2005-04-17 02:20:36 +04:00
/*
* linux / mm / page_alloc . c
*
* Manages the free list , the system allocates free pages here .
* Note that kmalloc ( ) lives in slab . c
*
* Copyright ( C ) 1991 , 1992 , 1993 , 1994 Linus Torvalds
* Swap reorganised 29.12 .95 , Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert , Siemens AG , July 1999
* Reshaped it to be a zoned allocator , Ingo Molnar , Red Hat , 1999
* Discontiguous memory support , Kanoj Sarcar , SGI , Nov 1999
* Zone balancing , Kanoj Sarcar , SGI , Jan 2000
* Per cpu hot / cold page lists , bulk allocation , Martin J . Bligh , Sept 2002
* ( lots of bits borrowed from Ingo Molnar & Andrew Morton )
*/
# include <linux/stddef.h>
# include <linux/mm.h>
# include <linux/swap.h>
# include <linux/interrupt.h>
# include <linux/pagemap.h>
# include <linux/bootmem.h>
# include <linux/compiler.h>
2005-09-13 12:25:16 +04:00
# include <linux/kernel.h>
2005-04-17 02:20:36 +04:00
# include <linux/module.h>
# include <linux/suspend.h>
# include <linux/pagevec.h>
# include <linux/blkdev.h>
# include <linux/slab.h>
# include <linux/notifier.h>
# include <linux/topology.h>
# include <linux/sysctl.h>
# include <linux/cpu.h>
# include <linux/cpuset.h>
2005-10-30 04:16:53 +03:00
# include <linux/memory_hotplug.h>
2005-04-17 02:20:36 +04:00
# include <linux/nodemask.h>
# include <linux/vmalloc.h>
2006-01-06 11:11:17 +03:00
# include <linux/mempolicy.h>
2006-06-23 13:03:11 +04:00
# include <linux/stop_machine.h>
2005-04-17 02:20:36 +04:00
# include <asm/tlbflush.h>
2006-05-15 20:43:59 +04:00
# include <asm/div64.h>
2005-04-17 02:20:36 +04:00
# include "internal.h"
/*
* MCD - HACK : Find somewhere to initialize this EARLY , or make this
* initializer cleaner
*/
2005-09-07 02:16:33 +04:00
nodemask_t node_online_map __read_mostly = { { [ 0 ] = 1UL } } ;
2005-03-24 05:00:00 +03:00
EXPORT_SYMBOL ( node_online_map ) ;
2005-09-07 02:16:33 +04:00
nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL ;
2005-03-24 05:00:00 +03:00
EXPORT_SYMBOL ( node_possible_map ) ;
2005-09-07 02:17:45 +04:00
unsigned long totalram_pages __read_mostly ;
2006-04-11 09:52:59 +04:00
unsigned long totalreserve_pages __read_mostly ;
2005-04-17 02:20:36 +04:00
long nr_swap_pages ;
2006-01-08 12:00:40 +03:00
int percpu_pagelist_fraction ;
2005-04-17 02:20:36 +04:00
2006-02-15 00:52:59 +03:00
static void __free_pages_ok ( struct page * page , unsigned int order ) ;
2006-01-06 11:11:08 +03:00
2005-04-17 02:20:36 +04:00
/*
* results with 256 , 32 in the lowmem_reserve sysctl :
* 1 G machine - > ( 16 M dma , 800 M - 16 M normal , 1 G - 800 M high )
* 1 G machine - > ( 16 M dma , 784 M normal , 224 M high )
* NORMAL allocation will leave 784 M / 256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224 M / 32 of ram reserved in ZONE_NORMAL
* HIGHMEM allocation will ( 224 M + 784 M ) / 256 of ram reserved in ZONE_DMA
2005-11-05 19:25:53 +03:00
*
* TBD : should special case ZONE_DMA32 machines here - in those we normally
* don ' t need any ZONE_NORMAL reservation
2005-04-17 02:20:36 +04:00
*/
2005-11-05 19:25:53 +03:00
int sysctl_lowmem_reserve_ratio [ MAX_NR_ZONES - 1 ] = { 256 , 256 , 32 } ;
2005-04-17 02:20:36 +04:00
EXPORT_SYMBOL ( totalram_pages ) ;
/*
* Used by page_zone ( ) to look up the address of the struct zone whose
* id is encoded in the upper bits of page - > flags
*/
2005-09-07 02:16:33 +04:00
struct zone * zone_table [ 1 < < ZONETABLE_SHIFT ] __read_mostly ;
2005-04-17 02:20:36 +04:00
EXPORT_SYMBOL ( zone_table ) ;
2005-11-05 19:25:53 +03:00
static char * zone_names [ MAX_NR_ZONES ] = { " DMA " , " DMA32 " , " Normal " , " HighMem " } ;
2005-04-17 02:20:36 +04:00
int min_free_kbytes = 1024 ;
2006-06-23 13:03:09 +04:00
unsigned long __meminitdata nr_kernel_pages ;
unsigned long __meminitdata nr_all_pages ;
2005-04-17 02:20:36 +04:00
2006-01-06 11:10:58 +03:00
# ifdef CONFIG_DEBUG_VM
2005-10-30 04:16:52 +03:00
static int page_outside_zone_boundaries ( struct zone * zone , struct page * page )
2005-04-17 02:20:36 +04:00
{
2005-10-30 04:16:53 +03:00
int ret = 0 ;
unsigned seq ;
unsigned long pfn = page_to_pfn ( page ) ;
2005-10-30 04:16:52 +03:00
2005-10-30 04:16:53 +03:00
do {
seq = zone_span_seqbegin ( zone ) ;
if ( pfn > = zone - > zone_start_pfn + zone - > spanned_pages )
ret = 1 ;
else if ( pfn < zone - > zone_start_pfn )
ret = 1 ;
} while ( zone_span_seqretry ( zone , seq ) ) ;
return ret ;
2005-10-30 04:16:52 +03:00
}
static int page_is_consistent ( struct zone * zone , struct page * page )
{
2005-04-17 02:20:36 +04:00
# ifdef CONFIG_HOLES_IN_ZONE
if ( ! pfn_valid ( page_to_pfn ( page ) ) )
2005-10-30 04:16:52 +03:00
return 0 ;
2005-04-17 02:20:36 +04:00
# endif
if ( zone ! = page_zone ( page ) )
2005-10-30 04:16:52 +03:00
return 0 ;
return 1 ;
}
/*
* Temporary debugging check for pages not lying within a given zone .
*/
static int bad_range ( struct zone * zone , struct page * page )
{
if ( page_outside_zone_boundaries ( zone , page ) )
2005-04-17 02:20:36 +04:00
return 1 ;
2005-10-30 04:16:52 +03:00
if ( ! page_is_consistent ( zone , page ) )
return 1 ;
2005-04-17 02:20:36 +04:00
return 0 ;
}
2006-01-06 11:10:58 +03:00
# else
static inline int bad_range ( struct zone * zone , struct page * page )
{
return 0 ;
}
# endif
2006-01-06 11:11:11 +03:00
static void bad_page ( struct page * page )
2005-04-17 02:20:36 +04:00
{
2006-01-06 11:11:11 +03:00
printk ( KERN_EMERG " Bad page state in process '%s' \n "
2006-01-11 23:17:18 +03:00
KERN_EMERG " page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d \n "
KERN_EMERG " Trying to fix it up, but a reboot is needed \n "
KERN_EMERG " Backtrace: \n " ,
2006-01-06 11:11:11 +03:00
current - > comm , page , ( int ) ( 2 * sizeof ( unsigned long ) ) ,
( unsigned long ) page - > flags , page - > mapping ,
page_mapcount ( page ) , page_count ( page ) ) ;
2005-04-17 02:20:36 +04:00
dump_stack ( ) ;
2005-06-22 04:15:08 +04:00
page - > flags & = ~ ( 1 < < PG_lru |
1 < < PG_private |
2005-04-17 02:20:36 +04:00
1 < < PG_locked |
1 < < PG_active |
1 < < PG_dirty |
2005-06-22 04:15:08 +04:00
1 < < PG_reclaim |
1 < < PG_slab |
2005-04-17 02:20:36 +04:00
1 < < PG_swapcache |
2006-04-10 05:21:48 +04:00
1 < < PG_writeback |
1 < < PG_buddy ) ;
2005-04-17 02:20:36 +04:00
set_page_count ( page , 0 ) ;
reset_page_mapcount ( page ) ;
page - > mapping = NULL ;
2005-09-13 12:25:16 +04:00
add_taint ( TAINT_BAD_PAGE ) ;
2005-04-17 02:20:36 +04:00
}
/*
* Higher - order pages are called " compound pages " . They are structured thusly :
*
* The first PAGE_SIZE page is called the " head page " .
*
* The remaining PAGE_SIZE pages are called " tail pages " .
*
* All pages have PG_compound set . All pages have their - > private pointing at
* the head page ( even the head page has this ) .
*
[PATCH] compound page: use page[1].lru
If a compound page has its own put_page_testzero destructor (the only current
example is free_huge_page), that is noted in page[1].mapping of the compound
page. But that's rather a poor place to keep it: functions which call
set_page_dirty_lock after get_user_pages (e.g. Infiniband's
__ib_umem_release) ought to be checking first, otherwise set_page_dirty is
liable to crash on what's not the address of a struct address_space.
And now I'm about to make that worse: it turns out that every compound page
needs a destructor, so we can no longer rely on hugetlb pages going their own
special way, to avoid further problems of page->mapping reuse. For example,
not many people know that: on 50% of i386 -Os builds, the first tail page of a
compound page purports to be PageAnon (when its destructor has an odd
address), which surprises page_add_file_rmap.
Keep the compound page destructor in page[1].lru.next instead. And to free up
the common pairing of mapping and index, also move compound page order from
index to lru.prev. Slab reuses page->lru too: but if we ever need slab to use
compound pages, it can easily stack its use above this.
(akpm: decoded version of the above: the tail pages of a compound page now
have ->mapping==NULL, so there's no need for the set_page_dirty[_lock]()
caller to check that they're not compund pages before doing the dirty).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 00:52:58 +03:00
* The first tail page ' s - > lru . next holds the address of the compound page ' s
* put_page ( ) function . Its - > lru . prev holds the order of allocation .
* This usage means that zero - order pages may not be compound .
2005-04-17 02:20:36 +04:00
*/
2006-02-15 00:52:59 +03:00
static void free_compound_page ( struct page * page )
{
__free_pages_ok ( page , ( unsigned long ) page [ 1 ] . lru . prev ) ;
}
2005-04-17 02:20:36 +04:00
static void prep_compound_page ( struct page * page , unsigned long order )
{
int i ;
int nr_pages = 1 < < order ;
2006-02-15 00:52:59 +03:00
page [ 1 ] . lru . next = ( void * ) free_compound_page ; /* set dtor */
[PATCH] compound page: use page[1].lru
If a compound page has its own put_page_testzero destructor (the only current
example is free_huge_page), that is noted in page[1].mapping of the compound
page. But that's rather a poor place to keep it: functions which call
set_page_dirty_lock after get_user_pages (e.g. Infiniband's
__ib_umem_release) ought to be checking first, otherwise set_page_dirty is
liable to crash on what's not the address of a struct address_space.
And now I'm about to make that worse: it turns out that every compound page
needs a destructor, so we can no longer rely on hugetlb pages going their own
special way, to avoid further problems of page->mapping reuse. For example,
not many people know that: on 50% of i386 -Os builds, the first tail page of a
compound page purports to be PageAnon (when its destructor has an odd
address), which surprises page_add_file_rmap.
Keep the compound page destructor in page[1].lru.next instead. And to free up
the common pairing of mapping and index, also move compound page order from
index to lru.prev. Slab reuses page->lru too: but if we ever need slab to use
compound pages, it can easily stack its use above this.
(akpm: decoded version of the above: the tail pages of a compound page now
have ->mapping==NULL, so there's no need for the set_page_dirty[_lock]()
caller to check that they're not compund pages before doing the dirty).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 00:52:58 +03:00
page [ 1 ] . lru . prev = ( void * ) order ;
2005-04-17 02:20:36 +04:00
for ( i = 0 ; i < nr_pages ; i + + ) {
struct page * p = page + i ;
2006-03-22 11:08:01 +03:00
__SetPageCompound ( p ) ;
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 04:16:40 +03:00
set_page_private ( p , ( unsigned long ) page ) ;
2005-04-17 02:20:36 +04:00
}
}
static void destroy_compound_page ( struct page * page , unsigned long order )
{
int i ;
int nr_pages = 1 < < order ;
[PATCH] compound page: use page[1].lru
If a compound page has its own put_page_testzero destructor (the only current
example is free_huge_page), that is noted in page[1].mapping of the compound
page. But that's rather a poor place to keep it: functions which call
set_page_dirty_lock after get_user_pages (e.g. Infiniband's
__ib_umem_release) ought to be checking first, otherwise set_page_dirty is
liable to crash on what's not the address of a struct address_space.
And now I'm about to make that worse: it turns out that every compound page
needs a destructor, so we can no longer rely on hugetlb pages going their own
special way, to avoid further problems of page->mapping reuse. For example,
not many people know that: on 50% of i386 -Os builds, the first tail page of a
compound page purports to be PageAnon (when its destructor has an odd
address), which surprises page_add_file_rmap.
Keep the compound page destructor in page[1].lru.next instead. And to free up
the common pairing of mapping and index, also move compound page order from
index to lru.prev. Slab reuses page->lru too: but if we ever need slab to use
compound pages, it can easily stack its use above this.
(akpm: decoded version of the above: the tail pages of a compound page now
have ->mapping==NULL, so there's no need for the set_page_dirty[_lock]()
caller to check that they're not compund pages before doing the dirty).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-15 00:52:58 +03:00
if ( unlikely ( ( unsigned long ) page [ 1 ] . lru . prev ! = order ) )
2006-01-06 11:11:11 +03:00
bad_page ( page ) ;
2005-04-17 02:20:36 +04:00
for ( i = 0 ; i < nr_pages ; i + + ) {
struct page * p = page + i ;
2006-01-06 11:11:11 +03:00
if ( unlikely ( ! PageCompound ( p ) |
( page_private ( p ) ! = ( unsigned long ) page ) ) )
bad_page ( page ) ;
2006-03-22 11:08:01 +03:00
__ClearPageCompound ( p ) ;
2005-04-17 02:20:36 +04:00
}
}
2006-03-22 11:08:41 +03:00
static inline void prep_zero_page ( struct page * page , int order , gfp_t gfp_flags )
{
int i ;
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( ( gfp_flags & ( __GFP_WAIT | __GFP_HIGHMEM ) ) = = __GFP_HIGHMEM ) ;
2006-03-22 11:08:42 +03:00
/*
* clear_highpage ( ) will use KM_USER0 , so it ' s a bug to use __GFP_ZERO
* and __GFP_HIGHMEM from hard or soft interrupt context .
*/
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( ( gfp_flags & __GFP_HIGHMEM ) & & in_interrupt ( ) ) ;
2006-03-22 11:08:41 +03:00
for ( i = 0 ; i < ( 1 < < order ) ; i + + )
clear_highpage ( page + i ) ;
}
2005-04-17 02:20:36 +04:00
/*
* function for dealing with page ' s order in buddy system .
* zone - > lock is already acquired when we use these .
* So , we don ' t need atomic page - > flags operations here .
*/
2006-04-19 09:20:52 +04:00
static inline unsigned long page_order ( struct page * page )
{
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 04:16:40 +03:00
return page_private ( page ) ;
2005-04-17 02:20:36 +04:00
}
2006-04-19 09:20:52 +04:00
static inline void set_page_order ( struct page * page , int order )
{
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 04:16:40 +03:00
set_page_private ( page , order ) ;
2006-04-10 05:21:48 +04:00
__SetPageBuddy ( page ) ;
2005-04-17 02:20:36 +04:00
}
static inline void rmv_page_order ( struct page * page )
{
2006-04-10 05:21:48 +04:00
__ClearPageBuddy ( page ) ;
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 04:16:40 +03:00
set_page_private ( page , 0 ) ;
2005-04-17 02:20:36 +04:00
}
/*
* Locate the struct page for both the matching buddy in our
* pair ( buddy1 ) and the combined O ( n + 1 ) page they form ( page ) .
*
* 1 ) Any buddy B1 will have an order O twin B2 which satisfies
* the following equation :
* B2 = B1 ^ ( 1 < < O )
* For example , if the starting buddy ( buddy2 ) is # 8 its order
* 1 buddy is # 10 :
* B2 = 8 ^ ( 1 < < 1 ) = 8 ^ 2 = 10
*
* 2 ) Any buddy B will have an order O + 1 parent P which
* satisfies the following equation :
* P = B & ~ ( 1 < < O )
*
2006-06-26 20:35:02 +04:00
* Assumption : * _mem_map is contiguous at least up to MAX_ORDER
2005-04-17 02:20:36 +04:00
*/
static inline struct page *
__page_find_buddy ( struct page * page , unsigned long page_idx , unsigned int order )
{
unsigned long buddy_idx = page_idx ^ ( 1 < < order ) ;
return page + ( buddy_idx - page_idx ) ;
}
static inline unsigned long
__find_combined_index ( unsigned long page_idx , unsigned int order )
{
return ( page_idx & ~ ( 1 < < order ) ) ;
}
/*
* This function checks whether a page is free & & is the buddy
* we can do coalesce a page and its buddy if
2006-01-06 11:10:58 +03:00
* ( a ) the buddy is not in a hole & &
2006-04-10 05:21:48 +04:00
* ( b ) the buddy is in the buddy system & &
2006-06-23 13:03:01 +04:00
* ( c ) a page and its buddy have the same order & &
* ( d ) a page and its buddy are in the same zone .
2006-04-10 05:21:48 +04:00
*
* For recording whether a page is in the buddy system , we use PG_buddy .
* Setting , clearing , and testing PG_buddy is serialized by zone - > lock .
2005-04-17 02:20:36 +04:00
*
2006-04-10 05:21:48 +04:00
* For recording page ' s order , we use page_private ( page ) .
2005-04-17 02:20:36 +04:00
*/
2006-06-23 13:03:01 +04:00
static inline int page_is_buddy ( struct page * page , struct page * buddy ,
int order )
2005-04-17 02:20:36 +04:00
{
2006-01-06 11:10:58 +03:00
# ifdef CONFIG_HOLES_IN_ZONE
2006-06-23 13:03:01 +04:00
if ( ! pfn_valid ( page_to_pfn ( buddy ) ) )
2006-01-06 11:10:58 +03:00
return 0 ;
# endif
2006-06-23 13:03:01 +04:00
if ( page_zone_id ( page ) ! = page_zone_id ( buddy ) )
return 0 ;
if ( PageBuddy ( buddy ) & & page_order ( buddy ) = = order ) {
BUG_ON ( page_count ( buddy ) ! = 0 ) ;
2006-04-19 09:20:52 +04:00
return 1 ;
2006-04-10 05:21:48 +04:00
}
2006-04-19 09:20:52 +04:00
return 0 ;
2005-04-17 02:20:36 +04:00
}
/*
* Freeing function for a buddy system allocator .
*
* The concept of a buddy system is to maintain direct - mapped table
* ( containing bit values ) for memory blocks of various " orders " .
* The bottom level table contains the map for the smallest allocatable
* units of memory ( here , pages ) , and each level above it describes
* pairs of units from the levels below , hence , " buddies " .
* At a high level , all that happens here is marking the table entry
* at the bottom level available , and propagating the changes upward
* as necessary , plus some accounting needed to play nicely with other
* parts of the VM system .
* At each level , we keep a list of pages , which are heads of continuous
2006-04-10 05:21:48 +04:00
* free pages of length of ( 1 < < order ) and marked with PG_buddy . Page ' s
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 04:16:40 +03:00
* order is recorded in page_private ( page ) field .
2005-04-17 02:20:36 +04:00
* So when we are allocating or freeing one , we can derive the state of the
* other . That is , if we allocate a small block , and both were
* free , the remainder of the region must be split into blocks .
* If a block is freed , and its buddy is also free , then this
* triggers coalescing into a block of larger size .
*
* - - wli
*/
2006-01-08 12:00:42 +03:00
static inline void __free_one_page ( struct page * page ,
2005-04-17 02:20:36 +04:00
struct zone * zone , unsigned int order )
{
unsigned long page_idx ;
int order_size = 1 < < order ;
2006-01-06 11:11:11 +03:00
if ( unlikely ( PageCompound ( page ) ) )
2005-04-17 02:20:36 +04:00
destroy_compound_page ( page , order ) ;
page_idx = page_to_pfn ( page ) & ( ( 1 < < MAX_ORDER ) - 1 ) ;
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( page_idx & ( order_size - 1 ) ) ;
VM_BUG_ON ( bad_range ( zone , page ) ) ;
2005-04-17 02:20:36 +04:00
zone - > free_pages + = order_size ;
while ( order < MAX_ORDER - 1 ) {
unsigned long combined_idx ;
struct free_area * area ;
struct page * buddy ;
buddy = __page_find_buddy ( page , page_idx , order ) ;
2006-06-23 13:03:01 +04:00
if ( ! page_is_buddy ( page , buddy , order ) )
2005-04-17 02:20:36 +04:00
break ; /* Move the buddy up one level. */
2006-01-06 11:10:58 +03:00
2005-04-17 02:20:36 +04:00
list_del ( & buddy - > lru ) ;
area = zone - > free_area + order ;
area - > nr_free - - ;
rmv_page_order ( buddy ) ;
2006-01-06 11:10:58 +03:00
combined_idx = __find_combined_index ( page_idx , order ) ;
2005-04-17 02:20:36 +04:00
page = page + ( combined_idx - page_idx ) ;
page_idx = combined_idx ;
order + + ;
}
set_page_order ( page , order ) ;
list_add ( & page - > lru , & zone - > free_area [ order ] . free_list ) ;
zone - > free_area [ order ] . nr_free + + ;
}
2006-01-06 11:11:11 +03:00
static inline int free_pages_check ( struct page * page )
2005-04-17 02:20:36 +04:00
{
2006-01-06 11:10:57 +03:00
if ( unlikely ( page_mapcount ( page ) |
( page - > mapping ! = NULL ) |
( page_count ( page ) ! = 0 ) |
2005-04-17 02:20:36 +04:00
( page - > flags & (
1 < < PG_lru |
1 < < PG_private |
1 < < PG_locked |
1 < < PG_active |
1 < < PG_reclaim |
1 < < PG_slab |
1 < < PG_swapcache |
2005-10-30 04:16:12 +03:00
1 < < PG_writeback |
2006-04-10 05:21:48 +04:00
1 < < PG_reserved |
1 < < PG_buddy ) ) ) )
2006-01-06 11:11:11 +03:00
bad_page ( page ) ;
2005-04-17 02:20:36 +04:00
if ( PageDirty ( page ) )
2005-09-04 02:54:50 +04:00
__ClearPageDirty ( page ) ;
2005-11-22 08:32:20 +03:00
/*
* For now , we report if PG_reserved was found set , but do not
* clear it , and do not free the page . But we shall soon need
* to do more , for when the ZERO_PAGE count wraps negative .
*/
return PageReserved ( page ) ;
2005-04-17 02:20:36 +04:00
}
/*
* Frees a list of pages .
* Assumes all pages on list are in same zone , and of same order .
2005-09-10 11:26:59 +04:00
* count is the number of pages to free .
2005-04-17 02:20:36 +04:00
*
* If the zone was previously in an " all pages pinned " state then look to
* see if this freeing clears that state .
*
* And clear the zone ' s pages_scanned counter , to hold off the " all pages are
* pinned " detection logic.
*/
2006-01-08 12:00:42 +03:00
static void free_pages_bulk ( struct zone * zone , int count ,
struct list_head * list , int order )
2005-04-17 02:20:36 +04:00
{
2006-01-06 11:10:56 +03:00
spin_lock ( & zone - > lock ) ;
2005-04-17 02:20:36 +04:00
zone - > all_unreclaimable = 0 ;
zone - > pages_scanned = 0 ;
2006-01-08 12:00:42 +03:00
while ( count - - ) {
struct page * page ;
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( list_empty ( list ) ) ;
2005-04-17 02:20:36 +04:00
page = list_entry ( list - > prev , struct page , lru ) ;
2006-01-08 12:00:42 +03:00
/* have to delete it as __free_one_page list manipulates */
2005-04-17 02:20:36 +04:00
list_del ( & page - > lru ) ;
2006-01-08 12:00:42 +03:00
__free_one_page ( page , zone , order ) ;
2005-04-17 02:20:36 +04:00
}
2006-01-06 11:10:56 +03:00
spin_unlock ( & zone - > lock ) ;
2005-04-17 02:20:36 +04:00
}
2006-01-08 12:00:42 +03:00
static void free_one_page ( struct zone * zone , struct page * page , int order )
2005-04-17 02:20:36 +04:00
{
LIST_HEAD ( list ) ;
2006-01-08 12:00:42 +03:00
list_add ( & page - > lru , & list ) ;
free_pages_bulk ( zone , 1 , & list , order ) ;
}
static void __free_pages_ok ( struct page * page , unsigned int order )
{
unsigned long flags ;
2005-04-17 02:20:36 +04:00
int i ;
2005-11-22 08:32:20 +03:00
int reserved = 0 ;
2005-04-17 02:20:36 +04:00
arch_free_page ( page , order ) ;
2006-01-10 02:59:21 +03:00
if ( ! PageHighMem ( page ) )
2006-06-27 13:54:49 +04:00
debug_check_no_locks_freed ( page_address ( page ) ,
PAGE_SIZE < < order ) ;
2005-04-17 02:20:36 +04:00
for ( i = 0 ; i < ( 1 < < order ) ; + + i )
2006-01-06 11:11:11 +03:00
reserved + = free_pages_check ( page + i ) ;
2005-11-22 08:32:20 +03:00
if ( reserved )
return ;
2006-01-08 12:00:42 +03:00
kernel_map_pages ( page , 1 < < order , 0 ) ;
2006-01-06 11:10:56 +03:00
local_irq_save ( flags ) ;
2006-06-30 12:55:45 +04:00
__count_vm_events ( PGFREE , 1 < < order ) ;
2006-01-08 12:00:42 +03:00
free_one_page ( page_zone ( page ) , page , order ) ;
2006-01-06 11:10:56 +03:00
local_irq_restore ( flags ) ;
2005-04-17 02:20:36 +04:00
}
2006-01-06 11:11:08 +03:00
/*
* permit the bootmem allocator to evade page validation on high - order frees
*/
void fastcall __init __free_pages_bootmem ( struct page * page , unsigned int order )
{
if ( order = = 0 ) {
__ClearPageReserved ( page ) ;
set_page_count ( page , 0 ) ;
2006-03-22 11:08:40 +03:00
set_page_refcounted ( page ) ;
2006-03-22 11:08:07 +03:00
__free_page ( page ) ;
2006-01-06 11:11:08 +03:00
} else {
int loop ;
2006-03-22 11:08:07 +03:00
prefetchw ( page ) ;
2006-01-06 11:11:08 +03:00
for ( loop = 0 ; loop < BITS_PER_LONG ; loop + + ) {
struct page * p = & page [ loop ] ;
2006-03-22 11:08:07 +03:00
if ( loop + 1 < BITS_PER_LONG )
prefetchw ( p + 1 ) ;
2006-01-06 11:11:08 +03:00
__ClearPageReserved ( p ) ;
set_page_count ( p , 0 ) ;
}
2006-03-22 11:08:40 +03:00
set_page_refcounted ( page ) ;
2006-03-22 11:08:07 +03:00
__free_pages ( page , order ) ;
2006-01-06 11:11:08 +03:00
}
}
2005-04-17 02:20:36 +04:00
/*
* The order of subdivision here is critical for the IO subsystem .
* Please do not alter this order without good reasons and regression
* testing . Specifically , as large blocks of memory are subdivided ,
* the order in which smaller blocks are delivered depends on the order
* they ' re subdivided in this function . This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing , and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations .
* This behavior is a critical factor in sglist merging ' s success .
*
* - - wli
*/
2006-01-06 11:11:01 +03:00
static inline void expand ( struct zone * zone , struct page * page ,
2005-04-17 02:20:36 +04:00
int low , int high , struct free_area * area )
{
unsigned long size = 1 < < high ;
while ( high > low ) {
area - - ;
high - - ;
size > > = 1 ;
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( bad_range ( zone , & page [ size ] ) ) ;
2005-04-17 02:20:36 +04:00
list_add ( & page [ size ] . lru , & area - > free_list ) ;
area - > nr_free + + ;
set_page_order ( & page [ size ] , high ) ;
}
}
/*
* This page is about to be returned from the page allocator
*/
2006-03-22 11:08:41 +03:00
static int prep_new_page ( struct page * page , int order , gfp_t gfp_flags )
2005-04-17 02:20:36 +04:00
{
2006-01-06 11:10:57 +03:00
if ( unlikely ( page_mapcount ( page ) |
( page - > mapping ! = NULL ) |
( page_count ( page ) ! = 0 ) |
2005-06-22 04:15:08 +04:00
( page - > flags & (
1 < < PG_lru |
2005-04-17 02:20:36 +04:00
1 < < PG_private |
1 < < PG_locked |
1 < < PG_active |
1 < < PG_dirty |
1 < < PG_reclaim |
2005-06-22 04:15:08 +04:00
1 < < PG_slab |
2005-04-17 02:20:36 +04:00
1 < < PG_swapcache |
2005-10-30 04:16:12 +03:00
1 < < PG_writeback |
2006-04-10 05:21:48 +04:00
1 < < PG_reserved |
1 < < PG_buddy ) ) ) )
2006-01-06 11:11:11 +03:00
bad_page ( page ) ;
2005-04-17 02:20:36 +04:00
2005-11-22 08:32:20 +03:00
/*
* For now , we report if PG_reserved was found set , but do not
* clear it , and do not allocate the page : as a safety net .
*/
if ( PageReserved ( page ) )
return 1 ;
2005-04-17 02:20:36 +04:00
page - > flags & = ~ ( 1 < < PG_uptodate | 1 < < PG_error |
1 < < PG_referenced | 1 < < PG_arch_1 |
1 < < PG_checked | 1 < < PG_mappedtodisk ) ;
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 04:16:40 +03:00
set_page_private ( page , 0 ) ;
2006-03-22 11:08:40 +03:00
set_page_refcounted ( page ) ;
2005-04-17 02:20:36 +04:00
kernel_map_pages ( page , 1 < < order , 1 ) ;
2006-03-22 11:08:41 +03:00
if ( gfp_flags & __GFP_ZERO )
prep_zero_page ( page , order , gfp_flags ) ;
if ( order & & ( gfp_flags & __GFP_COMP ) )
prep_compound_page ( page , order ) ;
2005-11-22 08:32:20 +03:00
return 0 ;
2005-04-17 02:20:36 +04:00
}
/*
* Do the hard work of removing an element from the buddy allocator .
* Call me with the zone - > lock already held .
*/
static struct page * __rmqueue ( struct zone * zone , unsigned int order )
{
struct free_area * area ;
unsigned int current_order ;
struct page * page ;
for ( current_order = order ; current_order < MAX_ORDER ; + + current_order ) {
area = zone - > free_area + current_order ;
if ( list_empty ( & area - > free_list ) )
continue ;
page = list_entry ( area - > free_list . next , struct page , lru ) ;
list_del ( & page - > lru ) ;
rmv_page_order ( page ) ;
area - > nr_free - - ;
zone - > free_pages - = 1UL < < order ;
2006-01-06 11:11:01 +03:00
expand ( zone , page , order , current_order , area ) ;
return page ;
2005-04-17 02:20:36 +04:00
}
return NULL ;
}
/*
* Obtain a specified number of elements from the buddy allocator , all under
* a single hold of the lock , for efficiency . Add them to the supplied list .
* Returns the number of new pages which were placed at * list .
*/
static int rmqueue_bulk ( struct zone * zone , unsigned int order ,
unsigned long count , struct list_head * list )
{
int i ;
2006-01-06 11:10:56 +03:00
spin_lock ( & zone - > lock ) ;
2005-04-17 02:20:36 +04:00
for ( i = 0 ; i < count ; + + i ) {
2006-01-06 11:11:01 +03:00
struct page * page = __rmqueue ( zone , order ) ;
if ( unlikely ( page = = NULL ) )
2005-04-17 02:20:36 +04:00
break ;
list_add_tail ( & page - > lru , list ) ;
}
2006-01-06 11:10:56 +03:00
spin_unlock ( & zone - > lock ) ;
2006-01-06 11:11:01 +03:00
return i ;
2005-04-17 02:20:36 +04:00
}
2005-06-22 04:14:57 +04:00
# ifdef CONFIG_NUMA
2006-03-10 04:33:54 +03:00
/*
* Called from the slab reaper to drain pagesets on a particular node that
* belong to the currently executing processor .
2006-03-22 11:09:08 +03:00
* Note that this function must be called with the thread pinned to
* a single processor .
2006-03-10 04:33:54 +03:00
*/
void drain_node_pages ( int nodeid )
2005-06-22 04:14:57 +04:00
{
2006-03-10 04:33:54 +03:00
int i , z ;
2005-06-22 04:14:57 +04:00
unsigned long flags ;
2006-03-10 04:33:54 +03:00
for ( z = 0 ; z < MAX_NR_ZONES ; z + + ) {
struct zone * zone = NODE_DATA ( nodeid ) - > node_zones + z ;
2005-06-22 04:14:57 +04:00
struct per_cpu_pageset * pset ;
2006-01-08 12:00:41 +03:00
pset = zone_pcp ( zone , smp_processor_id ( ) ) ;
2005-06-22 04:14:57 +04:00
for ( i = 0 ; i < ARRAY_SIZE ( pset - > pcp ) ; i + + ) {
struct per_cpu_pages * pcp ;
pcp = & pset - > pcp [ i ] ;
2006-03-22 11:09:08 +03:00
if ( pcp - > count ) {
local_irq_save ( flags ) ;
free_pages_bulk ( zone , pcp - > count , & pcp - > list , 0 ) ;
pcp - > count = 0 ;
local_irq_restore ( flags ) ;
}
2005-06-22 04:14:57 +04:00
}
}
}
# endif
2005-04-17 02:20:36 +04:00
# if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
static void __drain_pages ( unsigned int cpu )
{
2006-01-06 11:10:56 +03:00
unsigned long flags ;
2005-04-17 02:20:36 +04:00
struct zone * zone ;
int i ;
for_each_zone ( zone ) {
struct per_cpu_pageset * pset ;
2005-06-22 04:14:47 +04:00
pset = zone_pcp ( zone , cpu ) ;
2005-04-17 02:20:36 +04:00
for ( i = 0 ; i < ARRAY_SIZE ( pset - > pcp ) ; i + + ) {
struct per_cpu_pages * pcp ;
pcp = & pset - > pcp [ i ] ;
2006-01-06 11:10:56 +03:00
local_irq_save ( flags ) ;
2006-01-08 12:00:42 +03:00
free_pages_bulk ( zone , pcp - > count , & pcp - > list , 0 ) ;
pcp - > count = 0 ;
2006-01-06 11:10:56 +03:00
local_irq_restore ( flags ) ;
2005-04-17 02:20:36 +04:00
}
}
}
# endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
# ifdef CONFIG_PM
void mark_free_pages ( struct zone * zone )
{
unsigned long zone_pfn , flags ;
int order ;
struct list_head * curr ;
if ( ! zone - > spanned_pages )
return ;
spin_lock_irqsave ( & zone - > lock , flags ) ;
for ( zone_pfn = 0 ; zone_pfn < zone - > spanned_pages ; + + zone_pfn )
ClearPageNosaveFree ( pfn_to_page ( zone_pfn + zone - > zone_start_pfn ) ) ;
for ( order = MAX_ORDER - 1 ; order > = 0 ; - - order )
list_for_each ( curr , & zone - > free_area [ order ] . free_list ) {
unsigned long start_pfn , i ;
start_pfn = page_to_pfn ( list_entry ( curr , struct page , lru ) ) ;
for ( i = 0 ; i < ( 1 < < order ) ; i + + )
SetPageNosaveFree ( pfn_to_page ( start_pfn + i ) ) ;
}
spin_unlock_irqrestore ( & zone - > lock , flags ) ;
}
/*
* Spill all of this CPU ' s per - cpu pages back into the buddy allocator .
*/
void drain_local_pages ( void )
{
unsigned long flags ;
local_irq_save ( flags ) ;
__drain_pages ( smp_processor_id ( ) ) ;
local_irq_restore ( flags ) ;
}
# endif /* CONFIG_PM */
/*
* Free a 0 - order page
*/
static void fastcall free_hot_cold_page ( struct page * page , int cold )
{
struct zone * zone = page_zone ( page ) ;
struct per_cpu_pages * pcp ;
unsigned long flags ;
arch_free_page ( page , 0 ) ;
if ( PageAnon ( page ) )
page - > mapping = NULL ;
2006-01-06 11:11:11 +03:00
if ( free_pages_check ( page ) )
2005-11-22 08:32:20 +03:00
return ;
kernel_map_pages ( page , 1 , 0 ) ;
2005-06-22 04:14:47 +04:00
pcp = & zone_pcp ( zone , get_cpu ( ) ) - > pcp [ cold ] ;
2005-04-17 02:20:36 +04:00
local_irq_save ( flags ) ;
2006-06-30 12:55:45 +04:00
__count_vm_event ( PGFREE ) ;
2005-04-17 02:20:36 +04:00
list_add ( & page - > lru , & pcp - > list ) ;
pcp - > count + + ;
2006-01-08 12:00:42 +03:00
if ( pcp - > count > = pcp - > high ) {
free_pages_bulk ( zone , pcp - > batch , & pcp - > list , 0 ) ;
pcp - > count - = pcp - > batch ;
}
2005-04-17 02:20:36 +04:00
local_irq_restore ( flags ) ;
put_cpu ( ) ;
}
void fastcall free_hot_page ( struct page * page )
{
free_hot_cold_page ( page , 0 ) ;
}
void fastcall free_cold_page ( struct page * page )
{
free_hot_cold_page ( page , 1 ) ;
}
2006-03-22 11:08:05 +03:00
/*
* split_page takes a non - compound higher - order page , and splits it into
* n ( 1 < < order ) sub - pages : page [ 0. . n ]
* Each sub - page must be freed individually .
*
* Note : this is probably too low level an operation for use in drivers .
* Please consult with lkml before using this in your driver .
*/
void split_page ( struct page * page , unsigned int order )
{
int i ;
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( PageCompound ( page ) ) ;
VM_BUG_ON ( ! page_count ( page ) ) ;
2006-03-22 11:08:40 +03:00
for ( i = 1 ; i < ( 1 < < order ) ; i + + )
set_page_refcounted ( page + i ) ;
2006-03-22 11:08:05 +03:00
}
2005-04-17 02:20:36 +04:00
/*
* Really , prep_compound_page ( ) should be called from __rmqueue_bulk ( ) . But
* we cheat by calling it from here , in the order > 0 path . Saves a branch
* or two .
*/
2006-01-06 11:11:20 +03:00
static struct page * buffered_rmqueue ( struct zonelist * zonelist ,
struct zone * zone , int order , gfp_t gfp_flags )
2005-04-17 02:20:36 +04:00
{
unsigned long flags ;
2005-11-22 08:32:20 +03:00
struct page * page ;
2005-04-17 02:20:36 +04:00
int cold = ! ! ( gfp_flags & __GFP_COLD ) ;
2006-01-06 11:11:20 +03:00
int cpu ;
2005-04-17 02:20:36 +04:00
2005-11-22 08:32:20 +03:00
again :
2006-01-06 11:11:20 +03:00
cpu = get_cpu ( ) ;
2006-01-08 12:00:42 +03:00
if ( likely ( order = = 0 ) ) {
2005-04-17 02:20:36 +04:00
struct per_cpu_pages * pcp ;
2006-01-06 11:11:20 +03:00
pcp = & zone_pcp ( zone , cpu ) - > pcp [ cold ] ;
2005-04-17 02:20:36 +04:00
local_irq_save ( flags ) ;
2006-01-06 11:11:20 +03:00
if ( ! pcp - > count ) {
2005-04-17 02:20:36 +04:00
pcp - > count + = rmqueue_bulk ( zone , 0 ,
pcp - > batch , & pcp - > list ) ;
2006-01-06 11:11:20 +03:00
if ( unlikely ( ! pcp - > count ) )
goto failed ;
2005-04-17 02:20:36 +04:00
}
2006-01-06 11:11:20 +03:00
page = list_entry ( pcp - > list . next , struct page , lru ) ;
list_del ( & page - > lru ) ;
pcp - > count - - ;
2005-11-14 03:06:43 +03:00
} else {
2005-04-17 02:20:36 +04:00
spin_lock_irqsave ( & zone - > lock , flags ) ;
page = __rmqueue ( zone , order ) ;
2006-01-06 11:11:20 +03:00
spin_unlock ( & zone - > lock ) ;
if ( ! page )
goto failed ;
2005-04-17 02:20:36 +04:00
}
2006-06-30 12:55:45 +04:00
__count_zone_vm_events ( PGALLOC , zone , 1 < < order ) ;
2006-06-30 12:55:44 +04:00
zone_statistics ( zonelist , zone ) ;
2006-01-06 11:11:20 +03:00
local_irq_restore ( flags ) ;
put_cpu ( ) ;
2005-04-17 02:20:36 +04:00
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( bad_range ( zone , page ) ) ;
2006-03-22 11:08:41 +03:00
if ( prep_new_page ( page , order , gfp_flags ) )
2006-01-06 11:11:20 +03:00
goto again ;
2005-04-17 02:20:36 +04:00
return page ;
2006-01-06 11:11:20 +03:00
failed :
local_irq_restore ( flags ) ;
put_cpu ( ) ;
return NULL ;
2005-04-17 02:20:36 +04:00
}
2005-11-14 03:06:43 +03:00
# define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
[PATCH] mm: __alloc_pages cleanup fix
I believe this patch is required to fix breakage in the asynch reclaim
watermark logic introduced by this patch:
http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7fb1d9fca5c6e3b06773b69165a73f3fb786b8ee
Just some background of the watermark logic in case it isn't clear...
Basically what we have is this:
--- pages_high
|
| (a)
|
--- pages_low
|
| (b)
|
--- pages_min
|
| (c)
|
--- 0
Now when pages_low is reached, we want to kick asynch reclaim, which gives us
an interval of "b" before we must start synch reclaim, and gives kswapd an
interval of "a" before it need go back to sleep.
When pages_min is reached, normal allocators must enter synch reclaim, but
PF_MEMALLOC, ALLOC_HARDER, and ALLOC_HIGH (ie. atomic allocations, recursive
allocations, etc.) get access to varying amounts of the reserve "c".
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: "Seth, Rohit" <rohit.seth@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-29 00:44:03 +03:00
# define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
# define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
# define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
# define ALLOC_HARDER 0x10 /* try to alloc harder */
# define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
# define ALLOC_CPUSET 0x40 /* check for correct cpuset */
2005-11-14 03:06:43 +03:00
2005-04-17 02:20:36 +04:00
/*
* Return 1 if free pages are above ' mark ' . This takes into account the order
* of the allocation .
*/
int zone_watermark_ok ( struct zone * z , int order , unsigned long mark ,
2005-11-14 03:06:43 +03:00
int classzone_idx , int alloc_flags )
2005-04-17 02:20:36 +04:00
{
/* free_pages my go negative - that's OK */
long min = mark , free_pages = z - > free_pages - ( 1 < < order ) + 1 ;
int o ;
2005-11-14 03:06:43 +03:00
if ( alloc_flags & ALLOC_HIGH )
2005-04-17 02:20:36 +04:00
min - = min / 2 ;
2005-11-14 03:06:43 +03:00
if ( alloc_flags & ALLOC_HARDER )
2005-04-17 02:20:36 +04:00
min - = min / 4 ;
if ( free_pages < = min + z - > lowmem_reserve [ classzone_idx ] )
return 0 ;
for ( o = 0 ; o < order ; o + + ) {
/* At the next order, this order's pages become unavailable */
free_pages - = z - > free_area [ o ] . nr_free < < o ;
/* Require fewer higher order pages to be free */
min > > = 1 ;
if ( free_pages < = min )
return 0 ;
}
return 1 ;
}
2005-11-14 03:06:43 +03:00
/*
* get_page_from_freeliest goes through the zonelist trying to allocate
* a page .
*/
static struct page *
get_page_from_freelist ( gfp_t gfp_mask , unsigned int order ,
struct zonelist * zonelist , int alloc_flags )
2005-06-22 04:14:41 +04:00
{
2005-11-14 03:06:43 +03:00
struct zone * * z = zonelist - > zones ;
struct page * page = NULL ;
int classzone_idx = zone_idx ( * z ) ;
/*
* Go through the zonelist once , looking for a zone with enough free .
* See also cpuset_zone_allowed ( ) comment in kernel / cpuset . c .
*/
do {
if ( ( alloc_flags & ALLOC_CPUSET ) & &
! cpuset_zone_allowed ( * z , gfp_mask ) )
continue ;
if ( ! ( alloc_flags & ALLOC_NO_WATERMARKS ) ) {
[PATCH] mm: __alloc_pages cleanup fix
I believe this patch is required to fix breakage in the asynch reclaim
watermark logic introduced by this patch:
http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7fb1d9fca5c6e3b06773b69165a73f3fb786b8ee
Just some background of the watermark logic in case it isn't clear...
Basically what we have is this:
--- pages_high
|
| (a)
|
--- pages_low
|
| (b)
|
--- pages_min
|
| (c)
|
--- 0
Now when pages_low is reached, we want to kick asynch reclaim, which gives us
an interval of "b" before we must start synch reclaim, and gives kswapd an
interval of "a" before it need go back to sleep.
When pages_min is reached, normal allocators must enter synch reclaim, but
PF_MEMALLOC, ALLOC_HARDER, and ALLOC_HIGH (ie. atomic allocations, recursive
allocations, etc.) get access to varying amounts of the reserve "c".
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: "Seth, Rohit" <rohit.seth@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-29 00:44:03 +03:00
unsigned long mark ;
if ( alloc_flags & ALLOC_WMARK_MIN )
mark = ( * z ) - > pages_min ;
else if ( alloc_flags & ALLOC_WMARK_LOW )
mark = ( * z ) - > pages_low ;
else
mark = ( * z ) - > pages_high ;
if ( ! zone_watermark_ok ( * z , order , mark ,
2005-11-14 03:06:43 +03:00
classzone_idx , alloc_flags ) )
2006-01-19 04:42:31 +03:00
if ( ! zone_reclaim_mode | |
! zone_reclaim ( * z , gfp_mask , order ) )
continue ;
2005-11-14 03:06:43 +03:00
}
2006-01-06 11:11:20 +03:00
page = buffered_rmqueue ( zonelist , * z , order , gfp_mask ) ;
2005-11-14 03:06:43 +03:00
if ( page ) {
break ;
}
} while ( * ( + + z ) ! = NULL ) ;
return page ;
2005-06-22 04:14:41 +04:00
}
2005-04-17 02:20:36 +04:00
/*
* This is the ' heart ' of the zoned buddy allocator .
*/
struct page * fastcall
2005-10-07 10:46:04 +04:00
__alloc_pages ( gfp_t gfp_mask , unsigned int order ,
2005-04-17 02:20:36 +04:00
struct zonelist * zonelist )
{
2005-10-21 11:22:44 +04:00
const gfp_t wait = gfp_mask & __GFP_WAIT ;
2005-11-14 03:06:43 +03:00
struct zone * * z ;
2005-04-17 02:20:36 +04:00
struct page * page ;
struct reclaim_state reclaim_state ;
struct task_struct * p = current ;
int do_retry ;
2005-11-14 03:06:43 +03:00
int alloc_flags ;
2005-04-17 02:20:36 +04:00
int did_some_progress ;
might_sleep_if ( wait ) ;
2005-11-17 23:35:02 +03:00
restart :
2005-11-14 03:06:43 +03:00
z = zonelist - > zones ; /* the list of zones suitable for gfp_mask */
2005-04-17 02:20:36 +04:00
2005-11-14 03:06:43 +03:00
if ( unlikely ( * z = = NULL ) ) {
2005-04-17 02:20:36 +04:00
/* Should this ever happen?? */
return NULL ;
}
2005-11-17 23:35:02 +03:00
2005-11-14 03:06:43 +03:00
page = get_page_from_freelist ( gfp_mask | __GFP_HARDWALL , order ,
[PATCH] mm: __alloc_pages cleanup fix
I believe this patch is required to fix breakage in the asynch reclaim
watermark logic introduced by this patch:
http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7fb1d9fca5c6e3b06773b69165a73f3fb786b8ee
Just some background of the watermark logic in case it isn't clear...
Basically what we have is this:
--- pages_high
|
| (a)
|
--- pages_low
|
| (b)
|
--- pages_min
|
| (c)
|
--- 0
Now when pages_low is reached, we want to kick asynch reclaim, which gives us
an interval of "b" before we must start synch reclaim, and gives kswapd an
interval of "a" before it need go back to sleep.
When pages_min is reached, normal allocators must enter synch reclaim, but
PF_MEMALLOC, ALLOC_HARDER, and ALLOC_HIGH (ie. atomic allocations, recursive
allocations, etc.) get access to varying amounts of the reserve "c".
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: "Seth, Rohit" <rohit.seth@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-29 00:44:03 +03:00
zonelist , ALLOC_WMARK_LOW | ALLOC_CPUSET ) ;
2005-11-14 03:06:43 +03:00
if ( page )
goto got_pg ;
2005-04-17 02:20:36 +04:00
2005-11-17 23:35:02 +03:00
do {
2006-06-25 16:47:55 +04:00
wakeup_kswapd ( * z , order ) ;
2005-11-17 23:35:02 +03:00
} while ( * ( + + z ) ) ;
2005-04-17 02:20:36 +04:00
[PATCH] cpusets: formalize intermediate GFP_KERNEL containment
This patch makes use of the previously underutilized cpuset flag
'mem_exclusive' to provide what amounts to another layer of memory placement
resolution. With this patch, there are now the following four layers of
memory placement available:
1) The whole system (interrupt and GFP_ATOMIC allocations can use this),
2) The nearest enclosing mem_exclusive cpuset (GFP_KERNEL allocations can use),
3) The current tasks cpuset (GFP_USER allocations constrained to here), and
4) Specific node placement, using mbind and set_mempolicy.
These nest - each layer is a subset (same or within) of the previous.
Layer (2) above is new, with this patch. The call used to check whether a
zone (its node, actually) is in a cpuset (in its mems_allowed, actually) is
extended to take a gfp_mask argument, and its logic is extended, in the case
that __GFP_HARDWALL is not set in the flag bits, to look up the cpuset
hierarchy for the nearest enclosing mem_exclusive cpuset, to determine if
placement is allowed. The definition of GFP_USER, which used to be identical
to GFP_KERNEL, is changed to also set the __GFP_HARDWALL bit, in the previous
cpuset_gfp_hardwall_flag patch.
GFP_ATOMIC and GFP_KERNEL allocations will stay within the current tasks
cpuset, so long as any node therein is not too tight on memory, but will
escape to the larger layer, if need be.
The intended use is to allow something like a batch manager to handle several
jobs, each job in its own cpuset, but using common kernel memory for caches
and such. Swapper and oom_kill activity is also constrained to Layer (2). A
task in or below one mem_exclusive cpuset should not cause swapping on nodes
in another non-overlapping mem_exclusive cpuset, nor provoke oom_killing of a
task in another such cpuset. Heavy use of kernel memory for i/o caching and
such by one job should not impact the memory available to jobs in other
non-overlapping mem_exclusive cpusets.
This patch enables providing hardwall, inescapable cpusets for memory
allocations of each job, while sharing kernel memory allocations between
several jobs, in an enclosing mem_exclusive cpuset.
Like Dinakar's patch earlier to enable administering sched domains using the
cpu_exclusive flag, this patch also provides a useful meaning to a cpuset flag
that had previously done nothing much useful other than restrict what cpuset
configurations were allowed.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07 02:18:12 +04:00
/*
2005-11-14 03:06:43 +03:00
* OK , we ' re below the kswapd watermark and have kicked background
* reclaim . Now things get more complex , so set up alloc_flags according
* to how we want to proceed .
*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim , or if the caller has realtime scheduling
2006-01-11 23:17:19 +03:00
* policy or is asking for __GFP_HIGH memory . GFP_ATOMIC requests will
* set both ALLOC_HARDER ( ! wait ) and ALLOC_HIGH ( __GFP_HIGH ) .
[PATCH] cpusets: formalize intermediate GFP_KERNEL containment
This patch makes use of the previously underutilized cpuset flag
'mem_exclusive' to provide what amounts to another layer of memory placement
resolution. With this patch, there are now the following four layers of
memory placement available:
1) The whole system (interrupt and GFP_ATOMIC allocations can use this),
2) The nearest enclosing mem_exclusive cpuset (GFP_KERNEL allocations can use),
3) The current tasks cpuset (GFP_USER allocations constrained to here), and
4) Specific node placement, using mbind and set_mempolicy.
These nest - each layer is a subset (same or within) of the previous.
Layer (2) above is new, with this patch. The call used to check whether a
zone (its node, actually) is in a cpuset (in its mems_allowed, actually) is
extended to take a gfp_mask argument, and its logic is extended, in the case
that __GFP_HARDWALL is not set in the flag bits, to look up the cpuset
hierarchy for the nearest enclosing mem_exclusive cpuset, to determine if
placement is allowed. The definition of GFP_USER, which used to be identical
to GFP_KERNEL, is changed to also set the __GFP_HARDWALL bit, in the previous
cpuset_gfp_hardwall_flag patch.
GFP_ATOMIC and GFP_KERNEL allocations will stay within the current tasks
cpuset, so long as any node therein is not too tight on memory, but will
escape to the larger layer, if need be.
The intended use is to allow something like a batch manager to handle several
jobs, each job in its own cpuset, but using common kernel memory for caches
and such. Swapper and oom_kill activity is also constrained to Layer (2). A
task in or below one mem_exclusive cpuset should not cause swapping on nodes
in another non-overlapping mem_exclusive cpuset, nor provoke oom_killing of a
task in another such cpuset. Heavy use of kernel memory for i/o caching and
such by one job should not impact the memory available to jobs in other
non-overlapping mem_exclusive cpusets.
This patch enables providing hardwall, inescapable cpusets for memory
allocations of each job, while sharing kernel memory allocations between
several jobs, in an enclosing mem_exclusive cpuset.
Like Dinakar's patch earlier to enable administering sched domains using the
cpu_exclusive flag, this patch also provides a useful meaning to a cpuset flag
that had previously done nothing much useful other than restrict what cpuset
configurations were allowed.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07 02:18:12 +04:00
*/
[PATCH] mm: __alloc_pages cleanup fix
I believe this patch is required to fix breakage in the asynch reclaim
watermark logic introduced by this patch:
http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7fb1d9fca5c6e3b06773b69165a73f3fb786b8ee
Just some background of the watermark logic in case it isn't clear...
Basically what we have is this:
--- pages_high
|
| (a)
|
--- pages_low
|
| (b)
|
--- pages_min
|
| (c)
|
--- 0
Now when pages_low is reached, we want to kick asynch reclaim, which gives us
an interval of "b" before we must start synch reclaim, and gives kswapd an
interval of "a" before it need go back to sleep.
When pages_min is reached, normal allocators must enter synch reclaim, but
PF_MEMALLOC, ALLOC_HARDER, and ALLOC_HIGH (ie. atomic allocations, recursive
allocations, etc.) get access to varying amounts of the reserve "c".
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: "Seth, Rohit" <rohit.seth@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-29 00:44:03 +03:00
alloc_flags = ALLOC_WMARK_MIN ;
2005-11-14 03:06:43 +03:00
if ( ( unlikely ( rt_task ( p ) ) & & ! in_interrupt ( ) ) | | ! wait )
alloc_flags | = ALLOC_HARDER ;
if ( gfp_mask & __GFP_HIGH )
alloc_flags | = ALLOC_HIGH ;
[PATCH] Cpuset: might sleep checking zones allowed fix
Fix a couple of infrequently encountered 'sleeping function called from
invalid context' in the cpuset hooks in __alloc_pages. Could sleep while
interrupts disabled.
The routine cpuset_zone_allowed() is called by code in mm/page_alloc.c
__alloc_pages() to determine if a zone is allowed in the current tasks
cpuset. This routine can sleep, for certain GFP_KERNEL allocations, if the
zone is on a memory node not allowed in the current cpuset, but might be
allowed in a parent cpuset.
But we can't sleep in __alloc_pages() if in interrupt, nor if called for a
GFP_ATOMIC request (__GFP_WAIT not set in gfp_flags).
The rule was intended to be:
Don't call cpuset_zone_allowed() if you can't sleep, unless you
pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
the code that might scan up ancestor cpusets and sleep.
This rule was being violated in a couple of places, due to a bogus change
made (by myself, pj) to __alloc_pages() as part of the November 2005 effort
to cleanup its logic, and also due to a later fix to constrain which swap
daemons were awoken.
The bogus change can be seen at:
http://linux.derkeiler.com/Mailing-Lists/Kernel/2005-11/4691.html
[PATCH 01/05] mm fix __alloc_pages cpuset ALLOC_* flags
This was first noticed on a tight memory system, in code that was disabling
interrupts and doing allocation requests with __GFP_WAIT not set, which
resulted in __might_sleep() writing complaints to the log "Debug: sleeping
function called ...", when the code in cpuset_zone_allowed() tried to take
the callback_sem cpuset semaphore.
We haven't seen a system hang on this 'might_sleep' yet, but we are at
decent risk of seeing it fairly soon, especially since the additional
cpuset_zone_allowed() check was added, conditioning wakeup_kswapd(), in
March 2006.
Special thanks to Dave Chinner, for figuring this out, and a tip of the hat
to Nick Piggin who warned me of this back in Nov 2005, before I was ready
to listen.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-05-21 02:00:09 +04:00
if ( wait )
alloc_flags | = ALLOC_CPUSET ;
2005-04-17 02:20:36 +04:00
/*
* Go through the zonelist again . Let __GFP_HIGH and allocations
2005-11-14 03:06:43 +03:00
* coming from realtime tasks go deeper into reserves .
2005-04-17 02:20:36 +04:00
*
* This is the last chance , in general , before the goto nopage .
* Ignore cpuset if GFP_ATOMIC ( ! wait ) rather than fail alloc .
[PATCH] cpusets: formalize intermediate GFP_KERNEL containment
This patch makes use of the previously underutilized cpuset flag
'mem_exclusive' to provide what amounts to another layer of memory placement
resolution. With this patch, there are now the following four layers of
memory placement available:
1) The whole system (interrupt and GFP_ATOMIC allocations can use this),
2) The nearest enclosing mem_exclusive cpuset (GFP_KERNEL allocations can use),
3) The current tasks cpuset (GFP_USER allocations constrained to here), and
4) Specific node placement, using mbind and set_mempolicy.
These nest - each layer is a subset (same or within) of the previous.
Layer (2) above is new, with this patch. The call used to check whether a
zone (its node, actually) is in a cpuset (in its mems_allowed, actually) is
extended to take a gfp_mask argument, and its logic is extended, in the case
that __GFP_HARDWALL is not set in the flag bits, to look up the cpuset
hierarchy for the nearest enclosing mem_exclusive cpuset, to determine if
placement is allowed. The definition of GFP_USER, which used to be identical
to GFP_KERNEL, is changed to also set the __GFP_HARDWALL bit, in the previous
cpuset_gfp_hardwall_flag patch.
GFP_ATOMIC and GFP_KERNEL allocations will stay within the current tasks
cpuset, so long as any node therein is not too tight on memory, but will
escape to the larger layer, if need be.
The intended use is to allow something like a batch manager to handle several
jobs, each job in its own cpuset, but using common kernel memory for caches
and such. Swapper and oom_kill activity is also constrained to Layer (2). A
task in or below one mem_exclusive cpuset should not cause swapping on nodes
in another non-overlapping mem_exclusive cpuset, nor provoke oom_killing of a
task in another such cpuset. Heavy use of kernel memory for i/o caching and
such by one job should not impact the memory available to jobs in other
non-overlapping mem_exclusive cpusets.
This patch enables providing hardwall, inescapable cpusets for memory
allocations of each job, while sharing kernel memory allocations between
several jobs, in an enclosing mem_exclusive cpuset.
Like Dinakar's patch earlier to enable administering sched domains using the
cpu_exclusive flag, this patch also provides a useful meaning to a cpuset flag
that had previously done nothing much useful other than restrict what cpuset
configurations were allowed.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07 02:18:12 +04:00
* See also cpuset_zone_allowed ( ) comment in kernel / cpuset . c .
2005-04-17 02:20:36 +04:00
*/
2005-11-14 03:06:43 +03:00
page = get_page_from_freelist ( gfp_mask , order , zonelist , alloc_flags ) ;
if ( page )
goto got_pg ;
2005-04-17 02:20:36 +04:00
/* This allocation should allow future memory freeing. */
2005-05-01 19:58:36 +04:00
if ( ( ( p - > flags & PF_MEMALLOC ) | | unlikely ( test_thread_flag ( TIF_MEMDIE ) ) )
& & ! in_interrupt ( ) ) {
if ( ! ( gfp_mask & __GFP_NOMEMALLOC ) ) {
2005-11-14 03:06:41 +03:00
nofail_alloc :
2005-05-01 19:58:36 +04:00
/* go through the zonelist yet again, ignoring mins */
2005-11-14 03:06:43 +03:00
page = get_page_from_freelist ( gfp_mask , order ,
2006-01-06 11:10:32 +03:00
zonelist , ALLOC_NO_WATERMARKS ) ;
2005-11-14 03:06:43 +03:00
if ( page )
goto got_pg ;
2005-11-14 03:06:41 +03:00
if ( gfp_mask & __GFP_NOFAIL ) {
blk_congestion_wait ( WRITE , HZ / 50 ) ;
goto nofail_alloc ;
}
2005-04-17 02:20:36 +04:00
}
goto nopage ;
}
/* Atomic allocations - we can't balance anything */
if ( ! wait )
goto nopage ;
rebalance :
cond_resched ( ) ;
/* We now go into synchronous reclaim */
[PATCH] cpuset: memory pressure meter
Provide a simple per-cpuset metric of memory pressure, tracking the -rate-
that the tasks in a cpuset call try_to_free_pages(), the synchronous
(direct) memory reclaim code.
This enables batch managers monitoring jobs running in dedicated cpusets to
efficiently detect what level of memory pressure that job is causing.
This is useful both on tightly managed systems running a wide mix of
submitted jobs, which may choose to terminate or reprioritize jobs that are
trying to use more memory than allowed on the nodes assigned them, and with
tightly coupled, long running, massively parallel scientific computing jobs
that will dramatically fail to meet required performance goals if they
start to use more memory than allowed to them.
This patch just provides a very economical way for the batch manager to
monitor a cpuset for signs of memory pressure. It's up to the batch
manager or other user code to decide what to do about it and take action.
==> Unless this feature is enabled by writing "1" to the special file
/dev/cpuset/memory_pressure_enabled, the hook in the rebalance
code of __alloc_pages() for this metric reduces to simply noticing
that the cpuset_memory_pressure_enabled flag is zero. So only
systems that enable this feature will compute the metric.
Why a per-cpuset, running average:
Because this meter is per-cpuset, rather than per-task or mm, the
system load imposed by a batch scheduler monitoring this metric is
sharply reduced on large systems, because a scan of the tasklist can be
avoided on each set of queries.
Because this meter is a running average, instead of an accumulating
counter, a batch scheduler can detect memory pressure with a single
read, instead of having to read and accumulate results for a period of
time.
Because this meter is per-cpuset rather than per-task or mm, the
batch scheduler can obtain the key information, memory pressure in a
cpuset, with a single read, rather than having to query and accumulate
results over all the (dynamically changing) set of tasks in the cpuset.
A per-cpuset simple digital filter (requires a spinlock and 3 words of data
per-cpuset) is kept, and updated by any task attached to that cpuset, if it
enters the synchronous (direct) page reclaim code.
A per-cpuset file provides an integer number representing the recent
(half-life of 10 seconds) rate of direct page reclaims caused by the tasks
in the cpuset, in units of reclaims attempted per second, times 1000.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 12:01:49 +03:00
cpuset_memory_pressure_bump ( ) ;
2005-04-17 02:20:36 +04:00
p - > flags | = PF_MEMALLOC ;
reclaim_state . reclaimed_slab = 0 ;
p - > reclaim_state = & reclaim_state ;
2005-11-14 03:06:43 +03:00
did_some_progress = try_to_free_pages ( zonelist - > zones , gfp_mask ) ;
2005-04-17 02:20:36 +04:00
p - > reclaim_state = NULL ;
p - > flags & = ~ PF_MEMALLOC ;
cond_resched ( ) ;
if ( likely ( did_some_progress ) ) {
2005-11-14 03:06:43 +03:00
page = get_page_from_freelist ( gfp_mask , order ,
zonelist , alloc_flags ) ;
if ( page )
goto got_pg ;
2005-04-17 02:20:36 +04:00
} else if ( ( gfp_mask & __GFP_FS ) & & ! ( gfp_mask & __GFP_NORETRY ) ) {
/*
* Go through the zonelist yet one more time , keep
* very high watermark here , this is only to catch
* a parallel oom killing , we must fail if we ' re still
* under heavy pressure .
*/
2005-11-14 03:06:43 +03:00
page = get_page_from_freelist ( gfp_mask | __GFP_HARDWALL , order ,
[PATCH] mm: __alloc_pages cleanup fix
I believe this patch is required to fix breakage in the asynch reclaim
watermark logic introduced by this patch:
http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7fb1d9fca5c6e3b06773b69165a73f3fb786b8ee
Just some background of the watermark logic in case it isn't clear...
Basically what we have is this:
--- pages_high
|
| (a)
|
--- pages_low
|
| (b)
|
--- pages_min
|
| (c)
|
--- 0
Now when pages_low is reached, we want to kick asynch reclaim, which gives us
an interval of "b" before we must start synch reclaim, and gives kswapd an
interval of "a" before it need go back to sleep.
When pages_min is reached, normal allocators must enter synch reclaim, but
PF_MEMALLOC, ALLOC_HARDER, and ALLOC_HIGH (ie. atomic allocations, recursive
allocations, etc.) get access to varying amounts of the reserve "c".
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: "Seth, Rohit" <rohit.seth@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-29 00:44:03 +03:00
zonelist , ALLOC_WMARK_HIGH | ALLOC_CPUSET ) ;
2005-11-14 03:06:43 +03:00
if ( page )
goto got_pg ;
2005-04-17 02:20:36 +04:00
2006-02-21 05:27:52 +03:00
out_of_memory ( zonelist , gfp_mask , order ) ;
2005-04-17 02:20:36 +04:00
goto restart ;
}
/*
* Don ' t let big - order allocations loop unless the caller explicitly
* requests that . Wait for some write requests to complete then retry .
*
* In this implementation , __GFP_REPEAT means __GFP_NOFAIL for order
* < = 3 , but that may not be true in other implementations .
*/
do_retry = 0 ;
if ( ! ( gfp_mask & __GFP_NORETRY ) ) {
if ( ( order < = 3 ) | | ( gfp_mask & __GFP_REPEAT ) )
do_retry = 1 ;
if ( gfp_mask & __GFP_NOFAIL )
do_retry = 1 ;
}
if ( do_retry ) {
blk_congestion_wait ( WRITE , HZ / 50 ) ;
goto rebalance ;
}
nopage :
if ( ! ( gfp_mask & __GFP_NOWARN ) & & printk_ratelimit ( ) ) {
printk ( KERN_WARNING " %s: page allocation failure. "
" order:%d, mode:0x%x \n " ,
p - > comm , order , gfp_mask ) ;
dump_stack ( ) ;
2005-06-22 04:14:56 +04:00
show_mem ( ) ;
2005-04-17 02:20:36 +04:00
}
got_pg :
return page ;
}
EXPORT_SYMBOL ( __alloc_pages ) ;
/*
* Common helper functions .
*/
2005-10-07 10:46:04 +04:00
fastcall unsigned long __get_free_pages ( gfp_t gfp_mask , unsigned int order )
2005-04-17 02:20:36 +04:00
{
struct page * page ;
page = alloc_pages ( gfp_mask , order ) ;
if ( ! page )
return 0 ;
return ( unsigned long ) page_address ( page ) ;
}
EXPORT_SYMBOL ( __get_free_pages ) ;
2005-10-07 10:46:04 +04:00
fastcall unsigned long get_zeroed_page ( gfp_t gfp_mask )
2005-04-17 02:20:36 +04:00
{
struct page * page ;
/*
* get_zeroed_page ( ) returns a 32 - bit address , which cannot represent
* a highmem page
*/
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( ( gfp_mask & __GFP_HIGHMEM ) ! = 0 ) ;
2005-04-17 02:20:36 +04:00
page = alloc_pages ( gfp_mask | __GFP_ZERO , 0 ) ;
if ( page )
return ( unsigned long ) page_address ( page ) ;
return 0 ;
}
EXPORT_SYMBOL ( get_zeroed_page ) ;
void __pagevec_free ( struct pagevec * pvec )
{
int i = pagevec_count ( pvec ) ;
while ( - - i > = 0 )
free_hot_cold_page ( pvec - > pages [ i ] , pvec - > cold ) ;
}
fastcall void __free_pages ( struct page * page , unsigned int order )
{
2005-10-30 04:16:12 +03:00
if ( put_page_testzero ( page ) ) {
2005-04-17 02:20:36 +04:00
if ( order = = 0 )
free_hot_page ( page ) ;
else
__free_pages_ok ( page , order ) ;
}
}
EXPORT_SYMBOL ( __free_pages ) ;
fastcall void free_pages ( unsigned long addr , unsigned int order )
{
if ( addr ! = 0 ) {
2006-09-26 10:30:55 +04:00
VM_BUG_ON ( ! virt_addr_valid ( ( void * ) addr ) ) ;
2005-04-17 02:20:36 +04:00
__free_pages ( virt_to_page ( ( void * ) addr ) , order ) ;
}
}
EXPORT_SYMBOL ( free_pages ) ;
/*
* Total amount of free ( allocatable ) RAM :
*/
unsigned int nr_free_pages ( void )
{
unsigned int sum = 0 ;
struct zone * zone ;
for_each_zone ( zone )
sum + = zone - > free_pages ;
return sum ;
}
EXPORT_SYMBOL ( nr_free_pages ) ;
# ifdef CONFIG_NUMA
unsigned int nr_free_pages_pgdat ( pg_data_t * pgdat )
{
unsigned int i , sum = 0 ;
for ( i = 0 ; i < MAX_NR_ZONES ; i + + )
sum + = pgdat - > node_zones [ i ] . free_pages ;
return sum ;
}
# endif
static unsigned int nr_free_zone_pages ( int offset )
{
2005-07-30 09:59:18 +04:00
/* Just pick one node, since fallback list is circular */
pg_data_t * pgdat = NODE_DATA ( numa_node_id ( ) ) ;
2005-04-17 02:20:36 +04:00
unsigned int sum = 0 ;
2005-07-30 09:59:18 +04:00
struct zonelist * zonelist = pgdat - > node_zonelists + offset ;
struct zone * * zonep = zonelist - > zones ;
struct zone * zone ;
2005-04-17 02:20:36 +04:00
2005-07-30 09:59:18 +04:00
for ( zone = * zonep + + ; zone ; zone = * zonep + + ) {
unsigned long size = zone - > present_pages ;
unsigned long high = zone - > pages_high ;
if ( size > high )
sum + = size - high ;
2005-04-17 02:20:36 +04:00
}
return sum ;
}
/*
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
*/
unsigned int nr_free_buffer_pages ( void )
{
2005-10-21 10:55:38 +04:00
return nr_free_zone_pages ( gfp_zone ( GFP_USER ) ) ;
2005-04-17 02:20:36 +04:00
}
/*
* Amount of free RAM allocatable within all zones
*/
unsigned int nr_free_pagecache_pages ( void )
{
2005-10-21 10:55:38 +04:00
return nr_free_zone_pages ( gfp_zone ( GFP_HIGHUSER ) ) ;
2005-04-17 02:20:36 +04:00
}
# ifdef CONFIG_NUMA
static void show_node ( struct zone * zone )
{
printk ( " Node %d " , zone - > zone_pgdat - > node_id ) ;
}
# else
# define show_node(zone) do { } while (0)
# endif
void si_meminfo ( struct sysinfo * val )
{
val - > totalram = totalram_pages ;
val - > sharedram = 0 ;
val - > freeram = nr_free_pages ( ) ;
val - > bufferram = nr_blockdev_pages ( ) ;
val - > totalhigh = totalhigh_pages ;
val - > freehigh = nr_free_highpages ( ) ;
val - > mem_unit = PAGE_SIZE ;
}
EXPORT_SYMBOL ( si_meminfo ) ;
# ifdef CONFIG_NUMA
void si_meminfo_node ( struct sysinfo * val , int nid )
{
pg_data_t * pgdat = NODE_DATA ( nid ) ;
val - > totalram = pgdat - > node_present_pages ;
val - > freeram = nr_free_pages_pgdat ( pgdat ) ;
2006-09-26 10:31:12 +04:00
# ifdef CONFIG_HIGHMEM
2005-04-17 02:20:36 +04:00
val - > totalhigh = pgdat - > node_zones [ ZONE_HIGHMEM ] . present_pages ;
val - > freehigh = pgdat - > node_zones [ ZONE_HIGHMEM ] . free_pages ;
2006-09-26 10:31:12 +04:00
# else
val - > totalhigh = 0 ;
val - > freehigh = 0 ;
# endif
2005-04-17 02:20:36 +04:00
val - > mem_unit = PAGE_SIZE ;
}
# endif
# define K(x) ((x) << (PAGE_SHIFT-10))
/*
* Show free area list ( used inside shift_scroll - lock stuff )
* We also calculate the percentage fragmentation . We do this by counting the
* memory on each free list with the exception of the first item on the list .
*/
void show_free_areas ( void )
{
int cpu , temperature ;
unsigned long active ;
unsigned long inactive ;
unsigned long free ;
struct zone * zone ;
for_each_zone ( zone ) {
show_node ( zone ) ;
printk ( " %s per-cpu: " , zone - > name ) ;
2006-01-06 11:11:15 +03:00
if ( ! populated_zone ( zone ) ) {
2005-04-17 02:20:36 +04:00
printk ( " empty \n " ) ;
continue ;
} else
printk ( " \n " ) ;
2005-11-10 23:45:56 +03:00
for_each_online_cpu ( cpu ) {
2005-04-17 02:20:36 +04:00
struct per_cpu_pageset * pageset ;
2005-06-22 04:14:47 +04:00
pageset = zone_pcp ( zone , cpu ) ;
2005-04-17 02:20:36 +04:00
for ( temperature = 0 ; temperature < 2 ; temperature + + )
2006-01-06 11:10:59 +03:00
printk ( " cpu %d %s: high %d, batch %d used:%d \n " ,
2005-04-17 02:20:36 +04:00
cpu ,
temperature ? " cold " : " hot " ,
pageset - > pcp [ temperature ] . high ,
2005-06-22 04:14:57 +04:00
pageset - > pcp [ temperature ] . batch ,
pageset - > pcp [ temperature ] . count ) ;
2005-04-17 02:20:36 +04:00
}
}
get_zone_counts ( & active , & inactive , & free ) ;
printk ( " Active:%lu inactive:%lu dirty:%lu writeback:%lu "
" unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu \n " ,
active ,
inactive ,
2006-06-30 12:55:39 +04:00
global_page_state ( NR_FILE_DIRTY ) ,
2006-06-30 12:55:40 +04:00
global_page_state ( NR_WRITEBACK ) ,
2006-06-30 12:55:40 +04:00
global_page_state ( NR_UNSTABLE_NFS ) ,
2005-04-17 02:20:36 +04:00
nr_free_pages ( ) ,
2006-06-30 12:55:38 +04:00
global_page_state ( NR_SLAB ) ,
2006-06-30 12:55:34 +04:00
global_page_state ( NR_FILE_MAPPED ) ,
2006-06-30 12:55:38 +04:00
global_page_state ( NR_PAGETABLE ) ) ;
2005-04-17 02:20:36 +04:00
for_each_zone ( zone ) {
int i ;
show_node ( zone ) ;
printk ( " %s "
" free:%lukB "
" min:%lukB "
" low:%lukB "
" high:%lukB "
" active:%lukB "
" inactive:%lukB "
" present:%lukB "
" pages_scanned:%lu "
" all_unreclaimable? %s "
" \n " ,
zone - > name ,
K ( zone - > free_pages ) ,
K ( zone - > pages_min ) ,
K ( zone - > pages_low ) ,
K ( zone - > pages_high ) ,
K ( zone - > nr_active ) ,
K ( zone - > nr_inactive ) ,
K ( zone - > present_pages ) ,
zone - > pages_scanned ,
( zone - > all_unreclaimable ? " yes " : " no " )
) ;
printk ( " lowmem_reserve[]: " ) ;
for ( i = 0 ; i < MAX_NR_ZONES ; i + + )
printk ( " %lu " , zone - > lowmem_reserve [ i ] ) ;
printk ( " \n " ) ;
}
for_each_zone ( zone ) {
2006-06-23 13:03:50 +04:00
unsigned long nr [ MAX_ORDER ] , flags , order , total = 0 ;
2005-04-17 02:20:36 +04:00
show_node ( zone ) ;
printk ( " %s: " , zone - > name ) ;
2006-01-06 11:11:15 +03:00
if ( ! populated_zone ( zone ) ) {
2005-04-17 02:20:36 +04:00
printk ( " empty \n " ) ;
continue ;
}
spin_lock_irqsave ( & zone - > lock , flags ) ;
for ( order = 0 ; order < MAX_ORDER ; order + + ) {
2006-06-23 13:03:50 +04:00
nr [ order ] = zone - > free_area [ order ] . nr_free ;
total + = nr [ order ] < < order ;
2005-04-17 02:20:36 +04:00
}
spin_unlock_irqrestore ( & zone - > lock , flags ) ;
2006-06-23 13:03:50 +04:00
for ( order = 0 ; order < MAX_ORDER ; order + + )
printk ( " %lu*%lukB " , nr [ order ] , K ( 1UL ) < < order ) ;
2005-04-17 02:20:36 +04:00
printk ( " = %lukB \n " , K ( total ) ) ;
}
show_swap_cache_info ( ) ;
}
/*
* Builds allocation fallback zone lists .
2006-01-06 11:11:16 +03:00
*
* Add all populated zones of a node to the zonelist .
2005-04-17 02:20:36 +04:00
*/
2006-06-23 13:03:09 +04:00
static int __meminit build_zonelists_node ( pg_data_t * pgdat ,
2006-01-06 11:11:19 +03:00
struct zonelist * zonelist , int nr_zones , int zone_type )
2005-04-17 02:20:36 +04:00
{
2006-01-06 11:11:16 +03:00
struct zone * zone ;
2006-09-26 10:31:12 +04:00
BUG_ON ( zone_type > = MAX_NR_ZONES ) ;
2006-01-06 11:11:18 +03:00
do {
2006-01-06 11:11:19 +03:00
zone = pgdat - > node_zones + zone_type ;
2006-01-06 11:11:16 +03:00
if ( populated_zone ( zone ) ) {
2006-01-06 11:11:19 +03:00
zonelist - > zones [ nr_zones + + ] = zone ;
check_highest_zone ( zone_type ) ;
2005-04-17 02:20:36 +04:00
}
2006-01-06 11:11:19 +03:00
zone_type - - ;
2006-01-06 11:11:18 +03:00
2006-01-06 11:11:19 +03:00
} while ( zone_type > = 0 ) ;
return nr_zones ;
2005-04-17 02:20:36 +04:00
}
2005-10-21 11:22:44 +04:00
static inline int highest_zone ( int zone_bits )
{
int res = ZONE_NORMAL ;
if ( zone_bits & ( __force int ) __GFP_HIGHMEM )
res = ZONE_HIGHMEM ;
2005-11-05 19:25:53 +03:00
if ( zone_bits & ( __force int ) __GFP_DMA32 )
res = ZONE_DMA32 ;
2005-10-21 11:22:44 +04:00
if ( zone_bits & ( __force int ) __GFP_DMA )
res = ZONE_DMA ;
return res ;
}
2005-04-17 02:20:36 +04:00
# ifdef CONFIG_NUMA
# define MAX_NODE_LOAD (num_online_nodes())
2006-06-23 13:03:09 +04:00
static int __meminitdata node_load [ MAX_NUMNODES ] ;
2005-04-17 02:20:36 +04:00
/**
2005-05-01 19:59:25 +04:00
* find_next_best_node - find the next node that should appear in a given node ' s fallback list
2005-04-17 02:20:36 +04:00
* @ node : node whose fallback list we ' re appending
* @ used_node_mask : nodemask_t of already used nodes
*
* We use a number of factors to determine which is the next node that should
* appear on a given node ' s fallback list . The node should not have appeared
* already in @ node ' s fallback list , and it should be the next closest node
* according to the distance array ( which contains arbitrary distance values
* from each node to each node in the system ) , and should also prefer nodes
* with no CPUs , since presumably they ' ll have very little allocation pressure
* on them otherwise .
* It returns - 1 if no node is found .
*/
2006-06-23 13:03:09 +04:00
static int __meminit find_next_best_node ( int node , nodemask_t * used_node_mask )
2005-04-17 02:20:36 +04:00
{
2006-02-17 22:38:21 +03:00
int n , val ;
2005-04-17 02:20:36 +04:00
int min_val = INT_MAX ;
int best_node = - 1 ;
2006-02-17 22:38:21 +03:00
/* Use the local node if we haven't already */
if ( ! node_isset ( node , * used_node_mask ) ) {
node_set ( node , * used_node_mask ) ;
return node ;
}
2005-04-17 02:20:36 +04:00
2006-02-17 22:38:21 +03:00
for_each_online_node ( n ) {
cpumask_t tmp ;
2005-04-17 02:20:36 +04:00
/* Don't want a node to appear more than once */
if ( node_isset ( n , * used_node_mask ) )
continue ;
/* Use the distance array to find the distance */
val = node_distance ( node , n ) ;
2006-02-17 22:38:21 +03:00
/* Penalize nodes under us ("prefer the next node") */
val + = ( n < node ) ;
2005-04-17 02:20:36 +04:00
/* Give preference to headless and unused nodes */
tmp = node_to_cpumask ( n ) ;
if ( ! cpus_empty ( tmp ) )
val + = PENALTY_FOR_NODE_WITH_CPUS ;
/* Slight preference for less loaded node */
val * = ( MAX_NODE_LOAD * MAX_NUMNODES ) ;
val + = node_load [ n ] ;
if ( val < min_val ) {
min_val = val ;
best_node = n ;
}
}
if ( best_node > = 0 )
node_set ( best_node , * used_node_mask ) ;
return best_node ;
}
2006-06-23 13:03:09 +04:00
static void __meminit build_zonelists ( pg_data_t * pgdat )
2005-04-17 02:20:36 +04:00
{
int i , j , k , node , local_node ;
int prev_node , load ;
struct zonelist * zonelist ;
nodemask_t used_mask ;
/* initialize zonelists */
for ( i = 0 ; i < GFP_ZONETYPES ; i + + ) {
zonelist = pgdat - > node_zonelists + i ;
zonelist - > zones [ 0 ] = NULL ;
}
/* NUMA-aware ordering of nodes */
local_node = pgdat - > node_id ;
load = num_online_nodes ( ) ;
prev_node = local_node ;
nodes_clear ( used_mask ) ;
while ( ( node = find_next_best_node ( local_node , & used_mask ) ) > = 0 ) {
2006-01-19 04:42:31 +03:00
int distance = node_distance ( local_node , node ) ;
/*
* If another node is sufficiently far away then it is better
* to reclaim pages in a zone before going off node .
*/
if ( distance > RECLAIM_DISTANCE )
zone_reclaim_mode = 1 ;
2005-04-17 02:20:36 +04:00
/*
* We don ' t want to pressure a particular node .
* So adding penalty to the first node in same
* distance group to make it round - robin .
*/
2006-01-19 04:42:31 +03:00
if ( distance ! = node_distance ( local_node , prev_node ) )
2005-04-17 02:20:36 +04:00
node_load [ node ] + = load ;
prev_node = node ;
load - - ;
for ( i = 0 ; i < GFP_ZONETYPES ; i + + ) {
zonelist = pgdat - > node_zonelists + i ;
for ( j = 0 ; zonelist - > zones [ j ] ! = NULL ; j + + ) ;
2005-10-21 11:22:44 +04:00
k = highest_zone ( i ) ;
2005-04-17 02:20:36 +04:00
j = build_zonelists_node ( NODE_DATA ( node ) , zonelist , j , k ) ;
zonelist - > zones [ j ] = NULL ;
}
}
}
# else /* CONFIG_NUMA */
2006-06-23 13:03:09 +04:00
static void __meminit build_zonelists ( pg_data_t * pgdat )
2005-04-17 02:20:36 +04:00
{
int i , j , k , node , local_node ;
local_node = pgdat - > node_id ;
for ( i = 0 ; i < GFP_ZONETYPES ; i + + ) {
struct zonelist * zonelist ;
zonelist = pgdat - > node_zonelists + i ;
j = 0 ;
2005-10-21 11:22:44 +04:00
k = highest_zone ( i ) ;
2005-04-17 02:20:36 +04:00
j = build_zonelists_node ( pgdat , zonelist , j , k ) ;
/*
* Now we build the zonelist so that it contains the zones
* of all the other nodes .
* We don ' t want to pressure a particular node , so when
* building the zones for node N , we make sure that the
* zones coming right after the local ones are those from
* node N + 1 ( modulo N )
*/
for ( node = local_node + 1 ; node < MAX_NUMNODES ; node + + ) {
if ( ! node_online ( node ) )
continue ;
j = build_zonelists_node ( NODE_DATA ( node ) , zonelist , j , k ) ;
}
for ( node = 0 ; node < local_node ; node + + ) {
if ( ! node_online ( node ) )
continue ;
j = build_zonelists_node ( NODE_DATA ( node ) , zonelist , j , k ) ;
}
zonelist - > zones [ j ] = NULL ;
}
}
# endif /* CONFIG_NUMA */
2006-06-23 13:03:11 +04:00
/* return values int ....just for stop_machine_run() */
static int __meminit __build_all_zonelists ( void * dummy )
2005-04-17 02:20:36 +04:00
{
2006-06-23 13:03:11 +04:00
int nid ;
for_each_online_node ( nid )
build_zonelists ( NODE_DATA ( nid ) ) ;
return 0 ;
}
void __meminit build_all_zonelists ( void )
{
if ( system_state = = SYSTEM_BOOTING ) {
__build_all_zonelists ( 0 ) ;
cpuset_init_current_mems_allowed ( ) ;
} else {
/* we have to stop all cpus to guaranntee there is no user
of zonelist */
stop_machine_run ( __build_all_zonelists , NULL , NR_CPUS ) ;
/* cpuset refresh routine should be here */
}
2006-06-23 13:03:47 +04:00
vm_total_pages = nr_free_pagecache_pages ( ) ;
printk ( " Built %i zonelists. Total pages: %ld \n " ,
num_online_nodes ( ) , vm_total_pages ) ;
2005-04-17 02:20:36 +04:00
}
/*
* Helper functions to size the waitqueue hash table .
* Essentially these want to choose hash table sizes sufficiently
* large so that collisions trying to wait on pages are rare .
* But in fact , the number of active page waitqueues on typical
* systems is ridiculously low , less than 200. So this is even
* conservative , even though it seems large .
*
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
* waitqueues , i . e . the size of the waitq table given the number of pages .
*/
# define PAGES_PER_WAITQUEUE 256
2006-06-23 13:03:10 +04:00
# ifndef CONFIG_MEMORY_HOTPLUG
2006-06-23 13:03:08 +04:00
static inline unsigned long wait_table_hash_nr_entries ( unsigned long pages )
2005-04-17 02:20:36 +04:00
{
unsigned long size = 1 ;
pages / = PAGES_PER_WAITQUEUE ;
while ( size < pages )
size < < = 1 ;
/*
* Once we have dozens or even hundreds of threads sleeping
* on IO we ' ve got bigger problems than wait queue collision .
* Limit the size of the wait table to a reasonable size .
*/
size = min ( size , 4096UL ) ;
return max ( size , 4UL ) ;
}
2006-06-23 13:03:10 +04:00
# else
/*
* A zone ' s size might be changed by hot - add , so it is not possible to determine
* a suitable size for its wait_table . So we use the maximum size now .
*
* The max wait table size = 4096 x sizeof ( wait_queue_head_t ) . ie :
*
* i386 ( preemption config ) : 4096 x 16 = 64 Kbyte .
* ia64 , x86 - 64 ( no preemption ) : 4096 x 20 = 80 Kbyte .
* ia64 , x86 - 64 ( preemption ) : 4096 x 24 = 96 Kbyte .
*
* The maximum entries are prepared when a zone ' s memory is ( 512 K + 256 ) pages
* or more by the traditional way . ( See above ) . It equals :
*
* i386 , x86 - 64 , powerpc ( 4 K page size ) : = ( 2 G + 1 M ) byte .
* ia64 ( 16 K page size ) : = ( 8 G + 4 M ) byte .
* powerpc ( 64 K page size ) : = ( 32 G + 16 M ) byte .
*/
static inline unsigned long wait_table_hash_nr_entries ( unsigned long pages )
{
return 4096UL ;
}
# endif
2005-04-17 02:20:36 +04:00
/*
* This is an integer logarithm so that shifts can be used later
* to extract the more random high bits from the multiplicative
* hash function before the remainder is taken .
*/
static inline unsigned long wait_table_bits ( unsigned long size )
{
return ffz ( ~ size ) ;
}
# define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
static void __init calculate_zone_totalpages ( struct pglist_data * pgdat ,
unsigned long * zones_size , unsigned long * zholes_size )
{
unsigned long realtotalpages , totalpages = 0 ;
int i ;
for ( i = 0 ; i < MAX_NR_ZONES ; i + + )
totalpages + = zones_size [ i ] ;
pgdat - > node_spanned_pages = totalpages ;
realtotalpages = totalpages ;
if ( zholes_size )
for ( i = 0 ; i < MAX_NR_ZONES ; i + + )
realtotalpages - = zholes_size [ i ] ;
pgdat - > node_present_pages = realtotalpages ;
printk ( KERN_DEBUG " On node %d totalpages: %lu \n " , pgdat - > node_id , realtotalpages ) ;
}
/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem ( ) once the early boot process is
* done . Non - atomic initialization , single - pass .
*/
2006-01-17 09:03:44 +03:00
void __meminit memmap_init_zone ( unsigned long size , int nid , unsigned long zone ,
2005-04-17 02:20:36 +04:00
unsigned long start_pfn )
{
struct page * page ;
2005-06-23 11:08:00 +04:00
unsigned long end_pfn = start_pfn + size ;
unsigned long pfn ;
2005-04-17 02:20:36 +04:00
2006-01-12 12:05:24 +03:00
for ( pfn = start_pfn ; pfn < end_pfn ; pfn + + ) {
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:07:54 +04:00
if ( ! early_pfn_valid ( pfn ) )
continue ;
page = pfn_to_page ( pfn ) ;
set_page_links ( page , zone , nid , pfn ) ;
2006-03-22 11:08:40 +03:00
init_page_count ( page ) ;
2005-04-17 02:20:36 +04:00
reset_page_mapcount ( page ) ;
SetPageReserved ( page ) ;
INIT_LIST_HEAD ( & page - > lru ) ;
# ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if ( ! is_highmem_idx ( zone ) )
2005-06-28 01:36:28 +04:00
set_page_address ( page , __va ( pfn < < PAGE_SHIFT ) ) ;
2005-04-17 02:20:36 +04:00
# endif
}
}
void zone_init_free_lists ( struct pglist_data * pgdat , struct zone * zone ,
unsigned long size )
{
int order ;
for ( order = 0 ; order < MAX_ORDER ; order + + ) {
INIT_LIST_HEAD ( & zone - > free_area [ order ] . free_list ) ;
zone - > free_area [ order ] . nr_free = 0 ;
}
}
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:07:54 +04:00
# define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
void zonetable_add ( struct zone * zone , int nid , int zid , unsigned long pfn ,
unsigned long size )
{
unsigned long snum = pfn_to_section_nr ( pfn ) ;
unsigned long end = pfn_to_section_nr ( pfn + size ) ;
if ( FLAGS_HAS_NODE )
zone_table [ ZONETABLE_INDEX ( nid , zid ) ] = zone ;
else
for ( ; snum < = end ; snum + + )
zone_table [ ZONETABLE_INDEX ( snum , zid ) ] = zone ;
}
2005-04-17 02:20:36 +04:00
# ifndef __HAVE_ARCH_MEMMAP_INIT
# define memmap_init(size, nid, zone, start_pfn) \
memmap_init_zone ( ( size ) , ( nid ) , ( zone ) , ( start_pfn ) )
# endif
2006-02-01 14:04:44 +03:00
static int __cpuinit zone_batchsize ( struct zone * zone )
2005-06-22 04:14:47 +04:00
{
int batch ;
/*
* The per - cpu - pages pools are set to around 1000 th of the
2005-10-30 04:15:47 +03:00
* size of the zone . But no more than 1 / 2 of a meg .
2005-06-22 04:14:47 +04:00
*
* OK , so we don ' t know how big the cache is . So guess .
*/
batch = zone - > present_pages / 1024 ;
2005-10-30 04:15:47 +03:00
if ( batch * PAGE_SIZE > 512 * 1024 )
batch = ( 512 * 1024 ) / PAGE_SIZE ;
2005-06-22 04:14:47 +04:00
batch / = 4 ; /* We effectively *= 4 below */
if ( batch < 1 )
batch = 1 ;
/*
2005-12-04 05:55:25 +03:00
* Clamp the batch to a 2 ^ n - 1 value . Having a power
* of 2 value was found to be more likely to have
* suboptimal cache aliasing properties in some cases .
2005-06-22 04:14:47 +04:00
*
2005-12-04 05:55:25 +03:00
* For example if 2 tasks are alternately allocating
* batches of pages , one task can end up with a lot
* of pages of one half of the possible page colors
* and the other with pages of the other colors .
2005-06-22 04:14:47 +04:00
*/
2005-12-04 05:55:25 +03:00
batch = ( 1 < < ( fls ( batch + batch / 2 ) - 1 ) ) - 1 ;
2005-10-30 04:15:47 +03:00
2005-06-22 04:14:47 +04:00
return batch ;
}
2005-06-22 04:15:00 +04:00
inline void setup_pageset ( struct per_cpu_pageset * p , unsigned long batch )
{
struct per_cpu_pages * pcp ;
2005-10-26 12:58:59 +04:00
memset ( p , 0 , sizeof ( * p ) ) ;
2005-06-22 04:15:00 +04:00
pcp = & p - > pcp [ 0 ] ; /* hot */
pcp - > count = 0 ;
pcp - > high = 6 * batch ;
pcp - > batch = max ( 1UL , 1 * batch ) ;
INIT_LIST_HEAD ( & pcp - > list ) ;
pcp = & p - > pcp [ 1 ] ; /* cold*/
pcp - > count = 0 ;
pcp - > high = 2 * batch ;
2005-10-30 04:15:48 +03:00
pcp - > batch = max ( 1UL , batch / 2 ) ;
2005-06-22 04:15:00 +04:00
INIT_LIST_HEAD ( & pcp - > list ) ;
}
2006-01-08 12:00:40 +03:00
/*
* setup_pagelist_highmark ( ) sets the high water mark for hot per_cpu_pagelist
* to the value high for the pageset p .
*/
static void setup_pagelist_highmark ( struct per_cpu_pageset * p ,
unsigned long high )
{
struct per_cpu_pages * pcp ;
pcp = & p - > pcp [ 0 ] ; /* hot list */
pcp - > high = high ;
pcp - > batch = max ( 1UL , high / 4 ) ;
if ( ( high / 4 ) > ( PAGE_SHIFT * 8 ) )
pcp - > batch = PAGE_SHIFT * 8 ;
}
2005-06-22 04:14:47 +04:00
# ifdef CONFIG_NUMA
/*
2005-06-22 04:15:00 +04:00
* Boot pageset table . One per cpu which is going to be used for all
* zones and all nodes . The parameters will be set in such a way
* that an item put on a list will immediately be handed over to
* the buddy list . This is safe since pageset manipulation is done
* with interrupts disabled .
*
* Some NUMA counter updates may also be caught by the boot pagesets .
2005-06-23 07:26:07 +04:00
*
* The boot_pagesets must be kept even after bootup is complete for
* unused processors and / or zones . They do play a role for bootstrapping
* hotplugged processors .
*
* zoneinfo_show ( ) and maybe other functions do
* not check if the processor is online before following the pageset pointer .
* Other parts of the kernel may not check if the zone is available .
2005-06-22 04:15:00 +04:00
*/
2006-02-05 10:27:36 +03:00
static struct per_cpu_pageset boot_pageset [ NR_CPUS ] ;
2005-06-22 04:15:00 +04:00
/*
* Dynamically allocate memory for the
2005-06-22 04:14:47 +04:00
* per cpu pageset array in struct zone .
*/
2006-02-01 14:04:44 +03:00
static int __cpuinit process_zones ( int cpu )
2005-06-22 04:14:47 +04:00
{
struct zone * zone , * dzone ;
for_each_zone ( zone ) {
2006-01-08 12:00:41 +03:00
zone_pcp ( zone , cpu ) = kmalloc_node ( sizeof ( struct per_cpu_pageset ) ,
2005-06-22 04:14:47 +04:00
GFP_KERNEL , cpu_to_node ( cpu ) ) ;
2006-01-08 12:00:41 +03:00
if ( ! zone_pcp ( zone , cpu ) )
2005-06-22 04:14:47 +04:00
goto bad ;
2006-01-08 12:00:41 +03:00
setup_pageset ( zone_pcp ( zone , cpu ) , zone_batchsize ( zone ) ) ;
2006-01-08 12:00:40 +03:00
if ( percpu_pagelist_fraction )
setup_pagelist_highmark ( zone_pcp ( zone , cpu ) ,
( zone - > present_pages / percpu_pagelist_fraction ) ) ;
2005-06-22 04:14:47 +04:00
}
return 0 ;
bad :
for_each_zone ( dzone ) {
if ( dzone = = zone )
break ;
2006-01-08 12:00:41 +03:00
kfree ( zone_pcp ( dzone , cpu ) ) ;
zone_pcp ( dzone , cpu ) = NULL ;
2005-06-22 04:14:47 +04:00
}
return - ENOMEM ;
}
static inline void free_zone_pagesets ( int cpu )
{
struct zone * zone ;
for_each_zone ( zone ) {
struct per_cpu_pageset * pset = zone_pcp ( zone , cpu ) ;
2006-09-26 03:24:57 +04:00
/* Free per_cpu_pageset if it is slab allocated */
if ( pset ! = & boot_pageset [ cpu ] )
kfree ( pset ) ;
2005-06-22 04:14:47 +04:00
zone_pcp ( zone , cpu ) = NULL ;
}
}
2006-06-27 13:54:07 +04:00
static int __cpuinit pageset_cpuup_callback ( struct notifier_block * nfb ,
2005-06-22 04:14:47 +04:00
unsigned long action ,
void * hcpu )
{
int cpu = ( long ) hcpu ;
int ret = NOTIFY_OK ;
switch ( action ) {
case CPU_UP_PREPARE :
if ( process_zones ( cpu ) )
ret = NOTIFY_BAD ;
break ;
2005-11-05 19:25:53 +03:00
case CPU_UP_CANCELED :
2005-06-22 04:14:47 +04:00
case CPU_DEAD :
free_zone_pagesets ( cpu ) ;
break ;
default :
break ;
}
return ret ;
}
2006-06-27 13:54:09 +04:00
static struct notifier_block __cpuinitdata pageset_notifier =
2005-06-22 04:14:47 +04:00
{ & pageset_cpuup_callback , NULL , 0 } ;
2005-12-15 12:18:25 +03:00
void __init setup_per_cpu_pageset ( void )
2005-06-22 04:14:47 +04:00
{
int err ;
/* Initialize per_cpu_pageset for cpu 0.
* A cpuup callback will do this for every cpu
* as it comes online
*/
err = process_zones ( smp_processor_id ( ) ) ;
BUG_ON ( err ) ;
register_cpu_notifier ( & pageset_notifier ) ;
}
# endif
2006-01-17 09:03:44 +03:00
static __meminit
2006-06-23 13:03:10 +04:00
int zone_wait_table_init ( struct zone * zone , unsigned long zone_size_pages )
2005-10-30 04:16:50 +03:00
{
int i ;
struct pglist_data * pgdat = zone - > zone_pgdat ;
2006-06-23 13:03:10 +04:00
size_t alloc_size ;
2005-10-30 04:16:50 +03:00
/*
* The per - page waitqueue mechanism uses hashed waitqueues
* per zone .
*/
2006-06-23 13:03:08 +04:00
zone - > wait_table_hash_nr_entries =
wait_table_hash_nr_entries ( zone_size_pages ) ;
zone - > wait_table_bits =
wait_table_bits ( zone - > wait_table_hash_nr_entries ) ;
2006-06-23 13:03:10 +04:00
alloc_size = zone - > wait_table_hash_nr_entries
* sizeof ( wait_queue_head_t ) ;
if ( system_state = = SYSTEM_BOOTING ) {
zone - > wait_table = ( wait_queue_head_t * )
alloc_bootmem_node ( pgdat , alloc_size ) ;
} else {
/*
* This case means that a zone whose size was 0 gets new memory
* via memory hot - add .
* But it may be the case that a new node was hot - added . In
* this case vmalloc ( ) will not be able to use this new node ' s
* memory - this wait_table must be initialized to use this new
* node itself as well .
* To use this new node ' s memory , further consideration will be
* necessary .
*/
zone - > wait_table = ( wait_queue_head_t * ) vmalloc ( alloc_size ) ;
}
if ( ! zone - > wait_table )
return - ENOMEM ;
2005-10-30 04:16:50 +03:00
2006-06-23 13:03:08 +04:00
for ( i = 0 ; i < zone - > wait_table_hash_nr_entries ; + + i )
2005-10-30 04:16:50 +03:00
init_waitqueue_head ( zone - > wait_table + i ) ;
2006-06-23 13:03:10 +04:00
return 0 ;
2005-10-30 04:16:50 +03:00
}
2006-01-17 09:03:44 +03:00
static __meminit void zone_pcp_init ( struct zone * zone )
2005-10-30 04:16:50 +03:00
{
int cpu ;
unsigned long batch = zone_batchsize ( zone ) ;
for ( cpu = 0 ; cpu < NR_CPUS ; cpu + + ) {
# ifdef CONFIG_NUMA
/* Early boot. Slab allocator not functional yet */
2006-01-08 12:00:41 +03:00
zone_pcp ( zone , cpu ) = & boot_pageset [ cpu ] ;
2005-10-30 04:16:50 +03:00
setup_pageset ( & boot_pageset [ cpu ] , 0 ) ;
# else
setup_pageset ( zone_pcp ( zone , cpu ) , batch ) ;
# endif
}
2006-03-25 14:06:49 +03:00
if ( zone - > present_pages )
printk ( KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu \n " ,
zone - > name , zone - > present_pages , batch ) ;
2005-10-30 04:16:50 +03:00
}
2006-06-23 13:03:10 +04:00
__meminit int init_currently_empty_zone ( struct zone * zone ,
unsigned long zone_start_pfn ,
unsigned long size )
2005-10-30 04:16:50 +03:00
{
struct pglist_data * pgdat = zone - > zone_pgdat ;
2006-06-23 13:03:10 +04:00
int ret ;
ret = zone_wait_table_init ( zone , size ) ;
if ( ret )
return ret ;
2005-10-30 04:16:50 +03:00
pgdat - > nr_zones = zone_idx ( zone ) + 1 ;
zone - > zone_start_pfn = zone_start_pfn ;
memmap_init ( size , pgdat - > node_id , zone_idx ( zone ) , zone_start_pfn ) ;
zone_init_free_lists ( pgdat , zone , zone - > spanned_pages ) ;
2006-06-23 13:03:10 +04:00
return 0 ;
2005-10-30 04:16:50 +03:00
}
2005-04-17 02:20:36 +04:00
/*
* Set up the zone data structures :
* - mark all pages reserved
* - mark all memory queues empty
* - clear the memory bitmaps
*/
2006-06-23 13:03:09 +04:00
static void __meminit free_area_init_core ( struct pglist_data * pgdat ,
2005-04-17 02:20:36 +04:00
unsigned long * zones_size , unsigned long * zholes_size )
{
2005-10-30 04:16:50 +03:00
unsigned long j ;
int nid = pgdat - > node_id ;
2005-04-17 02:20:36 +04:00
unsigned long zone_start_pfn = pgdat - > node_start_pfn ;
2006-06-23 13:03:10 +04:00
int ret ;
2005-04-17 02:20:36 +04:00
2005-10-30 04:16:52 +03:00
pgdat_resize_init ( pgdat ) ;
2005-04-17 02:20:36 +04:00
pgdat - > nr_zones = 0 ;
init_waitqueue_head ( & pgdat - > kswapd_wait ) ;
pgdat - > kswapd_max_order = 0 ;
for ( j = 0 ; j < MAX_NR_ZONES ; j + + ) {
struct zone * zone = pgdat - > node_zones + j ;
unsigned long size , realsize ;
realsize = size = zones_size [ j ] ;
if ( zholes_size )
realsize - = zholes_size [ j ] ;
2006-09-26 10:31:12 +04:00
if ( ! is_highmem_idx ( j ) )
2005-04-17 02:20:36 +04:00
nr_kernel_pages + = realsize ;
nr_all_pages + = realsize ;
zone - > spanned_pages = size ;
zone - > present_pages = realsize ;
2006-07-03 11:24:13 +04:00
# ifdef CONFIG_NUMA
zone - > min_unmapped_ratio = ( realsize * sysctl_min_unmapped_ratio )
/ 100 ;
# endif
2005-04-17 02:20:36 +04:00
zone - > name = zone_names [ j ] ;
spin_lock_init ( & zone - > lock ) ;
spin_lock_init ( & zone - > lru_lock ) ;
2005-10-30 04:16:53 +03:00
zone_seqlock_init ( zone ) ;
2005-04-17 02:20:36 +04:00
zone - > zone_pgdat = pgdat ;
zone - > free_pages = 0 ;
zone - > temp_priority = zone - > prev_priority = DEF_PRIORITY ;
2005-10-30 04:16:50 +03:00
zone_pcp_init ( zone ) ;
2005-04-17 02:20:36 +04:00
INIT_LIST_HEAD ( & zone - > active_list ) ;
INIT_LIST_HEAD ( & zone - > inactive_list ) ;
zone - > nr_scan_active = 0 ;
zone - > nr_scan_inactive = 0 ;
zone - > nr_active = 0 ;
zone - > nr_inactive = 0 ;
2006-06-30 12:55:33 +04:00
zap_zone_vm_stats ( zone ) ;
2005-09-04 02:54:51 +04:00
atomic_set ( & zone - > reclaim_in_progress , 0 ) ;
2005-04-17 02:20:36 +04:00
if ( ! size )
continue ;
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:07:54 +04:00
zonetable_add ( zone , nid , j , zone_start_pfn , size ) ;
2006-06-23 13:03:10 +04:00
ret = init_currently_empty_zone ( zone , zone_start_pfn , size ) ;
BUG_ON ( ret ) ;
2005-04-17 02:20:36 +04:00
zone_start_pfn + = size ;
}
}
static void __init alloc_node_mem_map ( struct pglist_data * pgdat )
{
/* Skip empty nodes */
if ( ! pgdat - > node_spanned_pages )
return ;
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:07:54 +04:00
# ifdef CONFIG_FLAT_NODE_MEM_MAP
2005-04-17 02:20:36 +04:00
/* ia64 gets its own node_mem_map, before this, without bootmem */
if ( ! pgdat - > node_mem_map ) {
2006-05-21 02:00:31 +04:00
unsigned long size , start , end ;
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:07:54 +04:00
struct page * map ;
2006-05-21 02:00:31 +04:00
/*
* The zone ' s endpoints aren ' t required to be MAX_ORDER
* aligned but the node_mem_map endpoints must be in order
* for the buddy allocator to function correctly .
*/
start = pgdat - > node_start_pfn & ~ ( MAX_ORDER_NR_PAGES - 1 ) ;
end = pgdat - > node_start_pfn + pgdat - > node_spanned_pages ;
end = ALIGN ( end , MAX_ORDER_NR_PAGES ) ;
size = ( end - start ) * sizeof ( struct page ) ;
2005-06-23 11:07:39 +04:00
map = alloc_remap ( pgdat - > node_id , size ) ;
if ( ! map )
map = alloc_bootmem_node ( pgdat , size ) ;
2006-05-21 02:00:31 +04:00
pgdat - > node_mem_map = map + ( pgdat - > node_start_pfn - start ) ;
2005-04-17 02:20:36 +04:00
}
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:07:54 +04:00
# ifdef CONFIG_FLATMEM
2005-04-17 02:20:36 +04:00
/*
* With no DISCONTIG , the global mem_map is just set as node 0 ' s
*/
if ( pgdat = = NODE_DATA ( 0 ) )
mem_map = NODE_DATA ( 0 ) - > node_mem_map ;
# endif
[PATCH] sparsemem memory model
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 11:07:54 +04:00
# endif /* CONFIG_FLAT_NODE_MEM_MAP */
2005-04-17 02:20:36 +04:00
}
2006-06-23 13:03:09 +04:00
void __meminit free_area_init_node ( int nid , struct pglist_data * pgdat ,
2005-04-17 02:20:36 +04:00
unsigned long * zones_size , unsigned long node_start_pfn ,
unsigned long * zholes_size )
{
pgdat - > node_id = nid ;
pgdat - > node_start_pfn = node_start_pfn ;
calculate_zone_totalpages ( pgdat , zones_size , zholes_size ) ;
alloc_node_mem_map ( pgdat ) ;
free_area_init_core ( pgdat , zones_size , zholes_size ) ;
}
2005-06-23 11:07:47 +04:00
# ifndef CONFIG_NEED_MULTIPLE_NODES
2005-04-17 02:20:36 +04:00
static bootmem_data_t contig_bootmem_data ;
struct pglist_data contig_page_data = { . bdata = & contig_bootmem_data } ;
EXPORT_SYMBOL ( contig_page_data ) ;
2005-06-23 11:07:47 +04:00
# endif
2005-04-17 02:20:36 +04:00
void __init free_area_init ( unsigned long * zones_size )
{
2005-06-23 11:07:47 +04:00
free_area_init_node ( 0 , NODE_DATA ( 0 ) , zones_size ,
2005-04-17 02:20:36 +04:00
__pa ( PAGE_OFFSET ) > > PAGE_SHIFT , NULL ) ;
}
# ifdef CONFIG_HOTPLUG_CPU
static int page_alloc_cpu_notify ( struct notifier_block * self ,
unsigned long action , void * hcpu )
{
int cpu = ( unsigned long ) hcpu ;
if ( action = = CPU_DEAD ) {
local_irq_disable ( ) ;
__drain_pages ( cpu ) ;
2006-06-30 12:55:45 +04:00
vm_events_fold_cpu ( cpu ) ;
2005-04-17 02:20:36 +04:00
local_irq_enable ( ) ;
2006-06-30 12:55:33 +04:00
refresh_cpu_vm_stats ( cpu ) ;
2005-04-17 02:20:36 +04:00
}
return NOTIFY_OK ;
}
# endif /* CONFIG_HOTPLUG_CPU */
void __init page_alloc_init ( void )
{
hotcpu_notifier ( page_alloc_cpu_notify , 0 ) ;
}
2006-04-11 09:52:59 +04:00
/*
* calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
* or min_free_kbytes changes .
*/
static void calculate_totalreserve_pages ( void )
{
struct pglist_data * pgdat ;
unsigned long reserve_pages = 0 ;
int i , j ;
for_each_online_pgdat ( pgdat ) {
for ( i = 0 ; i < MAX_NR_ZONES ; i + + ) {
struct zone * zone = pgdat - > node_zones + i ;
unsigned long max = 0 ;
/* Find valid and maximum lowmem_reserve in the zone */
for ( j = i ; j < MAX_NR_ZONES ; j + + ) {
if ( zone - > lowmem_reserve [ j ] > max )
max = zone - > lowmem_reserve [ j ] ;
}
/* we treat pages_high as reserved pages. */
max + = zone - > pages_high ;
if ( max > zone - > present_pages )
max = zone - > present_pages ;
reserve_pages + = max ;
}
}
totalreserve_pages = reserve_pages ;
}
2005-04-17 02:20:36 +04:00
/*
* setup_per_zone_lowmem_reserve - called whenever
* sysctl_lower_zone_reserve_ratio changes . Ensures that each zone
* has a correct pages reserved value , so an adequate number of
* pages are left in the zone after a successful __alloc_pages ( ) .
*/
static void setup_per_zone_lowmem_reserve ( void )
{
struct pglist_data * pgdat ;
int j , idx ;
2006-03-27 13:15:59 +04:00
for_each_online_pgdat ( pgdat ) {
2005-04-17 02:20:36 +04:00
for ( j = 0 ; j < MAX_NR_ZONES ; j + + ) {
struct zone * zone = pgdat - > node_zones + j ;
unsigned long present_pages = zone - > present_pages ;
zone - > lowmem_reserve [ j ] = 0 ;
for ( idx = j - 1 ; idx > = 0 ; idx - - ) {
struct zone * lower_zone ;
if ( sysctl_lowmem_reserve_ratio [ idx ] < 1 )
sysctl_lowmem_reserve_ratio [ idx ] = 1 ;
lower_zone = pgdat - > node_zones + idx ;
lower_zone - > lowmem_reserve [ j ] = present_pages /
sysctl_lowmem_reserve_ratio [ idx ] ;
present_pages + = lower_zone - > present_pages ;
}
}
}
2006-04-11 09:52:59 +04:00
/* update totalreserve_pages */
calculate_totalreserve_pages ( ) ;
2005-04-17 02:20:36 +04:00
}
/*
* setup_per_zone_pages_min - called when min_free_kbytes changes . Ensures
* that the pages_ { min , low , high } values for each zone are set correctly
* with respect to min_free_kbytes .
*/
2005-10-30 04:16:54 +03:00
void setup_per_zone_pages_min ( void )
2005-04-17 02:20:36 +04:00
{
unsigned long pages_min = min_free_kbytes > > ( PAGE_SHIFT - 10 ) ;
unsigned long lowmem_pages = 0 ;
struct zone * zone ;
unsigned long flags ;
/* Calculate total number of !ZONE_HIGHMEM pages */
for_each_zone ( zone ) {
if ( ! is_highmem ( zone ) )
lowmem_pages + = zone - > present_pages ;
}
for_each_zone ( zone ) {
2006-05-15 20:43:59 +04:00
u64 tmp ;
2005-04-17 02:20:36 +04:00
spin_lock_irqsave ( & zone - > lru_lock , flags ) ;
2006-05-15 20:43:59 +04:00
tmp = ( u64 ) pages_min * zone - > present_pages ;
do_div ( tmp , lowmem_pages ) ;
2005-04-17 02:20:36 +04:00
if ( is_highmem ( zone ) ) {
/*
2005-11-14 03:06:45 +03:00
* __GFP_HIGH and PF_MEMALLOC allocations usually don ' t
* need highmem pages , so cap pages_min to a small
* value here .
*
* The ( pages_high - pages_low ) and ( pages_low - pages_min )
* deltas controls asynch page reclaim , and so should
* not be capped for highmem .
2005-04-17 02:20:36 +04:00
*/
int min_pages ;
min_pages = zone - > present_pages / 1024 ;
if ( min_pages < SWAP_CLUSTER_MAX )
min_pages = SWAP_CLUSTER_MAX ;
if ( min_pages > 128 )
min_pages = 128 ;
zone - > pages_min = min_pages ;
} else {
2005-11-14 03:06:45 +03:00
/*
* If it ' s a lowmem zone , reserve a number of pages
2005-04-17 02:20:36 +04:00
* proportionate to the zone ' s size .
*/
2005-11-14 03:06:45 +03:00
zone - > pages_min = tmp ;
2005-04-17 02:20:36 +04:00
}
2006-05-15 20:43:59 +04:00
zone - > pages_low = zone - > pages_min + ( tmp > > 2 ) ;
zone - > pages_high = zone - > pages_min + ( tmp > > 1 ) ;
2005-04-17 02:20:36 +04:00
spin_unlock_irqrestore ( & zone - > lru_lock , flags ) ;
}
2006-04-11 09:52:59 +04:00
/* update totalreserve_pages */
calculate_totalreserve_pages ( ) ;
2005-04-17 02:20:36 +04:00
}
/*
* Initialise min_free_kbytes .
*
* For small machines we want it small ( 128 k min ) . For large machines
* we want it large ( 64 MB max ) . But it is not linear , because network
* bandwidth does not increase linearly with machine size . We use
*
* min_free_kbytes = 4 * sqrt ( lowmem_kbytes ) , for better accuracy :
* min_free_kbytes = sqrt ( lowmem_kbytes * 16 )
*
* which yields
*
* 16 MB : 512 k
* 32 MB : 724 k
* 64 MB : 1024 k
* 128 MB : 1448 k
* 256 MB : 2048 k
* 512 MB : 2896 k
* 1024 MB : 4096 k
* 2048 MB : 5792 k
* 4096 MB : 8192 k
* 8192 MB : 11584 k
* 16384 MB : 16384 k
*/
static int __init init_per_zone_pages_min ( void )
{
unsigned long lowmem_kbytes ;
lowmem_kbytes = nr_free_buffer_pages ( ) * ( PAGE_SIZE > > 10 ) ;
min_free_kbytes = int_sqrt ( lowmem_kbytes * 16 ) ;
if ( min_free_kbytes < 128 )
min_free_kbytes = 128 ;
if ( min_free_kbytes > 65536 )
min_free_kbytes = 65536 ;
setup_per_zone_pages_min ( ) ;
setup_per_zone_lowmem_reserve ( ) ;
return 0 ;
}
module_init ( init_per_zone_pages_min )
/*
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec ( ) so
* that we can call two helper functions whenever min_free_kbytes
* changes .
*/
int min_free_kbytes_sysctl_handler ( ctl_table * table , int write ,
struct file * file , void __user * buffer , size_t * length , loff_t * ppos )
{
proc_dointvec ( table , write , file , buffer , length , ppos ) ;
setup_per_zone_pages_min ( ) ;
return 0 ;
}
2006-07-03 11:24:13 +04:00
# ifdef CONFIG_NUMA
int sysctl_min_unmapped_ratio_sysctl_handler ( ctl_table * table , int write ,
struct file * file , void __user * buffer , size_t * length , loff_t * ppos )
{
struct zone * zone ;
int rc ;
rc = proc_dointvec_minmax ( table , write , file , buffer , length , ppos ) ;
if ( rc )
return rc ;
for_each_zone ( zone )
zone - > min_unmapped_ratio = ( zone - > present_pages *
sysctl_min_unmapped_ratio ) / 100 ;
return 0 ;
}
# endif
2005-04-17 02:20:36 +04:00
/*
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
* proc_dointvec ( ) so that we can call setup_per_zone_lowmem_reserve ( )
* whenever sysctl_lowmem_reserve_ratio changes .
*
* The reserve ratio obviously has absolutely no relation with the
* pages_min watermarks . The lowmem reserve ratio can only make sense
* if in function of the boot time zone sizes .
*/
int lowmem_reserve_ratio_sysctl_handler ( ctl_table * table , int write ,
struct file * file , void __user * buffer , size_t * length , loff_t * ppos )
{
proc_dointvec_minmax ( table , write , file , buffer , length , ppos ) ;
setup_per_zone_lowmem_reserve ( ) ;
return 0 ;
}
2006-01-08 12:00:40 +03:00
/*
* percpu_pagelist_fraction - changes the pcp - > high for each zone on each
* cpu . It is the fraction of total pages in each zone that a hot per cpu pagelist
* can have before it gets flushed back to buddy allocator .
*/
int percpu_pagelist_fraction_sysctl_handler ( ctl_table * table , int write ,
struct file * file , void __user * buffer , size_t * length , loff_t * ppos )
{
struct zone * zone ;
unsigned int cpu ;
int ret ;
ret = proc_dointvec_minmax ( table , write , file , buffer , length , ppos ) ;
if ( ! write | | ( ret = = - EINVAL ) )
return ret ;
for_each_zone ( zone ) {
for_each_online_cpu ( cpu ) {
unsigned long high ;
high = zone - > present_pages / percpu_pagelist_fraction ;
setup_pagelist_highmark ( zone_pcp ( zone , cpu ) , high ) ;
}
}
return 0 ;
}
2006-08-24 14:08:07 +04:00
int hashdist = HASHDIST_DEFAULT ;
2005-04-17 02:20:36 +04:00
# ifdef CONFIG_NUMA
static int __init set_hashdist ( char * str )
{
if ( ! str )
return 0 ;
hashdist = simple_strtoul ( str , & str , 0 ) ;
return 1 ;
}
__setup ( " hashdist= " , set_hashdist ) ;
# endif
/*
* allocate a large system hash table from bootmem
* - it is assumed that the hash table must contain an exact power - of - 2
* quantity of entries
* - limit is the number of hash buckets , not the total allocation size
*/
void * __init alloc_large_system_hash ( const char * tablename ,
unsigned long bucketsize ,
unsigned long numentries ,
int scale ,
int flags ,
unsigned int * _hash_shift ,
unsigned int * _hash_mask ,
unsigned long limit )
{
unsigned long long max = limit ;
unsigned long log2qty , size ;
void * table = NULL ;
/* allow the kernel cmdline to have a say */
if ( ! numentries ) {
/* round applicable memory size up to nearest megabyte */
numentries = ( flags & HASH_HIGHMEM ) ? nr_all_pages : nr_kernel_pages ;
numentries + = ( 1UL < < ( 20 - PAGE_SHIFT ) ) - 1 ;
numentries > > = 20 - PAGE_SHIFT ;
numentries < < = 20 - PAGE_SHIFT ;
/* limit to 1 bucket per 2^scale bytes of low memory */
if ( scale > PAGE_SHIFT )
numentries > > = ( scale - PAGE_SHIFT ) ;
else
numentries < < = ( PAGE_SHIFT - scale ) ;
}
2006-03-25 14:08:02 +03:00
numentries = roundup_pow_of_two ( numentries ) ;
2005-04-17 02:20:36 +04:00
/* limit allocation size to 1/16 total memory by default */
if ( max = = 0 ) {
max = ( ( unsigned long long ) nr_all_pages < < PAGE_SHIFT ) > > 4 ;
do_div ( max , bucketsize ) ;
}
if ( numentries > max )
numentries = max ;
log2qty = long_log2 ( numentries ) ;
do {
size = bucketsize < < log2qty ;
if ( flags & HASH_EARLY )
table = alloc_bootmem ( size ) ;
else if ( hashdist )
table = __vmalloc ( size , GFP_ATOMIC , PAGE_KERNEL ) ;
else {
unsigned long order ;
for ( order = 0 ; ( ( 1UL < < order ) < < PAGE_SHIFT ) < size ; order + + )
;
table = ( void * ) __get_free_pages ( GFP_ATOMIC , order ) ;
}
} while ( ! table & & size > PAGE_SIZE & & - - log2qty ) ;
if ( ! table )
panic ( " Failed to allocate %s hash table \n " , tablename ) ;
printk ( " %s hash table entries: %d (order: %d, %lu bytes) \n " ,
tablename ,
( 1U < < log2qty ) ,
long_log2 ( size ) - PAGE_SHIFT ,
size ) ;
if ( _hash_shift )
* _hash_shift = log2qty ;
if ( _hash_mask )
* _hash_mask = ( 1 < < log2qty ) - 1 ;
return table ;
}
2006-03-27 13:15:25 +04:00
# ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
struct page * pfn_to_page ( unsigned long pfn )
{
2006-06-23 13:03:12 +04:00
return __pfn_to_page ( pfn ) ;
2006-03-27 13:15:25 +04:00
}
unsigned long page_to_pfn ( struct page * page )
{
2006-06-23 13:03:12 +04:00
return __page_to_pfn ( page ) ;
2006-03-27 13:15:25 +04:00
}
EXPORT_SYMBOL ( pfn_to_page ) ;
EXPORT_SYMBOL ( page_to_pfn ) ;
# endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */