2005-04-17 02:20:36 +04:00
In this document you will find information about:
- how to build external modules
2006-07-28 00:14:29 +04:00
- how to make your module use the kbuild infrastructure
2005-04-17 02:20:36 +04:00
- how kbuild will install a kernel
- how to install modules in a non-standard location
=== Table of Contents
=== 1 Introduction
=== 2 How to build external modules
--- 2.1 Building external modules
--- 2.2 Available targets
--- 2.3 Available options
--- 2.4 Preparing the kernel tree for module build
2006-01-25 09:13:18 +03:00
--- 2.5 Building separate files for a module
2005-04-17 02:20:36 +04:00
=== 3. Example commands
=== 4. Creating a kbuild file for an external module
=== 5. Include files
--- 5.1 How to include files from the kernel include dir
--- 5.2 External modules using an include/ dir
2006-01-06 22:33:41 +03:00
--- 5.3 External modules using several directories
2005-04-17 02:20:36 +04:00
=== 6. Module installation
--- 6.1 INSTALL_MOD_PATH
--- 6.2 INSTALL_MOD_DIR
2006-01-29 00:15:55 +03:00
=== 7. Module versioning & Module.symvers
2006-09-21 17:39:41 +04:00
--- 7.1 Symbols from the kernel (vmlinux + modules)
2006-01-29 00:15:55 +03:00
--- 7.2 Symbols and external modules
--- 7.3 Symbols from another external module
2005-04-17 02:20:36 +04:00
=== 8. Tips & Tricks
--- 8.1 Testing for CONFIG_FOO_BAR
=== 1. Introduction
kbuild includes functionality for building modules both
within the kernel source tree and outside the kernel source tree.
2006-07-28 00:14:29 +04:00
The latter is usually referred to as external or "out-of-tree"
modules and is used both during development and for modules that
are not planned to be included in the kernel tree.
2005-04-17 02:20:36 +04:00
What is covered within this file is mainly information to authors
2006-07-28 00:14:29 +04:00
of modules. The author of an external module should supply
a makefile that hides most of the complexity, so one only has to type
2005-11-22 04:23:08 +03:00
'make' to build the module. A complete example will be present in
2006-03-25 22:48:37 +03:00
chapter 4, "Creating a kbuild file for an external module".
2005-04-17 02:20:36 +04:00
=== 2. How to build external modules
kbuild offers functionality to build external modules, with the
prerequisite that there is a pre-built kernel available with full source.
A subset of the targets available when building the kernel is available
when building an external module.
--- 2.1 Building external modules
Use the following command to build an external module:
make -C <path-to-kernel> M=`pwd`
For the running kernel use:
make -C /lib/modules/`uname -r`/build M=`pwd`
2006-09-21 17:39:41 +04:00
For the above command to succeed, the kernel must have been
built with modules enabled.
2005-04-17 02:20:36 +04:00
To install the modules that were just built:
make -C <path-to-kernel> M=`pwd` modules_install
2006-09-21 17:39:41 +04:00
More complex examples will be shown later, the above should
be enough to get you started.
2005-04-17 02:20:36 +04:00
--- 2.2 Available targets
2005-11-22 04:23:08 +03:00
$KDIR refers to the path to the kernel source top-level directory
2005-04-17 02:20:36 +04:00
make -C $KDIR M=`pwd`
Will build the module(s) located in current directory.
All output files will be located in the same directory
as the module source.
No attempts are made to update the kernel source, and it is
a precondition that a successful make has been executed
for the kernel.
make -C $KDIR M=`pwd` modules
The modules target is implied when no target is given.
Same functionality as if no target was specified.
See description above.
2006-09-21 17:39:41 +04:00
make -C $KDIR M=`pwd` modules_install
2005-04-17 02:20:36 +04:00
Install the external module(s).
Installation default is in /lib/modules/<kernel-version>/extra,
2006-01-29 00:15:55 +03:00
but may be prefixed with INSTALL_MOD_PATH - see separate
chapter.
2005-04-17 02:20:36 +04:00
2006-09-21 17:39:41 +04:00
make -C $KDIR M=`pwd` clean
2005-04-17 02:20:36 +04:00
Remove all generated files for the module - the kernel
2005-11-22 04:23:08 +03:00
source directory is not modified.
2005-04-17 02:20:36 +04:00
make -C $KDIR M=`pwd` help
help will list the available target when building external
modules.
--- 2.3 Available options:
2005-11-22 04:23:08 +03:00
$KDIR refers to the path to the kernel source top-level directory
2005-04-17 02:20:36 +04:00
make -C $KDIR
Used to specify where to find the kernel source.
'$KDIR' represent the directory where the kernel source is.
Make will actually change directory to the specified directory
when executed but change back when finished.
make -C $KDIR M=`pwd`
M= is used to tell kbuild that an external module is
being built.
The option given to M= is the directory where the external
module (kbuild file) is located.
When an external module is being built only a subset of the
usual targets are available.
make -C $KDIR SUBDIRS=`pwd`
Same as M=. The SUBDIRS= syntax is kept for backwards
compatibility.
--- 2.4 Preparing the kernel tree for module build
To make sure the kernel contains the information required to
build external modules the target 'modules_prepare' must be used.
2006-09-21 17:39:41 +04:00
'module_prepare' exists solely as a simple way to prepare
a kernel source tree for building external modules.
2005-04-17 02:20:36 +04:00
Note: modules_prepare will not build Module.symvers even if
2006-09-21 17:39:41 +04:00
CONFIG_MODULEVERSIONING is set. Therefore a full kernel build
needs to be executed to make module versioning work.
2005-04-17 02:20:36 +04:00
2006-01-25 09:13:18 +03:00
--- 2.5 Building separate files for a module
2006-07-28 00:14:29 +04:00
It is possible to build single files which are part of a module.
2006-09-21 17:39:41 +04:00
This works equally well for the kernel, a module and even for
external modules.
2006-01-25 09:13:18 +03:00
Examples (module foo.ko, consist of bar.o, baz.o):
make -C $KDIR M=`pwd` bar.lst
make -C $KDIR M=`pwd` bar.o
make -C $KDIR M=`pwd` foo.ko
make -C $KDIR M=`pwd` /
2006-09-21 17:39:41 +04:00
2005-04-17 02:20:36 +04:00
=== 3. Example commands
This example shows the actual commands to be executed when building
an external module for the currently running kernel.
2006-07-28 00:14:29 +04:00
In the example below, the distribution is supposed to use the
2005-04-17 02:20:36 +04:00
facility to locate output files for a kernel compile in a different
directory than the kernel source - but the examples will also work
when the source and the output files are mixed in the same directory.
# Kernel source
/lib/modules/<kernel-version>/source -> /usr/src/linux-<version>
# Output from kernel compile
/lib/modules/<kernel-version>/build -> /usr/src/linux-<version>-up
Change to the directory where the kbuild file is located and execute
the following commands to build the module:
cd /home/user/src/module
make -C /usr/src/`uname -r`/source \
O=/lib/modules/`uname-r`/build \
M=`pwd`
2006-07-28 00:14:29 +04:00
Then, to install the module use the following command:
2005-04-17 02:20:36 +04:00
make -C /usr/src/`uname -r`/source \
O=/lib/modules/`uname-r`/build \
M=`pwd` \
modules_install
2006-09-21 17:39:41 +04:00
If you look closely you will see that this is the same command as
2005-04-17 02:20:36 +04:00
listed before - with the directories spelled out.
The above are rather long commands, and the following chapter
lists a few tricks to make it all easier.
=== 4. Creating a kbuild file for an external module
kbuild is the build system for the kernel, and external modules
must use kbuild to stay compatible with changes in the build system
and to pick up the right flags to gcc etc.
The kbuild file used as input shall follow the syntax described
in Documentation/kbuild/makefiles.txt. This chapter will introduce a few
more tricks to be used when dealing with external modules.
In the following a Makefile will be created for a module with the
following files:
8123_if.c
8123_if.h
8123_pci.c
8123_bin.o_shipped <= Binary blob
--- 4.1 Shared Makefile for module and kernel
An external module always includes a wrapper Makefile supporting
building the module using 'make' with no arguments.
The Makefile provided will most likely include additional
functionality such as test targets etc. and this part shall
be filtered away from kbuild since it may impact kbuild if
name clashes occurs.
Example 1:
--> filename: Makefile
ifneq ($(KERNELRELEASE),)
# kbuild part of makefile
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
else
# Normal Makefile
KERNELDIR := /lib/modules/`uname -r`/build
all::
2005-11-22 04:23:08 +03:00
$(MAKE) -C $(KERNELDIR) M=`pwd` $@
2005-04-17 02:20:36 +04:00
# Module specific targets
genbin:
2005-11-22 04:23:08 +03:00
echo "X" > 8123_bin.o_shipped
2005-04-17 02:20:36 +04:00
endif
2006-07-28 00:14:29 +04:00
In example 1, the check for KERNELRELEASE is used to separate
2005-04-17 02:20:36 +04:00
the two parts of the Makefile. kbuild will only see the two
assignments whereas make will see everything except the two
kbuild assignments.
In recent versions of the kernel, kbuild will look for a file named
Kbuild and as second option look for a file named Makefile.
Utilising the Kbuild file makes us split up the Makefile in example 1
into two files as shown in example 2:
Example 2:
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
--> filename: Makefile
KERNELDIR := /lib/modules/`uname -r`/build
all::
$(MAKE) -C $KERNELDIR M=`pwd` $@
# Module specific targets
genbin:
echo "X" > 8123_bin_shipped
2006-07-28 00:14:29 +04:00
In example 2, we are down to two fairly simple files and for simple
2005-04-17 02:20:36 +04:00
files as used in this example the split is questionable. But some
external modules use Makefiles of several hundred lines and here it
really pays off to separate the kbuild part from the rest.
Example 3 shows a backward compatible version.
Example 3:
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
--> filename: Makefile
ifneq ($(KERNELRELEASE),)
include Kbuild
else
# Normal Makefile
KERNELDIR := /lib/modules/`uname -r`/build
all::
$(MAKE) -C $KERNELDIR M=`pwd` $@
# Module specific targets
genbin:
echo "X" > 8123_bin_shipped
endif
2006-07-28 00:14:29 +04:00
The trick here is to include the Kbuild file from Makefile, so
if an older version of kbuild picks up the Makefile, the Kbuild
file will be included.
2005-04-17 02:20:36 +04:00
--- 4.2 Binary blobs included in a module
Some external modules needs to include a .o as a blob. kbuild
has support for this, but requires the blob file to be named
<filename>_shipped. In our example the blob is named
8123_bin.o_shipped and when the kbuild rules kick in the file
8123_bin.o is created as a simple copy off the 8213_bin.o_shipped file
with the _shipped part stripped of the filename.
This allows the 8123_bin.o filename to be used in the assignment to
the module.
Example 4:
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
2006-07-28 00:14:29 +04:00
In example 4, there is no distinction between the ordinary .c/.h files
2005-04-17 02:20:36 +04:00
and the binary file. But kbuild will pick up different rules to create
the .o file.
=== 5. Include files
2006-07-28 00:14:29 +04:00
Include files are a necessity when a .c file uses something from other .c
files (not strictly in the sense of C, but if good programming practice is
used). Any module that consists of more than one .c file will have a .h file
2006-09-21 17:39:41 +04:00
for one of the .c files.
2006-07-28 00:14:29 +04:00
- If the .h file only describes a module internal interface, then the .h file
2005-04-17 02:20:36 +04:00
shall be placed in the same directory as the .c files.
- If the .h files describe an interface used by other parts of the kernel
located in different directories, the .h files shall be located in
include/linux/ or other include/ directories as appropriate.
One exception for this rule is larger subsystems that have their own directory
under include/ such as include/scsi. Another exception is arch-specific
.h files which are located under include/asm-$(ARCH)/*.
External modules have a tendency to locate include files in a separate include/
2006-07-28 00:14:29 +04:00
directory and therefore need to deal with this in their kbuild file.
2005-04-17 02:20:36 +04:00
--- 5.1 How to include files from the kernel include dir
2006-07-28 00:14:29 +04:00
When a module needs to include a file from include/linux/, then one
2005-04-17 02:20:36 +04:00
just uses:
#include <linux/modules.h>
kbuild will make sure to add options to gcc so the relevant
directories are searched.
Likewise for .h files placed in the same directory as the .c file.
#include "8123_if.h"
will do the job.
--- 5.2 External modules using an include/ dir
External modules often locate their .h files in a separate include/
directory although this is not usual kernel style. When an external
module uses an include/ dir then kbuild needs to be told so.
The trick here is to use either EXTRA_CFLAGS (take effect for all .c
files) or CFLAGS_$F.o (take effect only for a single file).
2006-07-28 00:14:29 +04:00
In our example, if we move 8123_if.h to a subdirectory named include/
2005-04-17 02:20:36 +04:00
the resulting Kbuild file would look like:
--> filename: Kbuild
obj-m := 8123.o
EXTRA_CFLAGS := -Iinclude
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
2005-11-22 04:23:08 +03:00
Note that in the assignment there is no space between -I and the path.
This is a kbuild limitation: there must be no space present.
2005-04-17 02:20:36 +04:00
2006-01-06 22:33:41 +03:00
--- 5.3 External modules using several directories
2006-07-28 00:14:29 +04:00
If an external module does not follow the usual kernel style, but
decides to spread files over several directories, then kbuild can
handle this too.
2006-01-06 22:33:41 +03:00
Consider the following example:
2006-09-21 17:39:41 +04:00
2006-01-06 22:33:41 +03:00
|
+- src/complex_main.c
| +- hal/hardwareif.c
| +- hal/include/hardwareif.h
+- include/complex.h
2006-09-21 17:39:41 +04:00
2006-07-28 00:14:29 +04:00
To build a single module named complex.ko, we then need the following
2006-01-06 22:33:41 +03:00
kbuild file:
Kbuild:
obj-m := complex.o
complex-y := src/complex_main.o
complex-y += src/hal/hardwareif.o
EXTRA_CFLAGS := -I$(src)/include
EXTRA_CFLAGS += -I$(src)src/hal/include
kbuild knows how to handle .o files located in another directory -
2006-07-28 00:14:29 +04:00
although this is NOT recommended practice. The syntax is to specify
2006-01-06 22:33:41 +03:00
the directory relative to the directory where the Kbuild file is
located.
2006-07-28 00:14:29 +04:00
To find the .h files, we have to explicitly tell kbuild where to look
for the .h files. When kbuild executes, the current directory is always
2006-01-06 22:33:41 +03:00
the root of the kernel tree (argument to -C) and therefore we have to
tell kbuild how to find the .h files using absolute paths.
$(src) will specify the absolute path to the directory where the
Kbuild file are located when being build as an external module.
Therefore -I$(src)/ is used to point out the directory of the Kbuild
file and any additional path are just appended.
2005-04-17 02:20:36 +04:00
=== 6. Module installation
2005-11-22 04:23:08 +03:00
Modules which are included in the kernel are installed in the directory:
2005-04-17 02:20:36 +04:00
/lib/modules/$(KERNELRELEASE)/kernel
External modules are installed in the directory:
/lib/modules/$(KERNELRELEASE)/extra
--- 6.1 INSTALL_MOD_PATH
2006-07-28 00:14:29 +04:00
Above are the default directories, but as always, some level of
2005-04-17 02:20:36 +04:00
customization is possible. One can prefix the path using the variable
INSTALL_MOD_PATH:
$ make INSTALL_MOD_PATH=/frodo modules_install
=> Install dir: /frodo/lib/modules/$(KERNELRELEASE)/kernel
INSTALL_MOD_PATH may be set as an ordinary shell variable or as in the
2006-07-28 00:14:29 +04:00
example above, can be specified on the command line when calling make.
2005-04-17 02:20:36 +04:00
INSTALL_MOD_PATH has effect both when installing modules included in
the kernel as well as when installing external modules.
--- 6.2 INSTALL_MOD_DIR
2006-07-28 00:14:29 +04:00
When installing external modules they are by default installed to a
2005-04-17 02:20:36 +04:00
directory under /lib/modules/$(KERNELRELEASE)/extra, but one may wish
to locate modules for a specific functionality in a separate
2006-07-28 00:14:29 +04:00
directory. For this purpose, one can use INSTALL_MOD_DIR to specify an
alternative name to 'extra'.
2005-04-17 02:20:36 +04:00
$ make INSTALL_MOD_DIR=gandalf -C KERNELDIR \
M=`pwd` modules_install
=> Install dir: /lib/modules/$(KERNELRELEASE)/gandalf
2006-01-29 00:15:55 +03:00
=== 7. Module versioning & Module.symvers
2005-04-17 02:20:36 +04:00
2005-11-22 04:23:08 +03:00
Module versioning is enabled by the CONFIG_MODVERSIONS tag.
2005-04-17 02:20:36 +04:00
Module versioning is used as a simple ABI consistency check. The Module
versioning creates a CRC value of the full prototype for an exported symbol and
when a module is loaded/used then the CRC values contained in the kernel are
2006-07-28 00:14:29 +04:00
compared with similar values in the module. If they are not equal, then the
2005-04-17 02:20:36 +04:00
kernel refuses to load the module.
2006-01-29 00:15:55 +03:00
Module.symvers contains a list of all exported symbols from a kernel build.
2005-04-17 02:20:36 +04:00
2006-01-29 00:15:55 +03:00
--- 7.1 Symbols fron the kernel (vmlinux + modules)
2006-07-28 00:14:29 +04:00
During a kernel build, a file named Module.symvers will be generated.
2006-01-29 00:15:55 +03:00
Module.symvers contains all exported symbols from the kernel and
2006-07-28 00:14:29 +04:00
compiled modules. For each symbols, the corresponding CRC value
2006-01-29 00:15:55 +03:00
is stored too.
The syntax of the Module.symvers file is:
<CRC> <Symbol> <module>
Sample:
0x2d036834 scsi_remove_host drivers/scsi/scsi_mod
2006-09-21 17:39:41 +04:00
For a kernel build without CONFIG_MODVERSIONS enabled, the crc
2006-01-29 00:15:55 +03:00
would read: 0x00000000
2006-07-28 00:14:29 +04:00
Module.symvers serves two purposes:
1) It lists all exported symbols both from vmlinux and all modules
2006-09-21 17:39:41 +04:00
2) It lists the CRC if CONFIG_MODVERSIONS is enabled
2006-01-29 00:15:55 +03:00
--- 7.2 Symbols and external modules
2006-07-28 00:14:29 +04:00
When building an external module, the build system needs access to
2006-01-29 00:15:55 +03:00
the symbols from the kernel to check if all external symbols are
defined. This is done in the MODPOST step and to obtain all
2006-07-28 00:14:29 +04:00
symbols, modpost reads Module.symvers from the kernel.
2006-01-29 00:15:55 +03:00
If a Module.symvers file is present in the directory where
2006-07-28 00:14:29 +04:00
the external module is being built, this file will be read too.
During the MODPOST step, a new Module.symvers file will be written
containing all exported symbols that were not defined in the kernel.
2006-09-21 17:39:41 +04:00
2006-01-29 00:15:55 +03:00
--- 7.3 Symbols from another external module
2006-07-28 00:14:29 +04:00
Sometimes, an external module uses exported symbols from another
2006-01-29 00:15:55 +03:00
external module. Kbuild needs to have full knowledge on all symbols
to avoid spitting out warnings about undefined symbols.
Two solutions exist to let kbuild know all symbols of more than
one external module.
The method with a top-level kbuild file is recommended but may be
impractical in certain situations.
Use a top-level Kbuild file
2006-07-28 00:14:29 +04:00
If you have two modules: 'foo' and 'bar', and 'foo' needs
symbols from 'bar', then one can use a common top-level kbuild
file so both modules are compiled in same build.
2006-01-29 00:15:55 +03:00
Consider following directory layout:
./foo/ <= contains the foo module
./bar/ <= contains the bar module
The top-level Kbuild file would then look like:
2006-09-21 17:39:41 +04:00
2006-01-29 00:15:55 +03:00
#./Kbuild: (this file may also be named Makefile)
obj-y := foo/ bar/
Executing:
make -C $KDIR M=`pwd`
will then do the expected and compile both modules with full
knowledge on symbols from both modules.
Use an extra Module.symvers file
2006-07-28 00:14:29 +04:00
When an external module is built, a Module.symvers file is
2006-01-29 00:15:55 +03:00
generated containing all exported symbols which are not
defined in the kernel.
2006-07-28 00:14:29 +04:00
To get access to symbols from module 'bar', one can copy the
2006-01-29 00:15:55 +03:00
Module.symvers file from the compilation of the 'bar' module
2006-07-28 00:14:29 +04:00
to the directory where the 'foo' module is built.
During the module build, kbuild will read the Module.symvers
2006-01-29 00:15:55 +03:00
file in the directory of the external module and when the
2006-07-28 00:14:29 +04:00
build is finished, a new Module.symvers file is created
2006-01-29 00:15:55 +03:00
containing the sum of all symbols defined and not part of the
kernel.
2006-09-21 17:39:41 +04:00
2005-04-17 02:20:36 +04:00
=== 8. Tips & Tricks
--- 8.1 Testing for CONFIG_FOO_BAR
2006-07-28 00:14:29 +04:00
Modules often need to check for certain CONFIG_ options to decide if
2005-04-17 02:20:36 +04:00
a specific feature shall be included in the module. When kbuild is used
this is done by referencing the CONFIG_ variable directly.
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o bitmap.o dir.o
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o
External modules have traditionally used grep to check for specific
CONFIG_ settings directly in .config. This usage is broken.
2006-07-28 00:14:29 +04:00
As introduced before, external modules shall use kbuild when building
and therefore can use the same methods as in-kernel modules when
testing for CONFIG_ definitions.
2005-04-17 02:20:36 +04:00