linux/tools/lib/bpf/libbpf_probes.c

359 lines
8.6 KiB
C
Raw Normal View History

tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/* Copyright (c) 2019 Netronome Systems, Inc. */
#include <errno.h>
tools: bpftool: add probes for eBPF helper functions Similarly to what was done for program types and map types, add a set of probes to test the availability of the different eBPF helper functions on the current system. For each known program type, all known helpers are tested, in order to establish a compatibility matrix. Output is provided as a set of lists of available helpers, one per program type. Sample output: # bpftool feature probe kernel ... Scanning eBPF helper functions... eBPF helpers supported for program type socket_filter: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... eBPF helpers supported for program type kprobe: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... # bpftool --json --pretty feature probe kernel { ... "helpers": { "socket_filter_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], "kprobe_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], ... } } v5: - In libbpf.map, move global symbol to the new LIBBPF_0.0.2 section. v4: - Use "enum bpf_func_id" instead of "__u32" in bpf_probe_helper() declaration for the type of the argument used to pass the id of the helper to probe. - Undef BPF_HELPER_MAKE_ENTRY after using it. v3: - Do not pass kernel version from bpftool to libbpf probes (kernel version for testing program with kprobes is retrieved directly from libbpf). - Dump one list of available helpers per program type (instead of one list of compatible program types per helper). v2: - Move probes from bpftool to libbpf. - Test all program types for each helper, print a list of working prog types for each helper. - Fall back on include/uapi/linux/bpf.h for names and ids of helpers. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:55 +03:00
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
#include <unistd.h>
tools: bpftool: add probes for eBPF helper functions Similarly to what was done for program types and map types, add a set of probes to test the availability of the different eBPF helper functions on the current system. For each known program type, all known helpers are tested, in order to establish a compatibility matrix. Output is provided as a set of lists of available helpers, one per program type. Sample output: # bpftool feature probe kernel ... Scanning eBPF helper functions... eBPF helpers supported for program type socket_filter: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... eBPF helpers supported for program type kprobe: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... # bpftool --json --pretty feature probe kernel { ... "helpers": { "socket_filter_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], "kprobe_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], ... } } v5: - In libbpf.map, move global symbol to the new LIBBPF_0.0.2 section. v4: - Use "enum bpf_func_id" instead of "__u32" in bpf_probe_helper() declaration for the type of the argument used to pass the id of the helper to probe. - Undef BPF_HELPER_MAKE_ENTRY after using it. v3: - Do not pass kernel version from bpftool to libbpf probes (kernel version for testing program with kprobes is retrieved directly from libbpf). - Dump one list of available helpers per program type (instead of one list of compatible program types per helper). v2: - Move probes from bpftool to libbpf. - Test all program types for each helper, print a list of working prog types for each helper. - Fall back on include/uapi/linux/bpf.h for names and ids of helpers. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:55 +03:00
#include <net/if.h>
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
#include <sys/utsname.h>
#include <linux/btf.h>
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
#include <linux/filter.h>
#include <linux/kernel.h>
#include "bpf.h"
#include "libbpf.h"
#include "libbpf_internal.h"
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
tools: bpftool: add probes for eBPF helper functions Similarly to what was done for program types and map types, add a set of probes to test the availability of the different eBPF helper functions on the current system. For each known program type, all known helpers are tested, in order to establish a compatibility matrix. Output is provided as a set of lists of available helpers, one per program type. Sample output: # bpftool feature probe kernel ... Scanning eBPF helper functions... eBPF helpers supported for program type socket_filter: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... eBPF helpers supported for program type kprobe: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... # bpftool --json --pretty feature probe kernel { ... "helpers": { "socket_filter_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], "kprobe_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], ... } } v5: - In libbpf.map, move global symbol to the new LIBBPF_0.0.2 section. v4: - Use "enum bpf_func_id" instead of "__u32" in bpf_probe_helper() declaration for the type of the argument used to pass the id of the helper to probe. - Undef BPF_HELPER_MAKE_ENTRY after using it. v3: - Do not pass kernel version from bpftool to libbpf probes (kernel version for testing program with kprobes is retrieved directly from libbpf). - Dump one list of available helpers per program type (instead of one list of compatible program types per helper). v2: - Move probes from bpftool to libbpf. - Test all program types for each helper, print a list of working prog types for each helper. - Fall back on include/uapi/linux/bpf.h for names and ids of helpers. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:55 +03:00
static bool grep(const char *buffer, const char *pattern)
{
return !!strstr(buffer, pattern);
}
static int get_vendor_id(int ifindex)
{
char ifname[IF_NAMESIZE], path[64], buf[8];
ssize_t len;
int fd;
if (!if_indextoname(ifindex, ifname))
return -1;
snprintf(path, sizeof(path), "/sys/class/net/%s/device/vendor", ifname);
fd = open(path, O_RDONLY | O_CLOEXEC);
tools: bpftool: add probes for eBPF helper functions Similarly to what was done for program types and map types, add a set of probes to test the availability of the different eBPF helper functions on the current system. For each known program type, all known helpers are tested, in order to establish a compatibility matrix. Output is provided as a set of lists of available helpers, one per program type. Sample output: # bpftool feature probe kernel ... Scanning eBPF helper functions... eBPF helpers supported for program type socket_filter: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... eBPF helpers supported for program type kprobe: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... # bpftool --json --pretty feature probe kernel { ... "helpers": { "socket_filter_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], "kprobe_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], ... } } v5: - In libbpf.map, move global symbol to the new LIBBPF_0.0.2 section. v4: - Use "enum bpf_func_id" instead of "__u32" in bpf_probe_helper() declaration for the type of the argument used to pass the id of the helper to probe. - Undef BPF_HELPER_MAKE_ENTRY after using it. v3: - Do not pass kernel version from bpftool to libbpf probes (kernel version for testing program with kprobes is retrieved directly from libbpf). - Dump one list of available helpers per program type (instead of one list of compatible program types per helper). v2: - Move probes from bpftool to libbpf. - Test all program types for each helper, print a list of working prog types for each helper. - Fall back on include/uapi/linux/bpf.h for names and ids of helpers. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:55 +03:00
if (fd < 0)
return -1;
len = read(fd, buf, sizeof(buf));
close(fd);
if (len < 0)
return -1;
if (len >= (ssize_t)sizeof(buf))
return -1;
buf[len] = '\0';
return strtol(buf, NULL, 0);
}
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
static int get_kernel_version(void)
{
int version, subversion, patchlevel;
struct utsname utsn;
/* Return 0 on failure, and attempt to probe with empty kversion */
if (uname(&utsn))
return 0;
if (sscanf(utsn.release, "%d.%d.%d",
&version, &subversion, &patchlevel) != 3)
return 0;
return (version << 16) + (subversion << 8) + patchlevel;
}
static void
probe_load(enum bpf_prog_type prog_type, const struct bpf_insn *insns,
size_t insns_cnt, char *buf, size_t buf_len, __u32 ifindex)
{
LIBBPF_OPTS(bpf_prog_load_opts, opts);
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
int fd;
switch (prog_type) {
case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
opts.expected_attach_type = BPF_CGROUP_INET4_CONNECT;
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
break;
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
opts.expected_attach_type = BPF_CGROUP_GETSOCKOPT;
break;
case BPF_PROG_TYPE_SK_LOOKUP:
opts.expected_attach_type = BPF_SK_LOOKUP;
break;
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
case BPF_PROG_TYPE_KPROBE:
opts.kern_version = get_kernel_version();
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
break;
case BPF_PROG_TYPE_UNSPEC:
case BPF_PROG_TYPE_SOCKET_FILTER:
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_TRACEPOINT:
case BPF_PROG_TYPE_XDP:
case BPF_PROG_TYPE_PERF_EVENT:
case BPF_PROG_TYPE_CGROUP_SKB:
case BPF_PROG_TYPE_CGROUP_SOCK:
case BPF_PROG_TYPE_LWT_IN:
case BPF_PROG_TYPE_LWT_OUT:
case BPF_PROG_TYPE_LWT_XMIT:
case BPF_PROG_TYPE_SOCK_OPS:
case BPF_PROG_TYPE_SK_SKB:
case BPF_PROG_TYPE_CGROUP_DEVICE:
case BPF_PROG_TYPE_SK_MSG:
case BPF_PROG_TYPE_RAW_TRACEPOINT:
case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
case BPF_PROG_TYPE_LWT_SEG6LOCAL:
case BPF_PROG_TYPE_LIRC_MODE2:
case BPF_PROG_TYPE_SK_REUSEPORT:
case BPF_PROG_TYPE_FLOW_DISSECTOR:
case BPF_PROG_TYPE_CGROUP_SYSCTL:
case BPF_PROG_TYPE_TRACING:
bpf: libbpf: Add STRUCT_OPS support This patch adds BPF STRUCT_OPS support to libbpf. The only sec_name convention is SEC(".struct_ops") to identify the struct_ops implemented in BPF, e.g. To implement a tcp_congestion_ops: SEC(".struct_ops") struct tcp_congestion_ops dctcp = { .init = (void *)dctcp_init, /* <-- a bpf_prog */ /* ... some more func prts ... */ .name = "bpf_dctcp", }; Each struct_ops is defined as a global variable under SEC(".struct_ops") as above. libbpf creates a map for each variable and the variable name is the map's name. Multiple struct_ops is supported under SEC(".struct_ops"). In the bpf_object__open phase, libbpf will look for the SEC(".struct_ops") section and find out what is the btf-type the struct_ops is implementing. Note that the btf-type here is referring to a type in the bpf_prog.o's btf. A "struct bpf_map" is added by bpf_object__add_map() as other maps do. It will then collect (through SHT_REL) where are the bpf progs that the func ptrs are referring to. No btf_vmlinux is needed in the open phase. In the bpf_object__load phase, the map-fields, which depend on the btf_vmlinux, are initialized (in bpf_map__init_kern_struct_ops()). It will also set the prog->type, prog->attach_btf_id, and prog->expected_attach_type. Thus, the prog's properties do not rely on its section name. [ Currently, the bpf_prog's btf-type ==> btf_vmlinux's btf-type matching process is as simple as: member-name match + btf-kind match + size match. If these matching conditions fail, libbpf will reject. The current targeting support is "struct tcp_congestion_ops" which most of its members are function pointers. The member ordering of the bpf_prog's btf-type can be different from the btf_vmlinux's btf-type. ] Then, all obj->maps are created as usual (in bpf_object__create_maps()). Once the maps are created and prog's properties are all set, the libbpf will proceed to load all the progs. bpf_map__attach_struct_ops() is added to register a struct_ops map to a kernel subsystem. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200109003514.3856730-1-kafai@fb.com
2020-01-09 03:35:14 +03:00
case BPF_PROG_TYPE_STRUCT_OPS:
case BPF_PROG_TYPE_EXT:
case BPF_PROG_TYPE_LSM:
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
default:
break;
}
opts.prog_ifindex = ifindex;
opts.log_buf = buf;
opts.log_size = buf_len;
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
fd = bpf_prog_load(prog_type, NULL, "GPL", insns, insns_cnt, NULL);
tools: bpftool: add probes for eBPF program types Introduce probes for supported BPF program types in libbpf, and call it from bpftool to test what types are available on the system. The probe simply consists in loading a very basic program of that type and see if the verifier complains or not. Sample output: # bpftool feature probe kernel ... Scanning eBPF program types... eBPF program_type socket_filter is available eBPF program_type kprobe is available eBPF program_type sched_cls is available ... # bpftool --json --pretty feature probe kernel { ... "program_types": { "have_socket_filter_prog_type": true, "have_kprobe_prog_type": true, "have_sched_cls_prog_type": true, ... } } v5: - In libbpf.map, move global symbol to a new LIBBPF_0.0.2 section. - Rename (non-API function) prog_load() as probe_load(). v3: - Get kernel version for checking kprobes availability from libbpf instead of from bpftool. Do not pass kernel_version as an argument when calling libbpf probes. - Use a switch with all enum values for setting specific program parameters just before probing, so that gcc complains at compile time (-Wswitch-enum) if new prog types were added to the kernel but libbpf was not updated. - Add a comment in libbpf.h about setrlimit() usage to allow many consecutive probe attempts. v2: - Move probes from bpftool to libbpf. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:53 +03:00
if (fd >= 0)
close(fd);
}
bool bpf_probe_prog_type(enum bpf_prog_type prog_type, __u32 ifindex)
{
struct bpf_insn insns[2] = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN()
};
if (ifindex && prog_type == BPF_PROG_TYPE_SCHED_CLS)
/* nfp returns -EINVAL on exit(0) with TC offload */
insns[0].imm = 2;
errno = 0;
probe_load(prog_type, insns, ARRAY_SIZE(insns), NULL, 0, ifindex);
return errno != EINVAL && errno != EOPNOTSUPP;
}
int libbpf__load_raw_btf(const char *raw_types, size_t types_len,
const char *str_sec, size_t str_len)
{
struct btf_header hdr = {
.magic = BTF_MAGIC,
.version = BTF_VERSION,
.hdr_len = sizeof(struct btf_header),
.type_len = types_len,
.str_off = types_len,
.str_len = str_len,
};
int btf_fd, btf_len;
__u8 *raw_btf;
btf_len = hdr.hdr_len + hdr.type_len + hdr.str_len;
raw_btf = malloc(btf_len);
if (!raw_btf)
return -ENOMEM;
memcpy(raw_btf, &hdr, sizeof(hdr));
memcpy(raw_btf + hdr.hdr_len, raw_types, hdr.type_len);
memcpy(raw_btf + hdr.hdr_len + hdr.type_len, str_sec, hdr.str_len);
btf_fd = bpf_load_btf(raw_btf, btf_len, NULL, 0, false);
free(raw_btf);
return btf_fd;
}
static int load_local_storage_btf(void)
{
const char strs[] = "\0bpf_spin_lock\0val\0cnt\0l";
/* struct bpf_spin_lock {
* int val;
* };
* struct val {
* int cnt;
* struct bpf_spin_lock l;
* };
*/
__u32 types[] = {
/* int */
BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
/* struct bpf_spin_lock */ /* [2] */
BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
BTF_MEMBER_ENC(15, 1, 0), /* int val; */
/* struct val */ /* [3] */
BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
};
return libbpf__load_raw_btf((char *)types, sizeof(types),
strs, sizeof(strs));
}
bool bpf_probe_map_type(enum bpf_map_type map_type, __u32 ifindex)
{
int key_size, value_size, max_entries, map_flags;
__u32 btf_key_type_id = 0, btf_value_type_id = 0;
struct bpf_create_map_attr attr = {};
int fd = -1, btf_fd = -1, fd_inner;
key_size = sizeof(__u32);
value_size = sizeof(__u32);
max_entries = 1;
map_flags = 0;
switch (map_type) {
case BPF_MAP_TYPE_STACK_TRACE:
value_size = sizeof(__u64);
break;
case BPF_MAP_TYPE_LPM_TRIE:
key_size = sizeof(__u64);
value_size = sizeof(__u64);
map_flags = BPF_F_NO_PREALLOC;
break;
case BPF_MAP_TYPE_CGROUP_STORAGE:
case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
key_size = sizeof(struct bpf_cgroup_storage_key);
value_size = sizeof(__u64);
max_entries = 0;
break;
case BPF_MAP_TYPE_QUEUE:
case BPF_MAP_TYPE_STACK:
key_size = 0;
break;
case BPF_MAP_TYPE_SK_STORAGE:
case BPF_MAP_TYPE_INODE_STORAGE:
case BPF_MAP_TYPE_TASK_STORAGE:
btf_key_type_id = 1;
btf_value_type_id = 3;
value_size = 8;
max_entries = 0;
map_flags = BPF_F_NO_PREALLOC;
btf_fd = load_local_storage_btf();
if (btf_fd < 0)
return false;
break;
libbpf: Add BPF ring buffer support Declaring and instantiating BPF ring buffer doesn't require any changes to libbpf, as it's just another type of maps. So using existing BTF-defined maps syntax with __uint(type, BPF_MAP_TYPE_RINGBUF) and __uint(max_elements, <size-of-ring-buf>) is all that's necessary to create and use BPF ring buffer. This patch adds BPF ring buffer consumer to libbpf. It is very similar to perf_buffer implementation in terms of API, but also attempts to fix some minor problems and inconveniences with existing perf_buffer API. ring_buffer support both single ring buffer use case (with just using ring_buffer__new()), as well as allows to add more ring buffers, each with its own callback and context. This allows to efficiently poll and consume multiple, potentially completely independent, ring buffers, using single epoll instance. The latter is actually a problem in practice for applications that are using multiple sets of perf buffers. They have to create multiple instances for struct perf_buffer and poll them independently or in a loop, each approach having its own problems (e.g., inability to use a common poll timeout). struct ring_buffer eliminates this problem by aggregating many independent ring buffer instances under the single "ring buffer manager". Second, perf_buffer's callback can't return error, so applications that need to stop polling due to error in data or data signalling the end, have to use extra mechanisms to signal that polling has to stop. ring_buffer's callback can return error, which will be passed through back to user code and can be acted upon appropariately. Two APIs allow to consume ring buffer data: - ring_buffer__poll(), which will wait for data availability notification and will consume data only from reported ring buffer(s); this API allows to efficiently use resources by reading data only when it becomes available; - ring_buffer__consume(), will attempt to read new records regardless of data availablity notification sub-system. This API is useful for cases when lowest latency is required, in expense of burning CPU resources. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200529075424.3139988-3-andriin@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 10:54:21 +03:00
case BPF_MAP_TYPE_RINGBUF:
key_size = 0;
value_size = 0;
max_entries = 4096;
break;
case BPF_MAP_TYPE_UNSPEC:
case BPF_MAP_TYPE_HASH:
case BPF_MAP_TYPE_ARRAY:
case BPF_MAP_TYPE_PROG_ARRAY:
case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
case BPF_MAP_TYPE_PERCPU_HASH:
case BPF_MAP_TYPE_PERCPU_ARRAY:
case BPF_MAP_TYPE_CGROUP_ARRAY:
case BPF_MAP_TYPE_LRU_HASH:
case BPF_MAP_TYPE_LRU_PERCPU_HASH:
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
case BPF_MAP_TYPE_HASH_OF_MAPS:
case BPF_MAP_TYPE_DEVMAP:
case BPF_MAP_TYPE_DEVMAP_HASH:
case BPF_MAP_TYPE_SOCKMAP:
case BPF_MAP_TYPE_CPUMAP:
case BPF_MAP_TYPE_XSKMAP:
case BPF_MAP_TYPE_SOCKHASH:
case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
bpf: libbpf: Add STRUCT_OPS support This patch adds BPF STRUCT_OPS support to libbpf. The only sec_name convention is SEC(".struct_ops") to identify the struct_ops implemented in BPF, e.g. To implement a tcp_congestion_ops: SEC(".struct_ops") struct tcp_congestion_ops dctcp = { .init = (void *)dctcp_init, /* <-- a bpf_prog */ /* ... some more func prts ... */ .name = "bpf_dctcp", }; Each struct_ops is defined as a global variable under SEC(".struct_ops") as above. libbpf creates a map for each variable and the variable name is the map's name. Multiple struct_ops is supported under SEC(".struct_ops"). In the bpf_object__open phase, libbpf will look for the SEC(".struct_ops") section and find out what is the btf-type the struct_ops is implementing. Note that the btf-type here is referring to a type in the bpf_prog.o's btf. A "struct bpf_map" is added by bpf_object__add_map() as other maps do. It will then collect (through SHT_REL) where are the bpf progs that the func ptrs are referring to. No btf_vmlinux is needed in the open phase. In the bpf_object__load phase, the map-fields, which depend on the btf_vmlinux, are initialized (in bpf_map__init_kern_struct_ops()). It will also set the prog->type, prog->attach_btf_id, and prog->expected_attach_type. Thus, the prog's properties do not rely on its section name. [ Currently, the bpf_prog's btf-type ==> btf_vmlinux's btf-type matching process is as simple as: member-name match + btf-kind match + size match. If these matching conditions fail, libbpf will reject. The current targeting support is "struct tcp_congestion_ops" which most of its members are function pointers. The member ordering of the bpf_prog's btf-type can be different from the btf_vmlinux's btf-type. ] Then, all obj->maps are created as usual (in bpf_object__create_maps()). Once the maps are created and prog's properties are all set, the libbpf will proceed to load all the progs. bpf_map__attach_struct_ops() is added to register a struct_ops map to a kernel subsystem. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200109003514.3856730-1-kafai@fb.com
2020-01-09 03:35:14 +03:00
case BPF_MAP_TYPE_STRUCT_OPS:
default:
break;
}
if (map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
/* TODO: probe for device, once libbpf has a function to create
* map-in-map for offload
*/
if (ifindex)
return false;
fd_inner = bpf_create_map(BPF_MAP_TYPE_HASH,
sizeof(__u32), sizeof(__u32), 1, 0);
if (fd_inner < 0)
return false;
fd = bpf_create_map_in_map(map_type, NULL, sizeof(__u32),
fd_inner, 1, 0);
close(fd_inner);
} else {
/* Note: No other restriction on map type probes for offload */
attr.map_type = map_type;
attr.key_size = key_size;
attr.value_size = value_size;
attr.max_entries = max_entries;
attr.map_flags = map_flags;
attr.map_ifindex = ifindex;
if (btf_fd >= 0) {
attr.btf_fd = btf_fd;
attr.btf_key_type_id = btf_key_type_id;
attr.btf_value_type_id = btf_value_type_id;
}
fd = bpf_create_map_xattr(&attr);
}
if (fd >= 0)
close(fd);
if (btf_fd >= 0)
close(btf_fd);
return fd >= 0;
}
tools: bpftool: add probes for eBPF helper functions Similarly to what was done for program types and map types, add a set of probes to test the availability of the different eBPF helper functions on the current system. For each known program type, all known helpers are tested, in order to establish a compatibility matrix. Output is provided as a set of lists of available helpers, one per program type. Sample output: # bpftool feature probe kernel ... Scanning eBPF helper functions... eBPF helpers supported for program type socket_filter: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... eBPF helpers supported for program type kprobe: - bpf_map_lookup_elem - bpf_map_update_elem - bpf_map_delete_elem ... # bpftool --json --pretty feature probe kernel { ... "helpers": { "socket_filter_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], "kprobe_available_helpers": ["bpf_map_lookup_elem", \ "bpf_map_update_elem","bpf_map_delete_elem", ... ], ... } } v5: - In libbpf.map, move global symbol to the new LIBBPF_0.0.2 section. v4: - Use "enum bpf_func_id" instead of "__u32" in bpf_probe_helper() declaration for the type of the argument used to pass the id of the helper to probe. - Undef BPF_HELPER_MAKE_ENTRY after using it. v3: - Do not pass kernel version from bpftool to libbpf probes (kernel version for testing program with kprobes is retrieved directly from libbpf). - Dump one list of available helpers per program type (instead of one list of compatible program types per helper). v2: - Move probes from bpftool to libbpf. - Test all program types for each helper, print a list of working prog types for each helper. - Fall back on include/uapi/linux/bpf.h for names and ids of helpers. - Remove C-style macros output from this patch. Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-17 18:27:55 +03:00
bool bpf_probe_helper(enum bpf_func_id id, enum bpf_prog_type prog_type,
__u32 ifindex)
{
struct bpf_insn insns[2] = {
BPF_EMIT_CALL(id),
BPF_EXIT_INSN()
};
char buf[4096] = {};
bool res;
probe_load(prog_type, insns, ARRAY_SIZE(insns), buf, sizeof(buf),
ifindex);
res = !grep(buf, "invalid func ") && !grep(buf, "unknown func ");
if (ifindex) {
switch (get_vendor_id(ifindex)) {
case 0x19ee: /* Netronome specific */
res = res && !grep(buf, "not supported by FW") &&
!grep(buf, "unsupported function id");
break;
default:
break;
}
}
return res;
}
/*
* Probe for availability of kernel commit (5.3):
*
* c04c0d2b968a ("bpf: increase complexity limit and maximum program size")
*/
bool bpf_probe_large_insn_limit(__u32 ifindex)
{
struct bpf_insn insns[BPF_MAXINSNS + 1];
int i;
for (i = 0; i < BPF_MAXINSNS; i++)
insns[i] = BPF_MOV64_IMM(BPF_REG_0, 1);
insns[BPF_MAXINSNS] = BPF_EXIT_INSN();
errno = 0;
probe_load(BPF_PROG_TYPE_SCHED_CLS, insns, ARRAY_SIZE(insns), NULL, 0,
ifindex);
return errno != E2BIG && errno != EINVAL;
}