2009-09-22 16:46:23 -07:00
/*
* Copyright 2004 - 2008 Freescale Semiconductor , Inc . All Rights Reserved .
*
* The code contained herein is licensed under the GNU General Public
* License . You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations :
*
* http : //www.opensource.org/licenses/gpl-license.html
* http : //www.gnu.org/copyleft/gpl.html
*/
# include <linux/io.h>
# include <linux/rtc.h>
# include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
# include <linux/slab.h>
2009-09-22 16:46:23 -07:00
# include <linux/interrupt.h>
# include <linux/platform_device.h>
# include <linux/clk.h>
# include <mach/hardware.h>
# define RTC_INPUT_CLK_32768HZ (0x00 << 5)
# define RTC_INPUT_CLK_32000HZ (0x01 << 5)
# define RTC_INPUT_CLK_38400HZ (0x02 << 5)
# define RTC_SW_BIT (1 << 0)
# define RTC_ALM_BIT (1 << 2)
# define RTC_1HZ_BIT (1 << 4)
# define RTC_2HZ_BIT (1 << 7)
# define RTC_SAM0_BIT (1 << 8)
# define RTC_SAM1_BIT (1 << 9)
# define RTC_SAM2_BIT (1 << 10)
# define RTC_SAM3_BIT (1 << 11)
# define RTC_SAM4_BIT (1 << 12)
# define RTC_SAM5_BIT (1 << 13)
# define RTC_SAM6_BIT (1 << 14)
# define RTC_SAM7_BIT (1 << 15)
# define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT )
# define RTC_ENABLE_BIT (1 << 7)
# define MAX_PIE_NUM 9
# define MAX_PIE_FREQ 512
static const u32 PIE_BIT_DEF [ MAX_PIE_NUM ] [ 2 ] = {
{ 2 , RTC_2HZ_BIT } ,
{ 4 , RTC_SAM0_BIT } ,
{ 8 , RTC_SAM1_BIT } ,
{ 16 , RTC_SAM2_BIT } ,
{ 32 , RTC_SAM3_BIT } ,
{ 64 , RTC_SAM4_BIT } ,
{ 128 , RTC_SAM5_BIT } ,
{ 256 , RTC_SAM6_BIT } ,
{ MAX_PIE_FREQ , RTC_SAM7_BIT } ,
} ;
/* Those are the bits from a classic RTC we want to mimic */
# define RTC_IRQF 0x80 /* any of the following 3 is active */
# define RTC_PF 0x40 /* Periodic interrupt */
# define RTC_AF 0x20 /* Alarm interrupt */
# define RTC_UF 0x10 /* Update interrupt for 1Hz RTC */
# define MXC_RTC_TIME 0
# define MXC_RTC_ALARM 1
# define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
# define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
# define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
# define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
# define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
# define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
# define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
# define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
# define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
# define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
# define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
# define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
# define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
struct rtc_plat_data {
struct rtc_device * rtc ;
void __iomem * ioaddr ;
int irq ;
struct clk * clk ;
unsigned int irqen ;
int alrm_sec ;
int alrm_min ;
int alrm_hour ;
int alrm_mday ;
struct timespec mxc_rtc_delta ;
struct rtc_time g_rtc_alarm ;
} ;
/*
* This function is used to obtain the RTC time or the alarm value in
* second .
*/
static u32 get_alarm_or_time ( struct device * dev , int time_alarm )
{
struct platform_device * pdev = to_platform_device ( dev ) ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
void __iomem * ioaddr = pdata - > ioaddr ;
u32 day = 0 , hr = 0 , min = 0 , sec = 0 , hr_min = 0 ;
switch ( time_alarm ) {
case MXC_RTC_TIME :
day = readw ( ioaddr + RTC_DAYR ) ;
hr_min = readw ( ioaddr + RTC_HOURMIN ) ;
sec = readw ( ioaddr + RTC_SECOND ) ;
break ;
case MXC_RTC_ALARM :
day = readw ( ioaddr + RTC_DAYALARM ) ;
hr_min = readw ( ioaddr + RTC_ALRM_HM ) & 0xffff ;
sec = readw ( ioaddr + RTC_ALRM_SEC ) ;
break ;
}
hr = hr_min > > 8 ;
min = hr_min & 0xff ;
return ( ( ( day * 24 + hr ) * 60 ) + min ) * 60 + sec ;
}
/*
* This function sets the RTC alarm value or the time value .
*/
static void set_alarm_or_time ( struct device * dev , int time_alarm , u32 time )
{
u32 day , hr , min , sec , temp ;
struct platform_device * pdev = to_platform_device ( dev ) ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
void __iomem * ioaddr = pdata - > ioaddr ;
day = time / 86400 ;
time - = day * 86400 ;
/* time is within a day now */
hr = time / 3600 ;
time - = hr * 3600 ;
/* time is within an hour now */
min = time / 60 ;
sec = time - min * 60 ;
temp = ( hr < < 8 ) + min ;
switch ( time_alarm ) {
case MXC_RTC_TIME :
writew ( day , ioaddr + RTC_DAYR ) ;
writew ( sec , ioaddr + RTC_SECOND ) ;
writew ( temp , ioaddr + RTC_HOURMIN ) ;
break ;
case MXC_RTC_ALARM :
writew ( day , ioaddr + RTC_DAYALARM ) ;
writew ( sec , ioaddr + RTC_ALRM_SEC ) ;
writew ( temp , ioaddr + RTC_ALRM_HM ) ;
break ;
}
}
/*
* This function updates the RTC alarm registers and then clears all the
* interrupt status bits .
*/
static int rtc_update_alarm ( struct device * dev , struct rtc_time * alrm )
{
struct rtc_time alarm_tm , now_tm ;
unsigned long now , time ;
int ret ;
struct platform_device * pdev = to_platform_device ( dev ) ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
void __iomem * ioaddr = pdata - > ioaddr ;
now = get_alarm_or_time ( dev , MXC_RTC_TIME ) ;
rtc_time_to_tm ( now , & now_tm ) ;
alarm_tm . tm_year = now_tm . tm_year ;
alarm_tm . tm_mon = now_tm . tm_mon ;
alarm_tm . tm_mday = now_tm . tm_mday ;
alarm_tm . tm_hour = alrm - > tm_hour ;
alarm_tm . tm_min = alrm - > tm_min ;
alarm_tm . tm_sec = alrm - > tm_sec ;
rtc_tm_to_time ( & now_tm , & now ) ;
rtc_tm_to_time ( & alarm_tm , & time ) ;
if ( time < now ) {
time + = 60 * 60 * 24 ;
rtc_time_to_tm ( time , & alarm_tm ) ;
}
ret = rtc_tm_to_time ( & alarm_tm , & time ) ;
/* clear all the interrupt status bits */
writew ( readw ( ioaddr + RTC_RTCISR ) , ioaddr + RTC_RTCISR ) ;
set_alarm_or_time ( dev , MXC_RTC_ALARM , time ) ;
return ret ;
}
/* This function is the RTC interrupt service routine. */
static irqreturn_t mxc_rtc_interrupt ( int irq , void * dev_id )
{
struct platform_device * pdev = dev_id ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
void __iomem * ioaddr = pdata - > ioaddr ;
u32 status ;
u32 events = 0 ;
spin_lock_irq ( & pdata - > rtc - > irq_lock ) ;
status = readw ( ioaddr + RTC_RTCISR ) & readw ( ioaddr + RTC_RTCIENR ) ;
/* clear interrupt sources */
writew ( status , ioaddr + RTC_RTCISR ) ;
/* clear alarm interrupt if it has occurred */
if ( status & RTC_ALM_BIT )
status & = ~ RTC_ALM_BIT ;
/* update irq data & counter */
if ( status & RTC_ALM_BIT )
events | = ( RTC_AF | RTC_IRQF ) ;
if ( status & RTC_1HZ_BIT )
events | = ( RTC_UF | RTC_IRQF ) ;
if ( status & PIT_ALL_ON )
events | = ( RTC_PF | RTC_IRQF ) ;
if ( ( status & RTC_ALM_BIT ) & & rtc_valid_tm ( & pdata - > g_rtc_alarm ) )
rtc_update_alarm ( & pdev - > dev , & pdata - > g_rtc_alarm ) ;
rtc_update_irq ( pdata - > rtc , 1 , events ) ;
spin_unlock_irq ( & pdata - > rtc - > irq_lock ) ;
return IRQ_HANDLED ;
}
/*
* Clear all interrupts and release the IRQ
*/
static void mxc_rtc_release ( struct device * dev )
{
struct platform_device * pdev = to_platform_device ( dev ) ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
void __iomem * ioaddr = pdata - > ioaddr ;
spin_lock_irq ( & pdata - > rtc - > irq_lock ) ;
/* Disable all rtc interrupts */
writew ( 0 , ioaddr + RTC_RTCIENR ) ;
/* Clear all interrupt status */
writew ( 0xffffffff , ioaddr + RTC_RTCISR ) ;
spin_unlock_irq ( & pdata - > rtc - > irq_lock ) ;
}
static void mxc_rtc_irq_enable ( struct device * dev , unsigned int bit ,
unsigned int enabled )
{
struct platform_device * pdev = to_platform_device ( dev ) ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
void __iomem * ioaddr = pdata - > ioaddr ;
u32 reg ;
spin_lock_irq ( & pdata - > rtc - > irq_lock ) ;
reg = readw ( ioaddr + RTC_RTCIENR ) ;
if ( enabled )
reg | = bit ;
else
reg & = ~ bit ;
writew ( reg , ioaddr + RTC_RTCIENR ) ;
spin_unlock_irq ( & pdata - > rtc - > irq_lock ) ;
}
static int mxc_rtc_alarm_irq_enable ( struct device * dev , unsigned int enabled )
{
mxc_rtc_irq_enable ( dev , RTC_ALM_BIT , enabled ) ;
return 0 ;
}
static int mxc_rtc_update_irq_enable ( struct device * dev , unsigned int enabled )
{
mxc_rtc_irq_enable ( dev , RTC_1HZ_BIT , enabled ) ;
return 0 ;
}
/*
* This function reads the current RTC time into tm in Gregorian date .
*/
static int mxc_rtc_read_time ( struct device * dev , struct rtc_time * tm )
{
u32 val ;
/* Avoid roll-over from reading the different registers */
do {
val = get_alarm_or_time ( dev , MXC_RTC_TIME ) ;
} while ( val ! = get_alarm_or_time ( dev , MXC_RTC_TIME ) ) ;
rtc_time_to_tm ( val , tm ) ;
return 0 ;
}
/*
* This function sets the internal RTC time based on tm in Gregorian date .
*/
static int mxc_rtc_set_mmss ( struct device * dev , unsigned long time )
{
/* Avoid roll-over from reading the different registers */
do {
set_alarm_or_time ( dev , MXC_RTC_TIME , time ) ;
} while ( time ! = get_alarm_or_time ( dev , MXC_RTC_TIME ) ) ;
return 0 ;
}
/*
* This function reads the current alarm value into the passed in ' alrm '
* argument . It updates the alrm ' s pending field value based on the whether
* an alarm interrupt occurs or not .
*/
static int mxc_rtc_read_alarm ( struct device * dev , struct rtc_wkalrm * alrm )
{
struct platform_device * pdev = to_platform_device ( dev ) ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
void __iomem * ioaddr = pdata - > ioaddr ;
rtc_time_to_tm ( get_alarm_or_time ( dev , MXC_RTC_ALARM ) , & alrm - > time ) ;
alrm - > pending = ( ( readw ( ioaddr + RTC_RTCISR ) & RTC_ALM_BIT ) ) ? 1 : 0 ;
return 0 ;
}
/*
* This function sets the RTC alarm based on passed in alrm .
*/
static int mxc_rtc_set_alarm ( struct device * dev , struct rtc_wkalrm * alrm )
{
struct platform_device * pdev = to_platform_device ( dev ) ;
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
int ret ;
if ( rtc_valid_tm ( & alrm - > time ) ) {
if ( alrm - > time . tm_sec > 59 | |
alrm - > time . tm_hour > 23 | |
alrm - > time . tm_min > 59 )
return - EINVAL ;
ret = rtc_update_alarm ( dev , & alrm - > time ) ;
} else {
ret = rtc_valid_tm ( & alrm - > time ) ;
if ( ret )
return ret ;
ret = rtc_update_alarm ( dev , & alrm - > time ) ;
}
if ( ret )
return ret ;
memcpy ( & pdata - > g_rtc_alarm , & alrm - > time , sizeof ( struct rtc_time ) ) ;
mxc_rtc_irq_enable ( dev , RTC_ALM_BIT , alrm - > enabled ) ;
return 0 ;
}
/* RTC layer */
static struct rtc_class_ops mxc_rtc_ops = {
. release = mxc_rtc_release ,
. read_time = mxc_rtc_read_time ,
. set_mmss = mxc_rtc_set_mmss ,
. read_alarm = mxc_rtc_read_alarm ,
. set_alarm = mxc_rtc_set_alarm ,
. alarm_irq_enable = mxc_rtc_alarm_irq_enable ,
. update_irq_enable = mxc_rtc_update_irq_enable ,
} ;
static int __init mxc_rtc_probe ( struct platform_device * pdev )
{
struct clk * clk ;
struct resource * res ;
struct rtc_device * rtc ;
struct rtc_plat_data * pdata = NULL ;
u32 reg ;
2010-04-06 14:35:07 -07:00
unsigned long rate ;
int ret ;
2009-09-22 16:46:23 -07:00
res = platform_get_resource ( pdev , IORESOURCE_MEM , 0 ) ;
if ( ! res )
return - ENODEV ;
2010-04-06 14:35:07 -07:00
pdata = devm_kzalloc ( & pdev - > dev , sizeof ( * pdata ) , GFP_KERNEL ) ;
2009-09-22 16:46:23 -07:00
if ( ! pdata )
return - ENOMEM ;
2010-04-06 14:35:07 -07:00
if ( ! devm_request_mem_region ( & pdev - > dev , res - > start ,
resource_size ( res ) , pdev - > name ) )
return - EBUSY ;
pdata - > ioaddr = devm_ioremap ( & pdev - > dev , res - > start ,
resource_size ( res ) ) ;
2009-09-22 16:46:23 -07:00
clk = clk_get ( & pdev - > dev , " ckil " ) ;
2010-03-05 13:44:19 -08:00
if ( IS_ERR ( clk ) ) {
ret = PTR_ERR ( clk ) ;
goto exit_free_pdata ;
}
2009-09-22 16:46:23 -07:00
rate = clk_get_rate ( clk ) ;
clk_put ( clk ) ;
if ( rate = = 32768 )
reg = RTC_INPUT_CLK_32768HZ ;
else if ( rate = = 32000 )
reg = RTC_INPUT_CLK_32000HZ ;
else if ( rate = = 38400 )
reg = RTC_INPUT_CLK_38400HZ ;
else {
2010-04-06 14:35:07 -07:00
dev_err ( & pdev - > dev , " rtc clock is not valid (%lu) \n " , rate ) ;
2009-09-22 16:46:23 -07:00
ret = - EINVAL ;
goto exit_free_pdata ;
}
reg | = RTC_ENABLE_BIT ;
writew ( reg , ( pdata - > ioaddr + RTC_RTCCTL ) ) ;
if ( ( ( readw ( pdata - > ioaddr + RTC_RTCCTL ) ) & RTC_ENABLE_BIT ) = = 0 ) {
dev_err ( & pdev - > dev , " hardware module can't be enabled! \n " ) ;
ret = - EIO ;
goto exit_free_pdata ;
}
pdata - > clk = clk_get ( & pdev - > dev , " rtc " ) ;
if ( IS_ERR ( pdata - > clk ) ) {
dev_err ( & pdev - > dev , " unable to get clock! \n " ) ;
ret = PTR_ERR ( pdata - > clk ) ;
goto exit_free_pdata ;
}
clk_enable ( pdata - > clk ) ;
rtc = rtc_device_register ( pdev - > name , & pdev - > dev , & mxc_rtc_ops ,
THIS_MODULE ) ;
if ( IS_ERR ( rtc ) ) {
ret = PTR_ERR ( rtc ) ;
goto exit_put_clk ;
}
pdata - > rtc = rtc ;
platform_set_drvdata ( pdev , pdata ) ;
/* Configure and enable the RTC */
pdata - > irq = platform_get_irq ( pdev , 0 ) ;
if ( pdata - > irq > = 0 & &
2010-04-06 14:35:07 -07:00
devm_request_irq ( & pdev - > dev , pdata - > irq , mxc_rtc_interrupt ,
IRQF_SHARED , pdev - > name , pdev ) < 0 ) {
2009-09-22 16:46:23 -07:00
dev_warn ( & pdev - > dev , " interrupt not available. \n " ) ;
pdata - > irq = - 1 ;
}
return 0 ;
exit_put_clk :
2010-04-06 14:35:07 -07:00
clk_disable ( pdata - > clk ) ;
2009-09-22 16:46:23 -07:00
clk_put ( pdata - > clk ) ;
exit_free_pdata :
return ret ;
}
static int __exit mxc_rtc_remove ( struct platform_device * pdev )
{
struct rtc_plat_data * pdata = platform_get_drvdata ( pdev ) ;
rtc_device_unregister ( pdata - > rtc ) ;
clk_disable ( pdata - > clk ) ;
clk_put ( pdata - > clk ) ;
platform_set_drvdata ( pdev , NULL ) ;
return 0 ;
}
static struct platform_driver mxc_rtc_driver = {
. driver = {
. name = " mxc_rtc " ,
. owner = THIS_MODULE ,
} ,
. remove = __exit_p ( mxc_rtc_remove ) ,
} ;
static int __init mxc_rtc_init ( void )
{
return platform_driver_probe ( & mxc_rtc_driver , mxc_rtc_probe ) ;
}
static void __exit mxc_rtc_exit ( void )
{
platform_driver_unregister ( & mxc_rtc_driver ) ;
}
module_init ( mxc_rtc_init ) ;
module_exit ( mxc_rtc_exit ) ;
MODULE_AUTHOR ( " Daniel Mack <daniel@caiaq.de> " ) ;
MODULE_DESCRIPTION ( " RTC driver for Freescale MXC " ) ;
MODULE_LICENSE ( " GPL " ) ;