linux/fs/ocfs2/suballoc.c

2921 lines
77 KiB
C
Raw Normal View History

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* suballoc.c
*
* metadata alloc and free
* Inspired by ext3 block groups.
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "blockcheck.h"
#include "dlmglue.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "suballoc.h"
#include "super.h"
#include "sysfile.h"
#include "uptodate.h"
#include "ocfs2_trace.h"
#include "buffer_head_io.h"
#define NOT_ALLOC_NEW_GROUP 0
#define ALLOC_NEW_GROUP 0x1
#define ALLOC_GROUPS_FROM_GLOBAL 0x2
#define OCFS2_MAX_TO_STEAL 1024
struct ocfs2_suballoc_result {
u64 sr_bg_blkno; /* The bg we allocated from. Set
to 0 when a block group is
contiguous. */
u64 sr_bg_stable_blkno; /*
* Doesn't change, always
* set to target block
* group descriptor
* block.
*/
u64 sr_blkno; /* The first allocated block */
unsigned int sr_bit_offset; /* The bit in the bg */
unsigned int sr_bits; /* How many bits we claimed */
};
static u64 ocfs2_group_from_res(struct ocfs2_suballoc_result *res)
{
if (res->sr_blkno == 0)
return 0;
if (res->sr_bg_blkno)
return res->sr_bg_blkno;
return ocfs2_which_suballoc_group(res->sr_blkno, res->sr_bit_offset);
}
static inline void ocfs2_debug_bg(struct ocfs2_group_desc *bg);
static inline void ocfs2_debug_suballoc_inode(struct ocfs2_dinode *fe);
static inline u16 ocfs2_find_victim_chain(struct ocfs2_chain_list *cl);
static int ocfs2_block_group_fill(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *bg_bh,
u64 group_blkno,
unsigned int group_clusters,
u16 my_chain,
struct ocfs2_chain_list *cl);
static int ocfs2_block_group_alloc(struct ocfs2_super *osb,
struct inode *alloc_inode,
struct buffer_head *bh,
u64 max_block,
u64 *last_alloc_group,
int flags);
static int ocfs2_cluster_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
struct ocfs2_suballoc_result *res);
static int ocfs2_block_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
struct ocfs2_suballoc_result *res);
static int ocfs2_claim_suballoc_bits(struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
struct ocfs2_suballoc_result *res);
static int ocfs2_test_bg_bit_allocatable(struct buffer_head *bg_bh,
int nr);
static int ocfs2_relink_block_group(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *fe_bh,
struct buffer_head *bg_bh,
struct buffer_head *prev_bg_bh,
u16 chain);
static inline int ocfs2_block_group_reasonably_empty(struct ocfs2_group_desc *bg,
u32 wanted);
static inline u32 ocfs2_desc_bitmap_to_cluster_off(struct inode *inode,
u64 bg_blkno,
u16 bg_bit_off);
static inline void ocfs2_block_to_cluster_group(struct inode *inode,
u64 data_blkno,
u64 *bg_blkno,
u16 *bg_bit_off);
static int ocfs2_reserve_clusters_with_limit(struct ocfs2_super *osb,
u32 bits_wanted, u64 max_block,
int flags,
struct ocfs2_alloc_context **ac);
void ocfs2_free_ac_resource(struct ocfs2_alloc_context *ac)
{
struct inode *inode = ac->ac_inode;
if (inode) {
if (ac->ac_which != OCFS2_AC_USE_LOCAL)
ocfs2_inode_unlock(inode, 1);
inode_unlock(inode);
iput(inode);
ac->ac_inode = NULL;
}
brelse(ac->ac_bh);
ac->ac_bh = NULL;
ac->ac_resv = NULL;
kfree(ac->ac_find_loc_priv);
ac->ac_find_loc_priv = NULL;
}
void ocfs2_free_alloc_context(struct ocfs2_alloc_context *ac)
{
ocfs2_free_ac_resource(ac);
kfree(ac);
}
static u32 ocfs2_bits_per_group(struct ocfs2_chain_list *cl)
{
return (u32)le16_to_cpu(cl->cl_cpg) * (u32)le16_to_cpu(cl->cl_bpc);
}
#define do_error(fmt, ...) \
do { \
if (resize) \
mlog(ML_ERROR, fmt, ##__VA_ARGS__); \
else \
return ocfs2_error(sb, fmt, ##__VA_ARGS__); \
} while (0)
static int ocfs2_validate_gd_self(struct super_block *sb,
struct buffer_head *bh,
int resize)
{
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
if (!OCFS2_IS_VALID_GROUP_DESC(gd)) {
do_error("Group descriptor #%llu has bad signature %.*s\n",
(unsigned long long)bh->b_blocknr, 7,
gd->bg_signature);
}
if (le64_to_cpu(gd->bg_blkno) != bh->b_blocknr) {
do_error("Group descriptor #%llu has an invalid bg_blkno of %llu\n",
(unsigned long long)bh->b_blocknr,
(unsigned long long)le64_to_cpu(gd->bg_blkno));
}
if (le32_to_cpu(gd->bg_generation) != OCFS2_SB(sb)->fs_generation) {
do_error("Group descriptor #%llu has an invalid fs_generation of #%u\n",
(unsigned long long)bh->b_blocknr,
le32_to_cpu(gd->bg_generation));
}
if (le16_to_cpu(gd->bg_free_bits_count) > le16_to_cpu(gd->bg_bits)) {
do_error("Group descriptor #%llu has bit count %u but claims that %u are free\n",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_bits),
le16_to_cpu(gd->bg_free_bits_count));
}
if (le16_to_cpu(gd->bg_bits) > (8 * le16_to_cpu(gd->bg_size))) {
do_error("Group descriptor #%llu has bit count %u but max bitmap bits of %u\n",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_bits),
8 * le16_to_cpu(gd->bg_size));
}
return 0;
}
static int ocfs2_validate_gd_parent(struct super_block *sb,
struct ocfs2_dinode *di,
struct buffer_head *bh,
int resize)
{
unsigned int max_bits;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
if (di->i_blkno != gd->bg_parent_dinode) {
do_error("Group descriptor #%llu has bad parent pointer (%llu, expected %llu)\n",
(unsigned long long)bh->b_blocknr,
(unsigned long long)le64_to_cpu(gd->bg_parent_dinode),
(unsigned long long)le64_to_cpu(di->i_blkno));
}
max_bits = le16_to_cpu(di->id2.i_chain.cl_cpg) * le16_to_cpu(di->id2.i_chain.cl_bpc);
if (le16_to_cpu(gd->bg_bits) > max_bits) {
do_error("Group descriptor #%llu has bit count of %u\n",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_bits));
}
/* In resize, we may meet the case bg_chain == cl_next_free_rec. */
if ((le16_to_cpu(gd->bg_chain) >
le16_to_cpu(di->id2.i_chain.cl_next_free_rec)) ||
((le16_to_cpu(gd->bg_chain) ==
le16_to_cpu(di->id2.i_chain.cl_next_free_rec)) && !resize)) {
do_error("Group descriptor #%llu has bad chain %u\n",
(unsigned long long)bh->b_blocknr,
le16_to_cpu(gd->bg_chain));
}
return 0;
}
#undef do_error
/*
* This version only prints errors. It does not fail the filesystem, and
* exists only for resize.
*/
int ocfs2_check_group_descriptor(struct super_block *sb,
struct ocfs2_dinode *di,
struct buffer_head *bh)
{
int rc;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
BUG_ON(!buffer_uptodate(bh));
/*
* If the ecc fails, we return the error but otherwise
* leave the filesystem running. We know any error is
* local to this block.
*/
rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &gd->bg_check);
if (rc) {
mlog(ML_ERROR,
"Checksum failed for group descriptor %llu\n",
(unsigned long long)bh->b_blocknr);
} else
rc = ocfs2_validate_gd_self(sb, bh, 1);
if (!rc)
rc = ocfs2_validate_gd_parent(sb, di, bh, 1);
return rc;
}
static int ocfs2_validate_group_descriptor(struct super_block *sb,
struct buffer_head *bh)
{
int rc;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *)bh->b_data;
trace_ocfs2_validate_group_descriptor(
(unsigned long long)bh->b_blocknr);
BUG_ON(!buffer_uptodate(bh));
/*
* If the ecc fails, we return the error but otherwise
* leave the filesystem running. We know any error is
* local to this block.
*/
rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &gd->bg_check);
if (rc)
return rc;
/*
* Errors after here are fatal.
*/
return ocfs2_validate_gd_self(sb, bh, 0);
}
int ocfs2_read_group_descriptor(struct inode *inode, struct ocfs2_dinode *di,
u64 gd_blkno, struct buffer_head **bh)
{
int rc;
struct buffer_head *tmp = *bh;
rc = ocfs2_read_block(INODE_CACHE(inode), gd_blkno, &tmp,
ocfs2_validate_group_descriptor);
if (rc)
goto out;
rc = ocfs2_validate_gd_parent(inode->i_sb, di, tmp, 0);
if (rc) {
brelse(tmp);
goto out;
}
/* If ocfs2_read_block() got us a new bh, pass it up. */
if (!*bh)
*bh = tmp;
out:
return rc;
}
static void ocfs2_bg_discontig_add_extent(struct ocfs2_super *osb,
struct ocfs2_group_desc *bg,
struct ocfs2_chain_list *cl,
u64 p_blkno, unsigned int clusters)
{
struct ocfs2_extent_list *el = &bg->bg_list;
struct ocfs2_extent_rec *rec;
BUG_ON(!ocfs2_supports_discontig_bg(osb));
if (!el->l_next_free_rec)
el->l_count = cpu_to_le16(ocfs2_extent_recs_per_gd(osb->sb));
rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec)];
rec->e_blkno = cpu_to_le64(p_blkno);
rec->e_cpos = cpu_to_le32(le16_to_cpu(bg->bg_bits) /
le16_to_cpu(cl->cl_bpc));
rec->e_leaf_clusters = cpu_to_le16(clusters);
le16_add_cpu(&bg->bg_bits, clusters * le16_to_cpu(cl->cl_bpc));
le16_add_cpu(&bg->bg_free_bits_count,
clusters * le16_to_cpu(cl->cl_bpc));
le16_add_cpu(&el->l_next_free_rec, 1);
}
static int ocfs2_block_group_fill(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *bg_bh,
u64 group_blkno,
unsigned int group_clusters,
u16 my_chain,
struct ocfs2_chain_list *cl)
{
int status = 0;
struct ocfs2_super *osb = OCFS2_SB(alloc_inode->i_sb);
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
struct super_block * sb = alloc_inode->i_sb;
if (((unsigned long long) bg_bh->b_blocknr) != group_blkno) {
status = ocfs2_error(alloc_inode->i_sb,
"group block (%llu) != b_blocknr (%llu)\n",
(unsigned long long)group_blkno,
(unsigned long long) bg_bh->b_blocknr);
goto bail;
}
status = ocfs2_journal_access_gd(handle,
INODE_CACHE(alloc_inode),
bg_bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
memset(bg, 0, sb->s_blocksize);
strcpy(bg->bg_signature, OCFS2_GROUP_DESC_SIGNATURE);
bg->bg_generation = cpu_to_le32(OCFS2_SB(sb)->fs_generation);
bg->bg_size = cpu_to_le16(ocfs2_group_bitmap_size(sb, 1,
osb->s_feature_incompat));
bg->bg_chain = cpu_to_le16(my_chain);
bg->bg_next_group = cl->cl_recs[my_chain].c_blkno;
bg->bg_parent_dinode = cpu_to_le64(OCFS2_I(alloc_inode)->ip_blkno);
bg->bg_blkno = cpu_to_le64(group_blkno);
if (group_clusters == le16_to_cpu(cl->cl_cpg))
bg->bg_bits = cpu_to_le16(ocfs2_bits_per_group(cl));
else
ocfs2_bg_discontig_add_extent(osb, bg, cl, group_blkno,
group_clusters);
/* set the 1st bit in the bitmap to account for the descriptor block */
ocfs2_set_bit(0, (unsigned long *)bg->bg_bitmap);
bg->bg_free_bits_count = cpu_to_le16(le16_to_cpu(bg->bg_bits) - 1);
ocfs2_journal_dirty(handle, bg_bh);
/* There is no need to zero out or otherwise initialize the
* other blocks in a group - All valid FS metadata in a block
* group stores the superblock fs_generation value at
* allocation time. */
bail:
if (status)
mlog_errno(status);
return status;
}
static inline u16 ocfs2_find_smallest_chain(struct ocfs2_chain_list *cl)
{
u16 curr, best;
best = curr = 0;
while (curr < le16_to_cpu(cl->cl_count)) {
if (le32_to_cpu(cl->cl_recs[best].c_total) >
le32_to_cpu(cl->cl_recs[curr].c_total))
best = curr;
curr++;
}
return best;
}
static struct buffer_head *
ocfs2_block_group_alloc_contig(struct ocfs2_super *osb, handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_alloc_context *ac,
struct ocfs2_chain_list *cl)
{
int status;
u32 bit_off, num_bits;
u64 bg_blkno;
struct buffer_head *bg_bh;
unsigned int alloc_rec = ocfs2_find_smallest_chain(cl);
status = ocfs2_claim_clusters(handle, ac,
le16_to_cpu(cl->cl_cpg), &bit_off,
&num_bits);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
/* setup the group */
bg_blkno = ocfs2_clusters_to_blocks(osb->sb, bit_off);
trace_ocfs2_block_group_alloc_contig(
(unsigned long long)bg_blkno, alloc_rec);
bg_bh = sb_getblk(osb->sb, bg_blkno);
if (!bg_bh) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
ocfs2_set_new_buffer_uptodate(INODE_CACHE(alloc_inode), bg_bh);
status = ocfs2_block_group_fill(handle, alloc_inode, bg_bh,
bg_blkno, num_bits, alloc_rec, cl);
if (status < 0) {
brelse(bg_bh);
mlog_errno(status);
}
bail:
return status ? ERR_PTR(status) : bg_bh;
}
static int ocfs2_block_group_claim_bits(struct ocfs2_super *osb,
handle_t *handle,
struct ocfs2_alloc_context *ac,
unsigned int min_bits,
u32 *bit_off, u32 *num_bits)
{
int status = 0;
while (min_bits) {
status = ocfs2_claim_clusters(handle, ac, min_bits,
bit_off, num_bits);
if (status != -ENOSPC)
break;
min_bits >>= 1;
}
return status;
}
static int ocfs2_block_group_grow_discontig(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *bg_bh,
struct ocfs2_alloc_context *ac,
struct ocfs2_chain_list *cl,
unsigned int min_bits)
{
int status;
struct ocfs2_super *osb = OCFS2_SB(alloc_inode->i_sb);
struct ocfs2_group_desc *bg =
(struct ocfs2_group_desc *)bg_bh->b_data;
unsigned int needed = le16_to_cpu(cl->cl_cpg) -
le16_to_cpu(bg->bg_bits) / le16_to_cpu(cl->cl_bpc);
u32 p_cpos, clusters;
u64 p_blkno;
struct ocfs2_extent_list *el = &bg->bg_list;
status = ocfs2_journal_access_gd(handle,
INODE_CACHE(alloc_inode),
bg_bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
while ((needed > 0) && (le16_to_cpu(el->l_next_free_rec) <
le16_to_cpu(el->l_count))) {
if (min_bits > needed)
min_bits = needed;
status = ocfs2_block_group_claim_bits(osb, handle, ac,
min_bits, &p_cpos,
&clusters);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
p_blkno = ocfs2_clusters_to_blocks(osb->sb, p_cpos);
ocfs2_bg_discontig_add_extent(osb, bg, cl, p_blkno,
clusters);
min_bits = clusters;
needed = le16_to_cpu(cl->cl_cpg) -
le16_to_cpu(bg->bg_bits) / le16_to_cpu(cl->cl_bpc);
}
if (needed > 0) {
/*
* We have used up all the extent rec but can't fill up
* the cpg. So bail out.
*/
status = -ENOSPC;
goto bail;
}
ocfs2_journal_dirty(handle, bg_bh);
bail:
return status;
}
static void ocfs2_bg_alloc_cleanup(handle_t *handle,
struct ocfs2_alloc_context *cluster_ac,
struct inode *alloc_inode,
struct buffer_head *bg_bh)
{
int i, ret;
struct ocfs2_group_desc *bg;
struct ocfs2_extent_list *el;
struct ocfs2_extent_rec *rec;
if (!bg_bh)
return;
bg = (struct ocfs2_group_desc *)bg_bh->b_data;
el = &bg->bg_list;
for (i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
rec = &el->l_recs[i];
ret = ocfs2_free_clusters(handle, cluster_ac->ac_inode,
cluster_ac->ac_bh,
le64_to_cpu(rec->e_blkno),
le16_to_cpu(rec->e_leaf_clusters));
if (ret)
mlog_errno(ret);
/* Try all the clusters to free */
}
ocfs2_remove_from_cache(INODE_CACHE(alloc_inode), bg_bh);
brelse(bg_bh);
}
static struct buffer_head *
ocfs2_block_group_alloc_discontig(handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_alloc_context *ac,
struct ocfs2_chain_list *cl)
{
int status;
u32 bit_off, num_bits;
u64 bg_blkno;
unsigned int min_bits = le16_to_cpu(cl->cl_cpg) >> 1;
struct buffer_head *bg_bh = NULL;
unsigned int alloc_rec = ocfs2_find_smallest_chain(cl);
struct ocfs2_super *osb = OCFS2_SB(alloc_inode->i_sb);
if (!ocfs2_supports_discontig_bg(osb)) {
status = -ENOSPC;
goto bail;
}
status = ocfs2_extend_trans(handle,
ocfs2_calc_bg_discontig_credits(osb->sb));
if (status) {
mlog_errno(status);
goto bail;
}
/*
* We're going to be grabbing from multiple cluster groups.
* We don't have enough credits to relink them all, and the
* cluster groups will be staying in cache for the duration of
* this operation.
*/
ocfs2: ac->ac_allow_chain_relink=0 won't disable group relink ocfs2_block_group_alloc_discontig() disables chain relink by setting ac->ac_allow_chain_relink = 0 because it grabs clusters from multiple cluster groups. It doesn't keep the credits for all chain relink,but ocfs2_claim_suballoc_bits overrides this in this call trace: ocfs2_block_group_claim_bits()->ocfs2_claim_clusters()-> __ocfs2_claim_clusters()->ocfs2_claim_suballoc_bits() ocfs2_claim_suballoc_bits set ac->ac_allow_chain_relink = 1; then call ocfs2_search_chain() one time and disable it again, and then we run out of credits. Fix is to allow relink by default and disable it in ocfs2_block_group_alloc_discontig. Without this patch, End-users will run into a crash due to run out of credits, backtrace like this: RIP: 0010:[<ffffffffa0808b14>] [<ffffffffa0808b14>] jbd2_journal_dirty_metadata+0x164/0x170 [jbd2] RSP: 0018:ffff8801b919b5b8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88022139ddc0 RCX: ffff880159f652d0 RDX: ffff880178aa3000 RSI: ffff880159f652d0 RDI: ffff880087f09bf8 RBP: ffff8801b919b5e8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000001e00 R11: 00000000000150b0 R12: ffff880159f652d0 R13: ffff8801a0cae908 R14: ffff880087f09bf8 R15: ffff88018d177800 FS: 00007fc9b0b6b6e0(0000) GS:ffff88022fd40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 000000000040819c CR3: 0000000184017000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process dd (pid: 9945, threadinfo ffff8801b919a000, task ffff880149a264c0) Call Trace: ocfs2_journal_dirty+0x2f/0x70 [ocfs2] ocfs2_relink_block_group+0x111/0x480 [ocfs2] ocfs2_search_chain+0x455/0x9a0 [ocfs2] ... Signed-off-by: Xiaowei.Hu <xiaowei.hu@oracle.com> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:02:49 +04:00
ac->ac_disable_chain_relink = 1;
/* Claim the first region */
status = ocfs2_block_group_claim_bits(osb, handle, ac, min_bits,
&bit_off, &num_bits);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
min_bits = num_bits;
/* setup the group */
bg_blkno = ocfs2_clusters_to_blocks(osb->sb, bit_off);
trace_ocfs2_block_group_alloc_discontig(
(unsigned long long)bg_blkno, alloc_rec);
bg_bh = sb_getblk(osb->sb, bg_blkno);
if (!bg_bh) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
ocfs2_set_new_buffer_uptodate(INODE_CACHE(alloc_inode), bg_bh);
status = ocfs2_block_group_fill(handle, alloc_inode, bg_bh,
bg_blkno, num_bits, alloc_rec, cl);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_block_group_grow_discontig(handle, alloc_inode,
bg_bh, ac, cl, min_bits);
if (status)
mlog_errno(status);
bail:
if (status)
ocfs2_bg_alloc_cleanup(handle, ac, alloc_inode, bg_bh);
return status ? ERR_PTR(status) : bg_bh;
}
/*
* We expect the block group allocator to already be locked.
*/
static int ocfs2_block_group_alloc(struct ocfs2_super *osb,
struct inode *alloc_inode,
struct buffer_head *bh,
u64 max_block,
u64 *last_alloc_group,
int flags)
{
int status, credits;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) bh->b_data;
struct ocfs2_chain_list *cl;
struct ocfs2_alloc_context *ac = NULL;
handle_t *handle = NULL;
u16 alloc_rec;
struct buffer_head *bg_bh = NULL;
struct ocfs2_group_desc *bg;
BUG_ON(ocfs2_is_cluster_bitmap(alloc_inode));
cl = &fe->id2.i_chain;
status = ocfs2_reserve_clusters_with_limit(osb,
le16_to_cpu(cl->cl_cpg),
max_block, flags, &ac);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
credits = ocfs2_calc_group_alloc_credits(osb->sb,
le16_to_cpu(cl->cl_cpg));
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
handle = NULL;
mlog_errno(status);
goto bail;
}
if (last_alloc_group && *last_alloc_group != 0) {
trace_ocfs2_block_group_alloc(
(unsigned long long)*last_alloc_group);
ac->ac_last_group = *last_alloc_group;
}
bg_bh = ocfs2_block_group_alloc_contig(osb, handle, alloc_inode,
ac, cl);
if (IS_ERR(bg_bh) && (PTR_ERR(bg_bh) == -ENOSPC))
bg_bh = ocfs2_block_group_alloc_discontig(handle,
alloc_inode,
ac, cl);
if (IS_ERR(bg_bh)) {
status = PTR_ERR(bg_bh);
bg_bh = NULL;
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
bg = (struct ocfs2_group_desc *) bg_bh->b_data;
status = ocfs2_journal_access_di(handle, INODE_CACHE(alloc_inode),
bh, OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
alloc_rec = le16_to_cpu(bg->bg_chain);
le32_add_cpu(&cl->cl_recs[alloc_rec].c_free,
le16_to_cpu(bg->bg_free_bits_count));
le32_add_cpu(&cl->cl_recs[alloc_rec].c_total,
le16_to_cpu(bg->bg_bits));
cl->cl_recs[alloc_rec].c_blkno = bg->bg_blkno;
if (le16_to_cpu(cl->cl_next_free_rec) < le16_to_cpu(cl->cl_count))
le16_add_cpu(&cl->cl_next_free_rec, 1);
le32_add_cpu(&fe->id1.bitmap1.i_used, le16_to_cpu(bg->bg_bits) -
le16_to_cpu(bg->bg_free_bits_count));
le32_add_cpu(&fe->id1.bitmap1.i_total, le16_to_cpu(bg->bg_bits));
le32_add_cpu(&fe->i_clusters, le16_to_cpu(cl->cl_cpg));
ocfs2_journal_dirty(handle, bh);
spin_lock(&OCFS2_I(alloc_inode)->ip_lock);
OCFS2_I(alloc_inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
fe->i_size = cpu_to_le64(ocfs2_clusters_to_bytes(alloc_inode->i_sb,
le32_to_cpu(fe->i_clusters)));
spin_unlock(&OCFS2_I(alloc_inode)->ip_lock);
i_size_write(alloc_inode, le64_to_cpu(fe->i_size));
alloc_inode->i_blocks = ocfs2_inode_sector_count(alloc_inode);
ocfs2_update_inode_fsync_trans(handle, alloc_inode, 0);
status = 0;
/* save the new last alloc group so that the caller can cache it. */
if (last_alloc_group)
*last_alloc_group = ac->ac_last_group;
bail:
if (handle)
ocfs2_commit_trans(osb, handle);
if (ac)
ocfs2_free_alloc_context(ac);
brelse(bg_bh);
if (status)
mlog_errno(status);
return status;
}
static int ocfs2_reserve_suballoc_bits(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac,
int type,
u32 slot,
u64 *last_alloc_group,
int flags)
{
int status;
u32 bits_wanted = ac->ac_bits_wanted;
struct inode *alloc_inode;
struct buffer_head *bh = NULL;
struct ocfs2_dinode *fe;
u32 free_bits;
alloc_inode = ocfs2_get_system_file_inode(osb, type, slot);
if (!alloc_inode) {
mlog_errno(-EINVAL);
return -EINVAL;
}
inode_lock(alloc_inode);
status = ocfs2_inode_lock(alloc_inode, &bh, 1);
if (status < 0) {
inode_unlock(alloc_inode);
iput(alloc_inode);
mlog_errno(status);
return status;
}
ac->ac_inode = alloc_inode;
ac->ac_alloc_slot = slot;
fe = (struct ocfs2_dinode *) bh->b_data;
/* The bh was validated by the inode read inside
* ocfs2_inode_lock(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
if (!(fe->i_flags & cpu_to_le32(OCFS2_CHAIN_FL))) {
status = ocfs2_error(alloc_inode->i_sb,
"Invalid chain allocator %llu\n",
(unsigned long long)le64_to_cpu(fe->i_blkno));
goto bail;
}
free_bits = le32_to_cpu(fe->id1.bitmap1.i_total) -
le32_to_cpu(fe->id1.bitmap1.i_used);
if (bits_wanted > free_bits) {
/* cluster bitmap never grows */
if (ocfs2_is_cluster_bitmap(alloc_inode)) {
trace_ocfs2_reserve_suballoc_bits_nospc(bits_wanted,
free_bits);
status = -ENOSPC;
goto bail;
}
if (!(flags & ALLOC_NEW_GROUP)) {
trace_ocfs2_reserve_suballoc_bits_no_new_group(
slot, bits_wanted, free_bits);
status = -ENOSPC;
goto bail;
}
status = ocfs2_block_group_alloc(osb, alloc_inode, bh,
ac->ac_max_block,
last_alloc_group, flags);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
atomic_inc(&osb->alloc_stats.bg_extends);
/* You should never ask for this much metadata */
BUG_ON(bits_wanted >
(le32_to_cpu(fe->id1.bitmap1.i_total)
- le32_to_cpu(fe->id1.bitmap1.i_used)));
}
get_bh(bh);
ac->ac_bh = bh;
bail:
brelse(bh);
if (status)
mlog_errno(status);
return status;
}
static void ocfs2_init_inode_steal_slot(struct ocfs2_super *osb)
{
spin_lock(&osb->osb_lock);
osb->s_inode_steal_slot = OCFS2_INVALID_SLOT;
spin_unlock(&osb->osb_lock);
atomic_set(&osb->s_num_inodes_stolen, 0);
}
static void ocfs2_init_meta_steal_slot(struct ocfs2_super *osb)
{
spin_lock(&osb->osb_lock);
osb->s_meta_steal_slot = OCFS2_INVALID_SLOT;
spin_unlock(&osb->osb_lock);
atomic_set(&osb->s_num_meta_stolen, 0);
}
void ocfs2_init_steal_slots(struct ocfs2_super *osb)
{
ocfs2_init_inode_steal_slot(osb);
ocfs2_init_meta_steal_slot(osb);
}
static void __ocfs2_set_steal_slot(struct ocfs2_super *osb, int slot, int type)
{
spin_lock(&osb->osb_lock);
if (type == INODE_ALLOC_SYSTEM_INODE)
osb->s_inode_steal_slot = slot;
else if (type == EXTENT_ALLOC_SYSTEM_INODE)
osb->s_meta_steal_slot = slot;
spin_unlock(&osb->osb_lock);
}
static int __ocfs2_get_steal_slot(struct ocfs2_super *osb, int type)
{
int slot = OCFS2_INVALID_SLOT;
spin_lock(&osb->osb_lock);
if (type == INODE_ALLOC_SYSTEM_INODE)
slot = osb->s_inode_steal_slot;
else if (type == EXTENT_ALLOC_SYSTEM_INODE)
slot = osb->s_meta_steal_slot;
spin_unlock(&osb->osb_lock);
return slot;
}
static int ocfs2_get_inode_steal_slot(struct ocfs2_super *osb)
{
return __ocfs2_get_steal_slot(osb, INODE_ALLOC_SYSTEM_INODE);
}
static int ocfs2_get_meta_steal_slot(struct ocfs2_super *osb)
{
return __ocfs2_get_steal_slot(osb, EXTENT_ALLOC_SYSTEM_INODE);
}
static int ocfs2_steal_resource(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac,
int type)
{
int i, status = -ENOSPC;
int slot = __ocfs2_get_steal_slot(osb, type);
/* Start to steal resource from the first slot after ours. */
if (slot == OCFS2_INVALID_SLOT)
slot = osb->slot_num + 1;
for (i = 0; i < osb->max_slots; i++, slot++) {
if (slot == osb->max_slots)
slot = 0;
if (slot == osb->slot_num)
continue;
status = ocfs2_reserve_suballoc_bits(osb, ac,
type,
(u32)slot, NULL,
NOT_ALLOC_NEW_GROUP);
if (status >= 0) {
__ocfs2_set_steal_slot(osb, slot, type);
break;
}
ocfs2_free_ac_resource(ac);
}
return status;
}
static int ocfs2_steal_inode(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac)
{
return ocfs2_steal_resource(osb, ac, INODE_ALLOC_SYSTEM_INODE);
}
static int ocfs2_steal_meta(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac)
{
return ocfs2_steal_resource(osb, ac, EXTENT_ALLOC_SYSTEM_INODE);
}
int ocfs2_reserve_new_metadata_blocks(struct ocfs2_super *osb,
int blocks,
struct ocfs2_alloc_context **ac)
{
int status;
int slot = ocfs2_get_meta_steal_slot(osb);
*ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL);
if (!(*ac)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
(*ac)->ac_bits_wanted = blocks;
(*ac)->ac_which = OCFS2_AC_USE_META;
(*ac)->ac_group_search = ocfs2_block_group_search;
if (slot != OCFS2_INVALID_SLOT &&
atomic_read(&osb->s_num_meta_stolen) < OCFS2_MAX_TO_STEAL)
goto extent_steal;
atomic_set(&osb->s_num_meta_stolen, 0);
status = ocfs2_reserve_suballoc_bits(osb, (*ac),
EXTENT_ALLOC_SYSTEM_INODE,
(u32)osb->slot_num, NULL,
ALLOC_GROUPS_FROM_GLOBAL|ALLOC_NEW_GROUP);
if (status >= 0) {
status = 0;
if (slot != OCFS2_INVALID_SLOT)
ocfs2_init_meta_steal_slot(osb);
goto bail;
} else if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
ocfs2_free_ac_resource(*ac);
extent_steal:
status = ocfs2_steal_meta(osb, *ac);
atomic_inc(&osb->s_num_meta_stolen);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
status = 0;
bail:
if ((status < 0) && *ac) {
ocfs2_free_alloc_context(*ac);
*ac = NULL;
}
if (status)
mlog_errno(status);
return status;
}
int ocfs2_reserve_new_metadata(struct ocfs2_super *osb,
struct ocfs2_extent_list *root_el,
struct ocfs2_alloc_context **ac)
{
return ocfs2_reserve_new_metadata_blocks(osb,
ocfs2_extend_meta_needed(root_el),
ac);
}
int ocfs2_reserve_new_inode(struct ocfs2_super *osb,
struct ocfs2_alloc_context **ac)
{
int status;
int slot = ocfs2_get_inode_steal_slot(osb);
u64 alloc_group;
*ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL);
if (!(*ac)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
(*ac)->ac_bits_wanted = 1;
(*ac)->ac_which = OCFS2_AC_USE_INODE;
(*ac)->ac_group_search = ocfs2_block_group_search;
/*
* stat(2) can't handle i_ino > 32bits, so we tell the
* lower levels not to allocate us a block group past that
* limit. The 'inode64' mount option avoids this behavior.
*/
if (!(osb->s_mount_opt & OCFS2_MOUNT_INODE64))
(*ac)->ac_max_block = (u32)~0U;
/*
* slot is set when we successfully steal inode from other nodes.
* It is reset in 3 places:
* 1. when we flush the truncate log
* 2. when we complete local alloc recovery.
* 3. when we successfully allocate from our own slot.
* After it is set, we will go on stealing inodes until we find the
* need to check our slots to see whether there is some space for us.
*/
if (slot != OCFS2_INVALID_SLOT &&
atomic_read(&osb->s_num_inodes_stolen) < OCFS2_MAX_TO_STEAL)
goto inode_steal;
atomic_set(&osb->s_num_inodes_stolen, 0);
alloc_group = osb->osb_inode_alloc_group;
status = ocfs2_reserve_suballoc_bits(osb, *ac,
INODE_ALLOC_SYSTEM_INODE,
(u32)osb->slot_num,
&alloc_group,
ALLOC_NEW_GROUP |
ALLOC_GROUPS_FROM_GLOBAL);
if (status >= 0) {
status = 0;
spin_lock(&osb->osb_lock);
osb->osb_inode_alloc_group = alloc_group;
spin_unlock(&osb->osb_lock);
trace_ocfs2_reserve_new_inode_new_group(
(unsigned long long)alloc_group);
/*
* Some inodes must be freed by us, so try to allocate
* from our own next time.
*/
if (slot != OCFS2_INVALID_SLOT)
ocfs2_init_inode_steal_slot(osb);
goto bail;
} else if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
ocfs2_free_ac_resource(*ac);
inode_steal:
status = ocfs2_steal_inode(osb, *ac);
atomic_inc(&osb->s_num_inodes_stolen);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
status = 0;
bail:
if ((status < 0) && *ac) {
ocfs2_free_alloc_context(*ac);
*ac = NULL;
}
if (status)
mlog_errno(status);
return status;
}
/* local alloc code has to do the same thing, so rather than do this
* twice.. */
int ocfs2_reserve_cluster_bitmap_bits(struct ocfs2_super *osb,
struct ocfs2_alloc_context *ac)
{
int status;
ac->ac_which = OCFS2_AC_USE_MAIN;
ac->ac_group_search = ocfs2_cluster_group_search;
status = ocfs2_reserve_suballoc_bits(osb, ac,
GLOBAL_BITMAP_SYSTEM_INODE,
OCFS2_INVALID_SLOT, NULL,
ALLOC_NEW_GROUP);
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
bail:
return status;
}
/* Callers don't need to care which bitmap (local alloc or main) to
* use so we figure it out for them, but unfortunately this clutters
* things a bit. */
static int ocfs2_reserve_clusters_with_limit(struct ocfs2_super *osb,
u32 bits_wanted, u64 max_block,
int flags,
struct ocfs2_alloc_context **ac)
{
2016-08-03 00:02:10 +03:00
int status, ret = 0;
int retried = 0;
*ac = kzalloc(sizeof(struct ocfs2_alloc_context), GFP_KERNEL);
if (!(*ac)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
(*ac)->ac_bits_wanted = bits_wanted;
(*ac)->ac_max_block = max_block;
status = -ENOSPC;
if (!(flags & ALLOC_GROUPS_FROM_GLOBAL) &&
ocfs2_alloc_should_use_local(osb, bits_wanted)) {
status = ocfs2_reserve_local_alloc_bits(osb,
bits_wanted,
*ac);
if ((status < 0) && (status != -ENOSPC)) {
mlog_errno(status);
goto bail;
}
}
if (status == -ENOSPC) {
2016-08-03 00:02:10 +03:00
retry:
status = ocfs2_reserve_cluster_bitmap_bits(osb, *ac);
2016-08-03 00:02:10 +03:00
/* Retry if there is sufficient space cached in truncate log */
if (status == -ENOSPC && !retried) {
retried = 1;
ocfs2_inode_unlock((*ac)->ac_inode, 1);
inode_unlock((*ac)->ac_inode);
ret = ocfs2_try_to_free_truncate_log(osb, bits_wanted);
if (ret == 1)
goto retry;
if (ret < 0)
mlog_errno(ret);
inode_lock((*ac)->ac_inode);
ocfs2_inode_lock((*ac)->ac_inode, NULL, 1);
}
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
if ((status < 0) && *ac) {
ocfs2_free_alloc_context(*ac);
*ac = NULL;
}
if (status)
mlog_errno(status);
return status;
}
int ocfs2_reserve_clusters(struct ocfs2_super *osb,
u32 bits_wanted,
struct ocfs2_alloc_context **ac)
{
return ocfs2_reserve_clusters_with_limit(osb, bits_wanted, 0,
ALLOC_NEW_GROUP, ac);
}
/*
* More or less lifted from ext3. I'll leave their description below:
*
* "For ext3 allocations, we must not reuse any blocks which are
* allocated in the bitmap buffer's "last committed data" copy. This
* prevents deletes from freeing up the page for reuse until we have
* committed the delete transaction.
*
* If we didn't do this, then deleting something and reallocating it as
* data would allow the old block to be overwritten before the
* transaction committed (because we force data to disk before commit).
* This would lead to corruption if we crashed between overwriting the
* data and committing the delete.
*
* @@@ We may want to make this allocation behaviour conditional on
* data-writes at some point, and disable it for metadata allocations or
* sync-data inodes."
*
* Note: OCFS2 already does this differently for metadata vs data
* allocations, as those bitmaps are separate and undo access is never
* called on a metadata group descriptor.
*/
static int ocfs2_test_bg_bit_allocatable(struct buffer_head *bg_bh,
int nr)
{
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
int ret;
if (ocfs2_test_bit(nr, (unsigned long *)bg->bg_bitmap))
return 0;
if (!buffer_jbd(bg_bh))
return 1;
jbd_lock_bh_state(bg_bh);
bg = (struct ocfs2_group_desc *) bh2jh(bg_bh)->b_committed_data;
if (bg)
ret = !ocfs2_test_bit(nr, (unsigned long *)bg->bg_bitmap);
else
ret = 1;
jbd_unlock_bh_state(bg_bh);
return ret;
}
static int ocfs2_block_group_find_clear_bits(struct ocfs2_super *osb,
struct buffer_head *bg_bh,
unsigned int bits_wanted,
unsigned int total_bits,
struct ocfs2_suballoc_result *res)
{
void *bitmap;
u16 best_offset, best_size;
int offset, start, found, status = 0;
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
/* Callers got this descriptor from
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
found = start = best_offset = best_size = 0;
bitmap = bg->bg_bitmap;
while((offset = ocfs2_find_next_zero_bit(bitmap, total_bits, start)) != -1) {
if (offset == total_bits)
break;
if (!ocfs2_test_bg_bit_allocatable(bg_bh, offset)) {
/* We found a zero, but we can't use it as it
* hasn't been put to disk yet! */
found = 0;
start = offset + 1;
} else if (offset == start) {
/* we found a zero */
found++;
/* move start to the next bit to test */
start++;
} else {
/* got a zero after some ones */
found = 1;
start = offset + 1;
}
if (found > best_size) {
best_size = found;
best_offset = start - found;
}
/* we got everything we needed */
if (found == bits_wanted) {
/* mlog(0, "Found it all!\n"); */
break;
}
}
if (best_size) {
res->sr_bit_offset = best_offset;
res->sr_bits = best_size;
} else {
status = -ENOSPC;
/* No error log here -- see the comment above
* ocfs2_test_bg_bit_allocatable */
}
return status;
}
int ocfs2_block_group_set_bits(handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_group_desc *bg,
struct buffer_head *group_bh,
unsigned int bit_off,
unsigned int num_bits)
{
int status;
void *bitmap = bg->bg_bitmap;
int journal_type = OCFS2_JOURNAL_ACCESS_WRITE;
/* All callers get the descriptor via
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
BUG_ON(le16_to_cpu(bg->bg_free_bits_count) < num_bits);
trace_ocfs2_block_group_set_bits(bit_off, num_bits);
if (ocfs2_is_cluster_bitmap(alloc_inode))
journal_type = OCFS2_JOURNAL_ACCESS_UNDO;
status = ocfs2_journal_access_gd(handle,
INODE_CACHE(alloc_inode),
group_bh,
journal_type);
if (status < 0) {
mlog_errno(status);
goto bail;
}
le16_add_cpu(&bg->bg_free_bits_count, -num_bits);
if (le16_to_cpu(bg->bg_free_bits_count) > le16_to_cpu(bg->bg_bits)) {
return ocfs2_error(alloc_inode->i_sb, "Group descriptor # %llu has bit count %u but claims %u are freed. num_bits %d\n",
(unsigned long long)le64_to_cpu(bg->bg_blkno),
le16_to_cpu(bg->bg_bits),
le16_to_cpu(bg->bg_free_bits_count),
num_bits);
}
while(num_bits--)
ocfs2_set_bit(bit_off++, bitmap);
ocfs2_journal_dirty(handle, group_bh);
bail:
return status;
}
/* find the one with the most empty bits */
static inline u16 ocfs2_find_victim_chain(struct ocfs2_chain_list *cl)
{
u16 curr, best;
BUG_ON(!cl->cl_next_free_rec);
best = curr = 0;
while (curr < le16_to_cpu(cl->cl_next_free_rec)) {
if (le32_to_cpu(cl->cl_recs[curr].c_free) >
le32_to_cpu(cl->cl_recs[best].c_free))
best = curr;
curr++;
}
BUG_ON(best >= le16_to_cpu(cl->cl_next_free_rec));
return best;
}
static int ocfs2_relink_block_group(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *fe_bh,
struct buffer_head *bg_bh,
struct buffer_head *prev_bg_bh,
u16 chain)
{
int status;
/* there is a really tiny chance the journal calls could fail,
* but we wouldn't want inconsistent blocks in *any* case. */
u64 bg_ptr, prev_bg_ptr;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) fe_bh->b_data;
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) bg_bh->b_data;
struct ocfs2_group_desc *prev_bg = (struct ocfs2_group_desc *) prev_bg_bh->b_data;
/* The caller got these descriptors from
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(prev_bg));
trace_ocfs2_relink_block_group(
(unsigned long long)le64_to_cpu(fe->i_blkno), chain,
(unsigned long long)le64_to_cpu(bg->bg_blkno),
(unsigned long long)le64_to_cpu(prev_bg->bg_blkno));
bg_ptr = le64_to_cpu(bg->bg_next_group);
prev_bg_ptr = le64_to_cpu(prev_bg->bg_next_group);
status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode),
prev_bg_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0)
goto out;
prev_bg->bg_next_group = bg->bg_next_group;
ocfs2_journal_dirty(handle, prev_bg_bh);
status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode),
bg_bh, OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0)
goto out_rollback_prev_bg;
bg->bg_next_group = fe->id2.i_chain.cl_recs[chain].c_blkno;
ocfs2_journal_dirty(handle, bg_bh);
status = ocfs2_journal_access_di(handle, INODE_CACHE(alloc_inode),
fe_bh, OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0)
goto out_rollback_bg;
fe->id2.i_chain.cl_recs[chain].c_blkno = bg->bg_blkno;
ocfs2_journal_dirty(handle, fe_bh);
out:
if (status < 0)
mlog_errno(status);
return status;
out_rollback_bg:
bg->bg_next_group = cpu_to_le64(bg_ptr);
out_rollback_prev_bg:
prev_bg->bg_next_group = cpu_to_le64(prev_bg_ptr);
goto out;
}
static inline int ocfs2_block_group_reasonably_empty(struct ocfs2_group_desc *bg,
u32 wanted)
{
return le16_to_cpu(bg->bg_free_bits_count) > wanted;
}
/* return 0 on success, -ENOSPC to keep searching and any other < 0
* value on error. */
static int ocfs2_cluster_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
struct ocfs2_suballoc_result *res)
{
int search = -ENOSPC;
int ret;
u64 blkoff;
struct ocfs2_group_desc *gd = (struct ocfs2_group_desc *) group_bh->b_data;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
unsigned int max_bits, gd_cluster_off;
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
if (gd->bg_free_bits_count) {
max_bits = le16_to_cpu(gd->bg_bits);
/* Tail groups in cluster bitmaps which aren't cpg
* aligned are prone to partial extension by a failed
* fs resize. If the file system resize never got to
* update the dinode cluster count, then we don't want
* to trust any clusters past it, regardless of what
* the group descriptor says. */
gd_cluster_off = ocfs2_blocks_to_clusters(inode->i_sb,
le64_to_cpu(gd->bg_blkno));
if ((gd_cluster_off + max_bits) >
OCFS2_I(inode)->ip_clusters) {
max_bits = OCFS2_I(inode)->ip_clusters - gd_cluster_off;
trace_ocfs2_cluster_group_search_wrong_max_bits(
(unsigned long long)le64_to_cpu(gd->bg_blkno),
le16_to_cpu(gd->bg_bits),
OCFS2_I(inode)->ip_clusters, max_bits);
}
ret = ocfs2_block_group_find_clear_bits(OCFS2_SB(inode->i_sb),
group_bh, bits_wanted,
max_bits, res);
if (ret)
return ret;
if (max_block) {
blkoff = ocfs2_clusters_to_blocks(inode->i_sb,
gd_cluster_off +
res->sr_bit_offset +
res->sr_bits);
trace_ocfs2_cluster_group_search_max_block(
(unsigned long long)blkoff,
(unsigned long long)max_block);
if (blkoff > max_block)
return -ENOSPC;
}
/* ocfs2_block_group_find_clear_bits() might
* return success, but we still want to return
* -ENOSPC unless it found the minimum number
* of bits. */
if (min_bits <= res->sr_bits)
search = 0; /* success */
else if (res->sr_bits) {
/*
* Don't show bits which we'll be returning
* for allocation to the local alloc bitmap.
*/
ocfs2_local_alloc_seen_free_bits(osb, res->sr_bits);
}
}
return search;
}
static int ocfs2_block_group_search(struct inode *inode,
struct buffer_head *group_bh,
u32 bits_wanted, u32 min_bits,
u64 max_block,
struct ocfs2_suballoc_result *res)
{
int ret = -ENOSPC;
u64 blkoff;
struct ocfs2_group_desc *bg = (struct ocfs2_group_desc *) group_bh->b_data;
BUG_ON(min_bits != 1);
BUG_ON(ocfs2_is_cluster_bitmap(inode));
if (bg->bg_free_bits_count) {
ret = ocfs2_block_group_find_clear_bits(OCFS2_SB(inode->i_sb),
group_bh, bits_wanted,
le16_to_cpu(bg->bg_bits),
res);
if (!ret && max_block) {
blkoff = le64_to_cpu(bg->bg_blkno) +
res->sr_bit_offset + res->sr_bits;
trace_ocfs2_block_group_search_max_block(
(unsigned long long)blkoff,
(unsigned long long)max_block);
if (blkoff > max_block)
ret = -ENOSPC;
}
}
return ret;
}
int ocfs2_alloc_dinode_update_counts(struct inode *inode,
handle_t *handle,
struct buffer_head *di_bh,
u32 num_bits,
u16 chain)
{
int ret;
u32 tmp_used;
struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data;
struct ocfs2_chain_list *cl = (struct ocfs2_chain_list *) &di->id2.i_chain;
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
tmp_used = le32_to_cpu(di->id1.bitmap1.i_used);
di->id1.bitmap1.i_used = cpu_to_le32(num_bits + tmp_used);
le32_add_cpu(&cl->cl_recs[chain].c_free, -num_bits);
ocfs2_journal_dirty(handle, di_bh);
out:
return ret;
}
void ocfs2_rollback_alloc_dinode_counts(struct inode *inode,
struct buffer_head *di_bh,
u32 num_bits,
u16 chain)
{
u32 tmp_used;
struct ocfs2_dinode *di = (struct ocfs2_dinode *) di_bh->b_data;
struct ocfs2_chain_list *cl;
cl = (struct ocfs2_chain_list *)&di->id2.i_chain;
tmp_used = le32_to_cpu(di->id1.bitmap1.i_used);
di->id1.bitmap1.i_used = cpu_to_le32(tmp_used - num_bits);
le32_add_cpu(&cl->cl_recs[chain].c_free, num_bits);
}
static int ocfs2_bg_discontig_fix_by_rec(struct ocfs2_suballoc_result *res,
struct ocfs2_extent_rec *rec,
struct ocfs2_chain_list *cl)
{
unsigned int bpc = le16_to_cpu(cl->cl_bpc);
unsigned int bitoff = le32_to_cpu(rec->e_cpos) * bpc;
unsigned int bitcount = le16_to_cpu(rec->e_leaf_clusters) * bpc;
if (res->sr_bit_offset < bitoff)
return 0;
if (res->sr_bit_offset >= (bitoff + bitcount))
return 0;
res->sr_blkno = le64_to_cpu(rec->e_blkno) +
(res->sr_bit_offset - bitoff);
if ((res->sr_bit_offset + res->sr_bits) > (bitoff + bitcount))
res->sr_bits = (bitoff + bitcount) - res->sr_bit_offset;
return 1;
}
static void ocfs2_bg_discontig_fix_result(struct ocfs2_alloc_context *ac,
struct ocfs2_group_desc *bg,
struct ocfs2_suballoc_result *res)
{
int i;
u64 bg_blkno = res->sr_bg_blkno; /* Save off */
struct ocfs2_extent_rec *rec;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)ac->ac_bh->b_data;
struct ocfs2_chain_list *cl = &di->id2.i_chain;
if (ocfs2_is_cluster_bitmap(ac->ac_inode)) {
res->sr_blkno = 0;
return;
}
res->sr_blkno = res->sr_bg_blkno + res->sr_bit_offset;
res->sr_bg_blkno = 0; /* Clear it for contig block groups */
if (!ocfs2_supports_discontig_bg(OCFS2_SB(ac->ac_inode->i_sb)) ||
!bg->bg_list.l_next_free_rec)
return;
for (i = 0; i < le16_to_cpu(bg->bg_list.l_next_free_rec); i++) {
rec = &bg->bg_list.l_recs[i];
if (ocfs2_bg_discontig_fix_by_rec(res, rec, cl)) {
res->sr_bg_blkno = bg_blkno; /* Restore */
break;
}
}
}
static int ocfs2_search_one_group(struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
struct ocfs2_suballoc_result *res,
u16 *bits_left)
{
int ret;
struct buffer_head *group_bh = NULL;
struct ocfs2_group_desc *gd;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)ac->ac_bh->b_data;
struct inode *alloc_inode = ac->ac_inode;
ret = ocfs2_read_group_descriptor(alloc_inode, di,
res->sr_bg_blkno, &group_bh);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
gd = (struct ocfs2_group_desc *) group_bh->b_data;
ret = ac->ac_group_search(alloc_inode, group_bh, bits_wanted, min_bits,
ac->ac_max_block, res);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
if (!ret)
ocfs2_bg_discontig_fix_result(ac, gd, res);
/*
* sr_bg_blkno might have been changed by
* ocfs2_bg_discontig_fix_result
*/
res->sr_bg_stable_blkno = group_bh->b_blocknr;
if (ac->ac_find_loc_only)
goto out_loc_only;
ret = ocfs2_alloc_dinode_update_counts(alloc_inode, handle, ac->ac_bh,
res->sr_bits,
le16_to_cpu(gd->bg_chain));
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_block_group_set_bits(handle, alloc_inode, gd, group_bh,
res->sr_bit_offset, res->sr_bits);
if (ret < 0) {
ocfs2_rollback_alloc_dinode_counts(alloc_inode, ac->ac_bh,
res->sr_bits,
le16_to_cpu(gd->bg_chain));
mlog_errno(ret);
}
out_loc_only:
*bits_left = le16_to_cpu(gd->bg_free_bits_count);
out:
brelse(group_bh);
return ret;
}
static int ocfs2_search_chain(struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
struct ocfs2_suballoc_result *res,
u16 *bits_left)
{
int status;
u16 chain;
u64 next_group;
struct inode *alloc_inode = ac->ac_inode;
struct buffer_head *group_bh = NULL;
struct buffer_head *prev_group_bh = NULL;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) ac->ac_bh->b_data;
struct ocfs2_chain_list *cl = (struct ocfs2_chain_list *) &fe->id2.i_chain;
struct ocfs2_group_desc *bg;
chain = ac->ac_chain;
trace_ocfs2_search_chain_begin(
(unsigned long long)OCFS2_I(alloc_inode)->ip_blkno,
bits_wanted, chain);
status = ocfs2_read_group_descriptor(alloc_inode, fe,
le64_to_cpu(cl->cl_recs[chain].c_blkno),
&group_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bg = (struct ocfs2_group_desc *) group_bh->b_data;
status = -ENOSPC;
/* for now, the chain search is a bit simplistic. We just use
* the 1st group with any empty bits. */
while ((status = ac->ac_group_search(alloc_inode, group_bh,
bits_wanted, min_bits,
ac->ac_max_block,
res)) == -ENOSPC) {
if (!bg->bg_next_group)
break;
brelse(prev_group_bh);
prev_group_bh = NULL;
next_group = le64_to_cpu(bg->bg_next_group);
prev_group_bh = group_bh;
group_bh = NULL;
status = ocfs2_read_group_descriptor(alloc_inode, fe,
next_group, &group_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bg = (struct ocfs2_group_desc *) group_bh->b_data;
}
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
trace_ocfs2_search_chain_succ(
(unsigned long long)le64_to_cpu(bg->bg_blkno), res->sr_bits);
res->sr_bg_blkno = le64_to_cpu(bg->bg_blkno);
BUG_ON(res->sr_bits == 0);
if (!status)
ocfs2_bg_discontig_fix_result(ac, bg, res);
/*
* sr_bg_blkno might have been changed by
* ocfs2_bg_discontig_fix_result
*/
res->sr_bg_stable_blkno = group_bh->b_blocknr;
/*
* Keep track of previous block descriptor read. When
* we find a target, if we have read more than X
* number of descriptors, and the target is reasonably
* empty, relink him to top of his chain.
*
* We've read 0 extra blocks and only send one more to
* the transaction, yet the next guy to search has a
* much easier time.
*
* Do this *after* figuring out how many bits we're taking out
* of our target group.
*/
ocfs2: ac->ac_allow_chain_relink=0 won't disable group relink ocfs2_block_group_alloc_discontig() disables chain relink by setting ac->ac_allow_chain_relink = 0 because it grabs clusters from multiple cluster groups. It doesn't keep the credits for all chain relink,but ocfs2_claim_suballoc_bits overrides this in this call trace: ocfs2_block_group_claim_bits()->ocfs2_claim_clusters()-> __ocfs2_claim_clusters()->ocfs2_claim_suballoc_bits() ocfs2_claim_suballoc_bits set ac->ac_allow_chain_relink = 1; then call ocfs2_search_chain() one time and disable it again, and then we run out of credits. Fix is to allow relink by default and disable it in ocfs2_block_group_alloc_discontig. Without this patch, End-users will run into a crash due to run out of credits, backtrace like this: RIP: 0010:[<ffffffffa0808b14>] [<ffffffffa0808b14>] jbd2_journal_dirty_metadata+0x164/0x170 [jbd2] RSP: 0018:ffff8801b919b5b8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88022139ddc0 RCX: ffff880159f652d0 RDX: ffff880178aa3000 RSI: ffff880159f652d0 RDI: ffff880087f09bf8 RBP: ffff8801b919b5e8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000001e00 R11: 00000000000150b0 R12: ffff880159f652d0 R13: ffff8801a0cae908 R14: ffff880087f09bf8 R15: ffff88018d177800 FS: 00007fc9b0b6b6e0(0000) GS:ffff88022fd40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 000000000040819c CR3: 0000000184017000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process dd (pid: 9945, threadinfo ffff8801b919a000, task ffff880149a264c0) Call Trace: ocfs2_journal_dirty+0x2f/0x70 [ocfs2] ocfs2_relink_block_group+0x111/0x480 [ocfs2] ocfs2_search_chain+0x455/0x9a0 [ocfs2] ... Signed-off-by: Xiaowei.Hu <xiaowei.hu@oracle.com> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:02:49 +04:00
if (!ac->ac_disable_chain_relink &&
(prev_group_bh) &&
(ocfs2_block_group_reasonably_empty(bg, res->sr_bits))) {
status = ocfs2_relink_block_group(handle, alloc_inode,
ac->ac_bh, group_bh,
prev_group_bh, chain);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
if (ac->ac_find_loc_only)
goto out_loc_only;
status = ocfs2_alloc_dinode_update_counts(alloc_inode, handle,
ac->ac_bh, res->sr_bits,
chain);
if (status) {
mlog_errno(status);
goto bail;
}
status = ocfs2_block_group_set_bits(handle,
alloc_inode,
bg,
group_bh,
res->sr_bit_offset,
res->sr_bits);
if (status < 0) {
ocfs2_rollback_alloc_dinode_counts(alloc_inode,
ac->ac_bh, res->sr_bits, chain);
mlog_errno(status);
goto bail;
}
trace_ocfs2_search_chain_end(
(unsigned long long)le64_to_cpu(fe->i_blkno),
res->sr_bits);
out_loc_only:
*bits_left = le16_to_cpu(bg->bg_free_bits_count);
bail:
brelse(group_bh);
brelse(prev_group_bh);
if (status)
mlog_errno(status);
return status;
}
/* will give out up to bits_wanted contiguous bits. */
static int ocfs2_claim_suballoc_bits(struct ocfs2_alloc_context *ac,
handle_t *handle,
u32 bits_wanted,
u32 min_bits,
struct ocfs2_suballoc_result *res)
{
int status;
u16 victim, i;
u16 bits_left = 0;
u64 hint = ac->ac_last_group;
struct ocfs2_chain_list *cl;
struct ocfs2_dinode *fe;
BUG_ON(ac->ac_bits_given >= ac->ac_bits_wanted);
BUG_ON(bits_wanted > (ac->ac_bits_wanted - ac->ac_bits_given));
BUG_ON(!ac->ac_bh);
fe = (struct ocfs2_dinode *) ac->ac_bh->b_data;
/* The bh was validated by the inode read during
* ocfs2_reserve_suballoc_bits(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
if (le32_to_cpu(fe->id1.bitmap1.i_used) >=
le32_to_cpu(fe->id1.bitmap1.i_total)) {
status = ocfs2_error(ac->ac_inode->i_sb,
"Chain allocator dinode %llu has %u used bits but only %u total\n",
(unsigned long long)le64_to_cpu(fe->i_blkno),
le32_to_cpu(fe->id1.bitmap1.i_used),
le32_to_cpu(fe->id1.bitmap1.i_total));
goto bail;
}
res->sr_bg_blkno = hint;
if (res->sr_bg_blkno) {
/* Attempt to short-circuit the usual search mechanism
* by jumping straight to the most recently used
* allocation group. This helps us maintain some
* contiguousness across allocations. */
status = ocfs2_search_one_group(ac, handle, bits_wanted,
min_bits, res, &bits_left);
if (!status)
goto set_hint;
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
}
cl = (struct ocfs2_chain_list *) &fe->id2.i_chain;
victim = ocfs2_find_victim_chain(cl);
ac->ac_chain = victim;
status = ocfs2_search_chain(ac, handle, bits_wanted, min_bits,
res, &bits_left);
if (!status) {
ocfs2: improve performance for localalloc Currently cluster allocation is always trying to find a victim chain (a chian has most space), and this may lead to poor performance because of discontiguous allocation in some scenarios. Our test case is block size 4k, cluster size 1M and mount option with localalloc=2048 (2G), since a gd is 32256M (about 31.5G) and a localalloc window is only 2G, creating 50G file will result in 2G from gd0, 2G from gd1, ... One way to improve performance is enlarge localalloc window size (max 31104M), but this will make end user feel that about 30G is suddenly "missing", and localalloc currently do not support steal, which means one node cannot use another node's localalloc even it is not used in fact. So using the last gd to record the allocation and continues with the gd if it has enough space for a localalloc window can make the allocation as more contiguous as possible. Our test result is below (evaluated in IOPS), which is using iometer running in VM, dynamic vhd virtual disk stored in ocfs2. IO model Original After Improved(%) 16K60%Write100%Random 703 876 24.59% 8K90%Write100%Random 735 827 12.59% 4K100%Write100%Random 859 915 6.52% 4K100%Read100%Random 2092 2600 24.30% Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Tested-by: Norton Zhu <norton.zhu@huawei.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 05:43:58 +03:00
if (ocfs2_is_cluster_bitmap(ac->ac_inode))
hint = res->sr_bg_blkno;
else
hint = ocfs2_group_from_res(res);
goto set_hint;
}
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
trace_ocfs2_claim_suballoc_bits(victim);
/* If we didn't pick a good victim, then just default to
* searching each chain in order. Don't allow chain relinking
* because we only calculate enough journal credits for one
* relink per alloc. */
ocfs2: ac->ac_allow_chain_relink=0 won't disable group relink ocfs2_block_group_alloc_discontig() disables chain relink by setting ac->ac_allow_chain_relink = 0 because it grabs clusters from multiple cluster groups. It doesn't keep the credits for all chain relink,but ocfs2_claim_suballoc_bits overrides this in this call trace: ocfs2_block_group_claim_bits()->ocfs2_claim_clusters()-> __ocfs2_claim_clusters()->ocfs2_claim_suballoc_bits() ocfs2_claim_suballoc_bits set ac->ac_allow_chain_relink = 1; then call ocfs2_search_chain() one time and disable it again, and then we run out of credits. Fix is to allow relink by default and disable it in ocfs2_block_group_alloc_discontig. Without this patch, End-users will run into a crash due to run out of credits, backtrace like this: RIP: 0010:[<ffffffffa0808b14>] [<ffffffffa0808b14>] jbd2_journal_dirty_metadata+0x164/0x170 [jbd2] RSP: 0018:ffff8801b919b5b8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88022139ddc0 RCX: ffff880159f652d0 RDX: ffff880178aa3000 RSI: ffff880159f652d0 RDI: ffff880087f09bf8 RBP: ffff8801b919b5e8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000001e00 R11: 00000000000150b0 R12: ffff880159f652d0 R13: ffff8801a0cae908 R14: ffff880087f09bf8 R15: ffff88018d177800 FS: 00007fc9b0b6b6e0(0000) GS:ffff88022fd40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 000000000040819c CR3: 0000000184017000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process dd (pid: 9945, threadinfo ffff8801b919a000, task ffff880149a264c0) Call Trace: ocfs2_journal_dirty+0x2f/0x70 [ocfs2] ocfs2_relink_block_group+0x111/0x480 [ocfs2] ocfs2_search_chain+0x455/0x9a0 [ocfs2] ... Signed-off-by: Xiaowei.Hu <xiaowei.hu@oracle.com> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 05:02:49 +04:00
ac->ac_disable_chain_relink = 1;
for (i = 0; i < le16_to_cpu(cl->cl_next_free_rec); i ++) {
if (i == victim)
continue;
if (!cl->cl_recs[i].c_free)
continue;
ac->ac_chain = i;
status = ocfs2_search_chain(ac, handle, bits_wanted, min_bits,
res, &bits_left);
if (!status) {
hint = ocfs2_group_from_res(res);
break;
}
if (status < 0 && status != -ENOSPC) {
mlog_errno(status);
goto bail;
}
}
set_hint:
if (status != -ENOSPC) {
/* If the next search of this group is not likely to
* yield a suitable extent, then we reset the last
* group hint so as to not waste a disk read */
if (bits_left < min_bits)
ac->ac_last_group = 0;
else
ac->ac_last_group = hint;
}
bail:
if (status)
mlog_errno(status);
return status;
}
int ocfs2_claim_metadata(handle_t *handle,
struct ocfs2_alloc_context *ac,
u32 bits_wanted,
u64 *suballoc_loc,
u16 *suballoc_bit_start,
unsigned int *num_bits,
u64 *blkno_start)
{
int status;
struct ocfs2_suballoc_result res = { .sr_blkno = 0, };
BUG_ON(!ac);
BUG_ON(ac->ac_bits_wanted < (ac->ac_bits_given + bits_wanted));
BUG_ON(ac->ac_which != OCFS2_AC_USE_META);
status = ocfs2_claim_suballoc_bits(ac,
handle,
bits_wanted,
1,
&res);
if (status < 0) {
mlog_errno(status);
goto bail;
}
atomic_inc(&OCFS2_SB(ac->ac_inode->i_sb)->alloc_stats.bg_allocs);
*suballoc_loc = res.sr_bg_blkno;
*suballoc_bit_start = res.sr_bit_offset;
*blkno_start = res.sr_blkno;
ac->ac_bits_given += res.sr_bits;
*num_bits = res.sr_bits;
status = 0;
bail:
if (status)
mlog_errno(status);
return status;
}
static void ocfs2_init_inode_ac_group(struct inode *dir,
struct buffer_head *parent_di_bh,
struct ocfs2_alloc_context *ac)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)parent_di_bh->b_data;
/*
* Try to allocate inodes from some specific group.
*
* If the parent dir has recorded the last group used in allocation,
* cool, use it. Otherwise if we try to allocate new inode from the
* same slot the parent dir belongs to, use the same chunk.
*
* We are very careful here to avoid the mistake of setting
* ac_last_group to a group descriptor from a different (unlocked) slot.
*/
if (OCFS2_I(dir)->ip_last_used_group &&
OCFS2_I(dir)->ip_last_used_slot == ac->ac_alloc_slot)
ac->ac_last_group = OCFS2_I(dir)->ip_last_used_group;
else if (le16_to_cpu(di->i_suballoc_slot) == ac->ac_alloc_slot) {
if (di->i_suballoc_loc)
ac->ac_last_group = le64_to_cpu(di->i_suballoc_loc);
else
ac->ac_last_group = ocfs2_which_suballoc_group(
le64_to_cpu(di->i_blkno),
le16_to_cpu(di->i_suballoc_bit));
}
}
static inline void ocfs2_save_inode_ac_group(struct inode *dir,
struct ocfs2_alloc_context *ac)
{
OCFS2_I(dir)->ip_last_used_group = ac->ac_last_group;
OCFS2_I(dir)->ip_last_used_slot = ac->ac_alloc_slot;
}
int ocfs2_find_new_inode_loc(struct inode *dir,
struct buffer_head *parent_fe_bh,
struct ocfs2_alloc_context *ac,
u64 *fe_blkno)
{
int ret;
handle_t *handle = NULL;
struct ocfs2_suballoc_result *res;
BUG_ON(!ac);
BUG_ON(ac->ac_bits_given != 0);
BUG_ON(ac->ac_bits_wanted != 1);
BUG_ON(ac->ac_which != OCFS2_AC_USE_INODE);
res = kzalloc(sizeof(*res), GFP_NOFS);
if (res == NULL) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ocfs2_init_inode_ac_group(dir, parent_fe_bh, ac);
/*
* The handle started here is for chain relink. Alternatively,
* we could just disable relink for these calls.
*/
handle = ocfs2_start_trans(OCFS2_SB(dir->i_sb), OCFS2_SUBALLOC_ALLOC);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
handle = NULL;
mlog_errno(ret);
goto out;
}
/*
* This will instruct ocfs2_claim_suballoc_bits and
* ocfs2_search_one_group to search but save actual allocation
* for later.
*/
ac->ac_find_loc_only = 1;
ret = ocfs2_claim_suballoc_bits(ac, handle, 1, 1, res);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ac->ac_find_loc_priv = res;
*fe_blkno = res->sr_blkno;
ocfs2_update_inode_fsync_trans(handle, dir, 0);
out:
if (handle)
ocfs2_commit_trans(OCFS2_SB(dir->i_sb), handle);
if (ret)
kfree(res);
return ret;
}
int ocfs2_claim_new_inode_at_loc(handle_t *handle,
struct inode *dir,
struct ocfs2_alloc_context *ac,
u64 *suballoc_loc,
u16 *suballoc_bit,
u64 di_blkno)
{
int ret;
u16 chain;
struct ocfs2_suballoc_result *res = ac->ac_find_loc_priv;
struct buffer_head *bg_bh = NULL;
struct ocfs2_group_desc *bg;
struct ocfs2_dinode *di = (struct ocfs2_dinode *) ac->ac_bh->b_data;
/*
* Since di_blkno is being passed back in, we check for any
* inconsistencies which may have happened between
* calls. These are code bugs as di_blkno is not expected to
* change once returned from ocfs2_find_new_inode_loc()
*/
BUG_ON(res->sr_blkno != di_blkno);
ret = ocfs2_read_group_descriptor(ac->ac_inode, di,
res->sr_bg_stable_blkno, &bg_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
bg = (struct ocfs2_group_desc *) bg_bh->b_data;
chain = le16_to_cpu(bg->bg_chain);
ret = ocfs2_alloc_dinode_update_counts(ac->ac_inode, handle,
ac->ac_bh, res->sr_bits,
chain);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_block_group_set_bits(handle,
ac->ac_inode,
bg,
bg_bh,
res->sr_bit_offset,
res->sr_bits);
if (ret < 0) {
ocfs2_rollback_alloc_dinode_counts(ac->ac_inode,
ac->ac_bh, res->sr_bits, chain);
mlog_errno(ret);
goto out;
}
trace_ocfs2_claim_new_inode_at_loc((unsigned long long)di_blkno,
res->sr_bits);
atomic_inc(&OCFS2_SB(ac->ac_inode->i_sb)->alloc_stats.bg_allocs);
BUG_ON(res->sr_bits != 1);
*suballoc_loc = res->sr_bg_blkno;
*suballoc_bit = res->sr_bit_offset;
ac->ac_bits_given++;
ocfs2_save_inode_ac_group(dir, ac);
out:
brelse(bg_bh);
return ret;
}
int ocfs2_claim_new_inode(handle_t *handle,
struct inode *dir,
struct buffer_head *parent_fe_bh,
struct ocfs2_alloc_context *ac,
u64 *suballoc_loc,
u16 *suballoc_bit,
u64 *fe_blkno)
{
int status;
struct ocfs2_suballoc_result res;
BUG_ON(!ac);
BUG_ON(ac->ac_bits_given != 0);
BUG_ON(ac->ac_bits_wanted != 1);
BUG_ON(ac->ac_which != OCFS2_AC_USE_INODE);
ocfs2_init_inode_ac_group(dir, parent_fe_bh, ac);
status = ocfs2_claim_suballoc_bits(ac,
handle,
1,
1,
&res);
if (status < 0) {
mlog_errno(status);
goto bail;
}
atomic_inc(&OCFS2_SB(ac->ac_inode->i_sb)->alloc_stats.bg_allocs);
BUG_ON(res.sr_bits != 1);
*suballoc_loc = res.sr_bg_blkno;
*suballoc_bit = res.sr_bit_offset;
*fe_blkno = res.sr_blkno;
ac->ac_bits_given++;
ocfs2_save_inode_ac_group(dir, ac);
status = 0;
bail:
if (status)
mlog_errno(status);
return status;
}
/* translate a group desc. blkno and it's bitmap offset into
* disk cluster offset. */
static inline u32 ocfs2_desc_bitmap_to_cluster_off(struct inode *inode,
u64 bg_blkno,
u16 bg_bit_off)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u32 cluster = 0;
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
if (bg_blkno != osb->first_cluster_group_blkno)
cluster = ocfs2_blocks_to_clusters(inode->i_sb, bg_blkno);
cluster += (u32) bg_bit_off;
return cluster;
}
/* given a cluster offset, calculate which block group it belongs to
* and return that block offset. */
u64 ocfs2_which_cluster_group(struct inode *inode, u32 cluster)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u32 group_no;
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
group_no = cluster / osb->bitmap_cpg;
if (!group_no)
return osb->first_cluster_group_blkno;
return ocfs2_clusters_to_blocks(inode->i_sb,
group_no * osb->bitmap_cpg);
}
/* given the block number of a cluster start, calculate which cluster
* group and descriptor bitmap offset that corresponds to. */
static inline void ocfs2_block_to_cluster_group(struct inode *inode,
u64 data_blkno,
u64 *bg_blkno,
u16 *bg_bit_off)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u32 data_cluster = ocfs2_blocks_to_clusters(osb->sb, data_blkno);
BUG_ON(!ocfs2_is_cluster_bitmap(inode));
*bg_blkno = ocfs2_which_cluster_group(inode,
data_cluster);
if (*bg_blkno == osb->first_cluster_group_blkno)
*bg_bit_off = (u16) data_cluster;
else
*bg_bit_off = (u16) ocfs2_blocks_to_clusters(osb->sb,
data_blkno - *bg_blkno);
}
/*
* min_bits - minimum contiguous chunk from this total allocation we
* can handle. set to what we asked for originally for a full
* contig. allocation, set to '1' to indicate we can deal with extents
* of any size.
*/
int __ocfs2_claim_clusters(handle_t *handle,
struct ocfs2_alloc_context *ac,
u32 min_clusters,
u32 max_clusters,
u32 *cluster_start,
u32 *num_clusters)
{
int status;
unsigned int bits_wanted = max_clusters;
struct ocfs2_suballoc_result res = { .sr_blkno = 0, };
struct ocfs2_super *osb = OCFS2_SB(ac->ac_inode->i_sb);
BUG_ON(ac->ac_bits_given >= ac->ac_bits_wanted);
BUG_ON(ac->ac_which != OCFS2_AC_USE_LOCAL
&& ac->ac_which != OCFS2_AC_USE_MAIN);
if (ac->ac_which == OCFS2_AC_USE_LOCAL) {
WARN_ON(min_clusters > 1);
status = ocfs2_claim_local_alloc_bits(osb,
handle,
ac,
bits_wanted,
cluster_start,
num_clusters);
if (!status)
atomic_inc(&osb->alloc_stats.local_data);
} else {
if (min_clusters > (osb->bitmap_cpg - 1)) {
/* The only paths asking for contiguousness
* should know about this already. */
mlog(ML_ERROR, "minimum allocation requested %u exceeds "
"group bitmap size %u!\n", min_clusters,
osb->bitmap_cpg);
status = -ENOSPC;
goto bail;
}
/* clamp the current request down to a realistic size. */
if (bits_wanted > (osb->bitmap_cpg - 1))
bits_wanted = osb->bitmap_cpg - 1;
status = ocfs2_claim_suballoc_bits(ac,
handle,
bits_wanted,
min_clusters,
&res);
if (!status) {
BUG_ON(res.sr_blkno); /* cluster alloc can't set */
*cluster_start =
ocfs2_desc_bitmap_to_cluster_off(ac->ac_inode,
res.sr_bg_blkno,
res.sr_bit_offset);
atomic_inc(&osb->alloc_stats.bitmap_data);
*num_clusters = res.sr_bits;
}
}
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
goto bail;
}
ac->ac_bits_given += *num_clusters;
bail:
if (status)
mlog_errno(status);
return status;
}
int ocfs2_claim_clusters(handle_t *handle,
struct ocfs2_alloc_context *ac,
u32 min_clusters,
u32 *cluster_start,
u32 *num_clusters)
{
unsigned int bits_wanted = ac->ac_bits_wanted - ac->ac_bits_given;
return __ocfs2_claim_clusters(handle, ac, min_clusters,
bits_wanted, cluster_start, num_clusters);
}
static int ocfs2_block_group_clear_bits(handle_t *handle,
struct inode *alloc_inode,
struct ocfs2_group_desc *bg,
struct buffer_head *group_bh,
unsigned int bit_off,
unsigned int num_bits,
void (*undo_fn)(unsigned int bit,
unsigned long *bmap))
{
int status;
unsigned int tmp;
struct ocfs2_group_desc *undo_bg = NULL;
/* The caller got this descriptor from
* ocfs2_read_group_descriptor(). Any corruption is a code bug. */
BUG_ON(!OCFS2_IS_VALID_GROUP_DESC(bg));
trace_ocfs2_block_group_clear_bits(bit_off, num_bits);
BUG_ON(undo_fn && !ocfs2_is_cluster_bitmap(alloc_inode));
status = ocfs2_journal_access_gd(handle, INODE_CACHE(alloc_inode),
group_bh,
undo_fn ?
OCFS2_JOURNAL_ACCESS_UNDO :
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (undo_fn) {
jbd_lock_bh_state(group_bh);
undo_bg = (struct ocfs2_group_desc *)
bh2jh(group_bh)->b_committed_data;
BUG_ON(!undo_bg);
}
tmp = num_bits;
while(tmp--) {
ocfs2_clear_bit((bit_off + tmp),
(unsigned long *) bg->bg_bitmap);
if (undo_fn)
undo_fn(bit_off + tmp,
(unsigned long *) undo_bg->bg_bitmap);
}
le16_add_cpu(&bg->bg_free_bits_count, num_bits);
if (le16_to_cpu(bg->bg_free_bits_count) > le16_to_cpu(bg->bg_bits)) {
return ocfs2_error(alloc_inode->i_sb, "Group descriptor # %llu has bit count %u but claims %u are freed. num_bits %d\n",
(unsigned long long)le64_to_cpu(bg->bg_blkno),
le16_to_cpu(bg->bg_bits),
le16_to_cpu(bg->bg_free_bits_count),
num_bits);
}
if (undo_fn)
jbd_unlock_bh_state(group_bh);
ocfs2_journal_dirty(handle, group_bh);
bail:
return status;
}
/*
* expects the suballoc inode to already be locked.
*/
static int _ocfs2_free_suballoc_bits(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *alloc_bh,
unsigned int start_bit,
u64 bg_blkno,
unsigned int count,
void (*undo_fn)(unsigned int bit,
unsigned long *bitmap))
{
int status = 0;
u32 tmp_used;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) alloc_bh->b_data;
struct ocfs2_chain_list *cl = &fe->id2.i_chain;
struct buffer_head *group_bh = NULL;
struct ocfs2_group_desc *group;
/* The alloc_bh comes from ocfs2_free_dinode() or
* ocfs2_free_clusters(). The callers have all locked the
* allocator and gotten alloc_bh from the lock call. This
* validates the dinode buffer. Any corruption that has happened
* is a code bug. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
BUG_ON((count + start_bit) > ocfs2_bits_per_group(cl));
trace_ocfs2_free_suballoc_bits(
(unsigned long long)OCFS2_I(alloc_inode)->ip_blkno,
(unsigned long long)bg_blkno,
start_bit, count);
status = ocfs2_read_group_descriptor(alloc_inode, fe, bg_blkno,
&group_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
group = (struct ocfs2_group_desc *) group_bh->b_data;
BUG_ON((count + start_bit) > le16_to_cpu(group->bg_bits));
status = ocfs2_block_group_clear_bits(handle, alloc_inode,
group, group_bh,
start_bit, count, undo_fn);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access_di(handle, INODE_CACHE(alloc_inode),
alloc_bh, OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
ocfs2_block_group_set_bits(handle, alloc_inode, group, group_bh,
start_bit, count);
goto bail;
}
le32_add_cpu(&cl->cl_recs[le16_to_cpu(group->bg_chain)].c_free,
count);
tmp_used = le32_to_cpu(fe->id1.bitmap1.i_used);
fe->id1.bitmap1.i_used = cpu_to_le32(tmp_used - count);
ocfs2_journal_dirty(handle, alloc_bh);
bail:
brelse(group_bh);
if (status)
mlog_errno(status);
return status;
}
int ocfs2_free_suballoc_bits(handle_t *handle,
struct inode *alloc_inode,
struct buffer_head *alloc_bh,
unsigned int start_bit,
u64 bg_blkno,
unsigned int count)
{
return _ocfs2_free_suballoc_bits(handle, alloc_inode, alloc_bh,
start_bit, bg_blkno, count, NULL);
}
int ocfs2_free_dinode(handle_t *handle,
struct inode *inode_alloc_inode,
struct buffer_head *inode_alloc_bh,
struct ocfs2_dinode *di)
{
u64 blk = le64_to_cpu(di->i_blkno);
u16 bit = le16_to_cpu(di->i_suballoc_bit);
u64 bg_blkno = ocfs2_which_suballoc_group(blk, bit);
if (di->i_suballoc_loc)
bg_blkno = le64_to_cpu(di->i_suballoc_loc);
return ocfs2_free_suballoc_bits(handle, inode_alloc_inode,
inode_alloc_bh, bit, bg_blkno, 1);
}
static int _ocfs2_free_clusters(handle_t *handle,
struct inode *bitmap_inode,
struct buffer_head *bitmap_bh,
u64 start_blk,
unsigned int num_clusters,
void (*undo_fn)(unsigned int bit,
unsigned long *bitmap))
{
int status;
u16 bg_start_bit;
u64 bg_blkno;
struct ocfs2_dinode *fe;
/* You can't ever have a contiguous set of clusters
* bigger than a block group bitmap so we never have to worry
* about looping on them.
* This is expensive. We can safely remove once this stuff has
* gotten tested really well. */
BUG_ON(start_blk != ocfs2_clusters_to_blocks(bitmap_inode->i_sb, ocfs2_blocks_to_clusters(bitmap_inode->i_sb, start_blk)));
fe = (struct ocfs2_dinode *) bitmap_bh->b_data;
ocfs2_block_to_cluster_group(bitmap_inode, start_blk, &bg_blkno,
&bg_start_bit);
trace_ocfs2_free_clusters((unsigned long long)bg_blkno,
(unsigned long long)start_blk,
bg_start_bit, num_clusters);
status = _ocfs2_free_suballoc_bits(handle, bitmap_inode, bitmap_bh,
bg_start_bit, bg_blkno,
num_clusters, undo_fn);
if (status < 0) {
mlog_errno(status);
goto out;
}
ocfs2_local_alloc_seen_free_bits(OCFS2_SB(bitmap_inode->i_sb),
num_clusters);
out:
if (status)
mlog_errno(status);
return status;
}
int ocfs2_free_clusters(handle_t *handle,
struct inode *bitmap_inode,
struct buffer_head *bitmap_bh,
u64 start_blk,
unsigned int num_clusters)
{
return _ocfs2_free_clusters(handle, bitmap_inode, bitmap_bh,
start_blk, num_clusters,
_ocfs2_set_bit);
}
/*
* Give never-used clusters back to the global bitmap. We don't need
* to protect these bits in the undo buffer.
*/
int ocfs2_release_clusters(handle_t *handle,
struct inode *bitmap_inode,
struct buffer_head *bitmap_bh,
u64 start_blk,
unsigned int num_clusters)
{
return _ocfs2_free_clusters(handle, bitmap_inode, bitmap_bh,
start_blk, num_clusters,
_ocfs2_clear_bit);
}
static inline void ocfs2_debug_bg(struct ocfs2_group_desc *bg)
{
printk("Block Group:\n");
printk("bg_signature: %s\n", bg->bg_signature);
printk("bg_size: %u\n", bg->bg_size);
printk("bg_bits: %u\n", bg->bg_bits);
printk("bg_free_bits_count: %u\n", bg->bg_free_bits_count);
printk("bg_chain: %u\n", bg->bg_chain);
printk("bg_generation: %u\n", le32_to_cpu(bg->bg_generation));
printk("bg_next_group: %llu\n",
(unsigned long long)bg->bg_next_group);
printk("bg_parent_dinode: %llu\n",
(unsigned long long)bg->bg_parent_dinode);
printk("bg_blkno: %llu\n",
(unsigned long long)bg->bg_blkno);
}
static inline void ocfs2_debug_suballoc_inode(struct ocfs2_dinode *fe)
{
int i;
printk("Suballoc Inode %llu:\n", (unsigned long long)fe->i_blkno);
printk("i_signature: %s\n", fe->i_signature);
printk("i_size: %llu\n",
(unsigned long long)fe->i_size);
printk("i_clusters: %u\n", fe->i_clusters);
printk("i_generation: %u\n",
le32_to_cpu(fe->i_generation));
printk("id1.bitmap1.i_used: %u\n",
le32_to_cpu(fe->id1.bitmap1.i_used));
printk("id1.bitmap1.i_total: %u\n",
le32_to_cpu(fe->id1.bitmap1.i_total));
printk("id2.i_chain.cl_cpg: %u\n", fe->id2.i_chain.cl_cpg);
printk("id2.i_chain.cl_bpc: %u\n", fe->id2.i_chain.cl_bpc);
printk("id2.i_chain.cl_count: %u\n", fe->id2.i_chain.cl_count);
printk("id2.i_chain.cl_next_free_rec: %u\n",
fe->id2.i_chain.cl_next_free_rec);
for(i = 0; i < fe->id2.i_chain.cl_next_free_rec; i++) {
printk("fe->id2.i_chain.cl_recs[%d].c_free: %u\n", i,
fe->id2.i_chain.cl_recs[i].c_free);
printk("fe->id2.i_chain.cl_recs[%d].c_total: %u\n", i,
fe->id2.i_chain.cl_recs[i].c_total);
printk("fe->id2.i_chain.cl_recs[%d].c_blkno: %llu\n", i,
(unsigned long long)fe->id2.i_chain.cl_recs[i].c_blkno);
}
}
/*
* For a given allocation, determine which allocators will need to be
* accessed, and lock them, reserving the appropriate number of bits.
*
* Sparse file systems call this from ocfs2_write_begin_nolock()
* and ocfs2_allocate_unwritten_extents().
*
* File systems which don't support holes call this from
* ocfs2_extend_allocation().
*/
int ocfs2_lock_allocators(struct inode *inode,
struct ocfs2_extent_tree *et,
u32 clusters_to_add, u32 extents_to_split,
struct ocfs2_alloc_context **data_ac,
struct ocfs2_alloc_context **meta_ac)
{
int ret = 0, num_free_extents;
unsigned int max_recs_needed = clusters_to_add + 2 * extents_to_split;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
*meta_ac = NULL;
if (data_ac)
*data_ac = NULL;
BUG_ON(clusters_to_add != 0 && data_ac == NULL);
num_free_extents = ocfs2_num_free_extents(osb, et);
if (num_free_extents < 0) {
ret = num_free_extents;
mlog_errno(ret);
goto out;
}
/*
* Sparse allocation file systems need to be more conservative
* with reserving room for expansion - the actual allocation
* happens while we've got a journal handle open so re-taking
* a cluster lock (because we ran out of room for another
* extent) will violate ordering rules.
*
* Most of the time we'll only be seeing this 1 cluster at a time
* anyway.
*
* Always lock for any unwritten extents - we might want to
* add blocks during a split.
*/
if (!num_free_extents ||
(ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) {
ret = ocfs2_reserve_new_metadata(osb, et->et_root_el, meta_ac);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
}
if (clusters_to_add == 0)
goto out;
ret = ocfs2_reserve_clusters(osb, clusters_to_add, data_ac);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
out:
if (ret) {
if (*meta_ac) {
ocfs2_free_alloc_context(*meta_ac);
*meta_ac = NULL;
}
/*
* We cannot have an error and a non null *data_ac.
*/
}
return ret;
}
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
/*
* Read the inode specified by blkno to get suballoc_slot and
* suballoc_bit.
*/
static int ocfs2_get_suballoc_slot_bit(struct ocfs2_super *osb, u64 blkno,
u16 *suballoc_slot, u64 *group_blkno,
u16 *suballoc_bit)
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
{
int status;
struct buffer_head *inode_bh = NULL;
struct ocfs2_dinode *inode_fe;
trace_ocfs2_get_suballoc_slot_bit((unsigned long long)blkno);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
/* dirty read disk */
status = ocfs2_read_blocks_sync(osb, blkno, 1, &inode_bh);
if (status < 0) {
mlog(ML_ERROR, "read block %llu failed %d\n",
(unsigned long long)blkno, status);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
goto bail;
}
inode_fe = (struct ocfs2_dinode *) inode_bh->b_data;
if (!OCFS2_IS_VALID_DINODE(inode_fe)) {
mlog(ML_ERROR, "invalid inode %llu requested\n",
(unsigned long long)blkno);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
status = -EINVAL;
goto bail;
}
if (le16_to_cpu(inode_fe->i_suballoc_slot) != (u16)OCFS2_INVALID_SLOT &&
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
(u32)le16_to_cpu(inode_fe->i_suballoc_slot) > osb->max_slots - 1) {
mlog(ML_ERROR, "inode %llu has invalid suballoc slot %u\n",
(unsigned long long)blkno,
(u32)le16_to_cpu(inode_fe->i_suballoc_slot));
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
status = -EINVAL;
goto bail;
}
if (suballoc_slot)
*suballoc_slot = le16_to_cpu(inode_fe->i_suballoc_slot);
if (suballoc_bit)
*suballoc_bit = le16_to_cpu(inode_fe->i_suballoc_bit);
if (group_blkno)
*group_blkno = le64_to_cpu(inode_fe->i_suballoc_loc);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
bail:
brelse(inode_bh);
if (status)
mlog_errno(status);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
return status;
}
/*
* test whether bit is SET in allocator bitmap or not. on success, 0
* is returned and *res is 1 for SET; 0 otherwise. when fails, errno
* is returned and *res is meaningless. Call this after you have
* cluster locked against suballoc, or you may get a result based on
* non-up2date contents
*/
static int ocfs2_test_suballoc_bit(struct ocfs2_super *osb,
struct inode *suballoc,
struct buffer_head *alloc_bh,
u64 group_blkno, u64 blkno,
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
u16 bit, int *res)
{
struct ocfs2_dinode *alloc_di;
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
struct ocfs2_group_desc *group;
struct buffer_head *group_bh = NULL;
u64 bg_blkno;
int status;
trace_ocfs2_test_suballoc_bit((unsigned long long)blkno,
(unsigned int)bit);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
alloc_di = (struct ocfs2_dinode *)alloc_bh->b_data;
if ((bit + 1) > ocfs2_bits_per_group(&alloc_di->id2.i_chain)) {
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
mlog(ML_ERROR, "suballoc bit %u out of range of %u\n",
(unsigned int)bit,
ocfs2_bits_per_group(&alloc_di->id2.i_chain));
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
status = -EINVAL;
goto bail;
}
bg_blkno = group_blkno ? group_blkno :
ocfs2_which_suballoc_group(blkno, bit);
status = ocfs2_read_group_descriptor(suballoc, alloc_di, bg_blkno,
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
&group_bh);
if (status < 0) {
mlog(ML_ERROR, "read group %llu failed %d\n",
(unsigned long long)bg_blkno, status);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
goto bail;
}
group = (struct ocfs2_group_desc *) group_bh->b_data;
*res = ocfs2_test_bit(bit, (unsigned long *)group->bg_bitmap);
bail:
brelse(group_bh);
if (status)
mlog_errno(status);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
return status;
}
/*
* Test if the bit representing this inode (blkno) is set in the
* suballocator.
*
* On success, 0 is returned and *res is 1 for SET; 0 otherwise.
*
* In the event of failure, a negative value is returned and *res is
* meaningless.
*
* Callers must make sure to hold nfs_sync_lock to prevent
* ocfs2_delete_inode() on another node from accessing the same
* suballocator concurrently.
*/
int ocfs2_test_inode_bit(struct ocfs2_super *osb, u64 blkno, int *res)
{
int status;
u64 group_blkno = 0;
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
u16 suballoc_bit = 0, suballoc_slot = 0;
struct inode *inode_alloc_inode;
struct buffer_head *alloc_bh = NULL;
trace_ocfs2_test_inode_bit((unsigned long long)blkno);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
status = ocfs2_get_suballoc_slot_bit(osb, blkno, &suballoc_slot,
&group_blkno, &suballoc_bit);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
if (status < 0) {
mlog(ML_ERROR, "get alloc slot and bit failed %d\n", status);
goto bail;
}
inode_alloc_inode =
ocfs2_get_system_file_inode(osb, INODE_ALLOC_SYSTEM_INODE,
suballoc_slot);
if (!inode_alloc_inode) {
/* the error code could be inaccurate, but we are not able to
* get the correct one. */
status = -EINVAL;
mlog(ML_ERROR, "unable to get alloc inode in slot %u\n",
(u32)suballoc_slot);
goto bail;
}
inode_lock(inode_alloc_inode);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
status = ocfs2_inode_lock(inode_alloc_inode, &alloc_bh, 0);
if (status < 0) {
inode_unlock(inode_alloc_inode);
iput(inode_alloc_inode);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
mlog(ML_ERROR, "lock on alloc inode on slot %u failed %d\n",
(u32)suballoc_slot, status);
goto bail;
}
status = ocfs2_test_suballoc_bit(osb, inode_alloc_inode, alloc_bh,
group_blkno, blkno, suballoc_bit, res);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
if (status < 0)
mlog(ML_ERROR, "test suballoc bit failed %d\n", status);
ocfs2_inode_unlock(inode_alloc_inode, 0);
inode_unlock(inode_alloc_inode);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
iput(inode_alloc_inode);
brelse(alloc_bh);
bail:
if (status)
mlog_errno(status);
ocfs2: fix rare stale inode errors when exporting via nfs For nfs exporting, ocfs2_get_dentry() returns the dentry for fh. ocfs2_get_dentry() may read from disk when the inode is not in memory, without any cross cluster lock. this leads to the file system loading a stale inode. This patch fixes above problem. Solution is that in case of inode is not in memory, we get the cluster lock(PR) of alloc inode where the inode in question is allocated from (this causes node on which deletion is done sync the alloc inode) before reading out the inode itsself. then we check the bitmap in the group (the inode in question allcated from) to see if the bit is clear. if it's clear then it's stale. if the bit is set, we then check generation as the existing code does. We have to read out the inode in question from disk first to know its alloc slot and allot bit. And if its not stale we read it out using ocfs2_iget(). The second read should then be from cache. And also we have to add a per superblock nfs_sync_lock to cover the lock for alloc inode and that for inode in question. this is because ocfs2_get_dentry() and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so that mutliple ocfs2_delete_inode() can run concurrently in normal case. [mfasheh@suse.com: build warning fixes and comment cleanups] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Acked-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-03-06 16:29:10 +03:00
return status;
}