0; j--) {
num1 = 0;
for (i = deg_omega; i >= 0; i--) {
if (omega[i] != nn)
num1 ^= alpha_to[rs_modnn(rs, omega[i] +
i * root[j])];
}
num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
den = 0;
/* lambda[i+1] for i even is the formal derivative
* lambda_pr of lambda[i] */
for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
if (lambda[i + 1] != nn) {
den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
i * root[j])];
}
}
/* Apply error to data */
if (num1 != 0 && loc[j] >= pad) {
uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
index_of[num2] +
nn - index_of[den])];
/* Store the error correction pattern, if a
* correction buffer is available */
if (corr) {
corr[j] = cor;
} else {
/* If a data buffer is given and the
* error is inside the message,
* correct it */
if (data && (loc[j] < (nn - nroots)))
data[loc[j] - pad] ^= cor;
}
}
}
finish:
if (eras_pos != NULL) {
for (i = 0; i < count; i++)
eras_pos[i] = loc[i] - pad;
}
return count;
}