408 lines
9.8 KiB
C
408 lines
9.8 KiB
C
|
/*
|
||
|
* Xen time implementation.
|
||
|
*
|
||
|
* This is implemented in terms of a clocksource driver which uses
|
||
|
* the hypervisor clock as a nanosecond timebase, and a clockevent
|
||
|
* driver which uses the hypervisor's timer mechanism.
|
||
|
*
|
||
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
||
|
*/
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/clocksource.h>
|
||
|
#include <linux/clockchips.h>
|
||
|
|
||
|
#include <asm/xen/hypervisor.h>
|
||
|
#include <asm/xen/hypercall.h>
|
||
|
|
||
|
#include <xen/events.h>
|
||
|
#include <xen/interface/xen.h>
|
||
|
#include <xen/interface/vcpu.h>
|
||
|
|
||
|
#include "xen-ops.h"
|
||
|
|
||
|
#define XEN_SHIFT 22
|
||
|
|
||
|
/* Xen may fire a timer up to this many ns early */
|
||
|
#define TIMER_SLOP 100000
|
||
|
|
||
|
/* These are perodically updated in shared_info, and then copied here. */
|
||
|
struct shadow_time_info {
|
||
|
u64 tsc_timestamp; /* TSC at last update of time vals. */
|
||
|
u64 system_timestamp; /* Time, in nanosecs, since boot. */
|
||
|
u32 tsc_to_nsec_mul;
|
||
|
int tsc_shift;
|
||
|
u32 version;
|
||
|
};
|
||
|
|
||
|
static DEFINE_PER_CPU(struct shadow_time_info, shadow_time);
|
||
|
|
||
|
unsigned long xen_cpu_khz(void)
|
||
|
{
|
||
|
u64 cpu_khz = 1000000ULL << 32;
|
||
|
const struct vcpu_time_info *info =
|
||
|
&HYPERVISOR_shared_info->vcpu_info[0].time;
|
||
|
|
||
|
do_div(cpu_khz, info->tsc_to_system_mul);
|
||
|
if (info->tsc_shift < 0)
|
||
|
cpu_khz <<= -info->tsc_shift;
|
||
|
else
|
||
|
cpu_khz >>= info->tsc_shift;
|
||
|
|
||
|
return cpu_khz;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reads a consistent set of time-base values from Xen, into a shadow data
|
||
|
* area.
|
||
|
*/
|
||
|
static void get_time_values_from_xen(void)
|
||
|
{
|
||
|
struct vcpu_time_info *src;
|
||
|
struct shadow_time_info *dst;
|
||
|
|
||
|
preempt_disable();
|
||
|
|
||
|
/* src is shared memory with the hypervisor, so we need to
|
||
|
make sure we get a consistent snapshot, even in the face of
|
||
|
being preempted. */
|
||
|
src = &__get_cpu_var(xen_vcpu)->time;
|
||
|
dst = &__get_cpu_var(shadow_time);
|
||
|
|
||
|
do {
|
||
|
dst->version = src->version;
|
||
|
rmb(); /* fetch version before data */
|
||
|
dst->tsc_timestamp = src->tsc_timestamp;
|
||
|
dst->system_timestamp = src->system_time;
|
||
|
dst->tsc_to_nsec_mul = src->tsc_to_system_mul;
|
||
|
dst->tsc_shift = src->tsc_shift;
|
||
|
rmb(); /* test version after fetching data */
|
||
|
} while ((src->version & 1) | (dst->version ^ src->version));
|
||
|
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
|
||
|
* yielding a 64-bit result.
|
||
|
*/
|
||
|
static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift)
|
||
|
{
|
||
|
u64 product;
|
||
|
#ifdef __i386__
|
||
|
u32 tmp1, tmp2;
|
||
|
#endif
|
||
|
|
||
|
if (shift < 0)
|
||
|
delta >>= -shift;
|
||
|
else
|
||
|
delta <<= shift;
|
||
|
|
||
|
#ifdef __i386__
|
||
|
__asm__ (
|
||
|
"mul %5 ; "
|
||
|
"mov %4,%%eax ; "
|
||
|
"mov %%edx,%4 ; "
|
||
|
"mul %5 ; "
|
||
|
"xor %5,%5 ; "
|
||
|
"add %4,%%eax ; "
|
||
|
"adc %5,%%edx ; "
|
||
|
: "=A" (product), "=r" (tmp1), "=r" (tmp2)
|
||
|
: "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) );
|
||
|
#elif __x86_64__
|
||
|
__asm__ (
|
||
|
"mul %%rdx ; shrd $32,%%rdx,%%rax"
|
||
|
: "=a" (product) : "0" (delta), "d" ((u64)mul_frac) );
|
||
|
#else
|
||
|
#error implement me!
|
||
|
#endif
|
||
|
|
||
|
return product;
|
||
|
}
|
||
|
|
||
|
static u64 get_nsec_offset(struct shadow_time_info *shadow)
|
||
|
{
|
||
|
u64 now, delta;
|
||
|
rdtscll(now);
|
||
|
delta = now - shadow->tsc_timestamp;
|
||
|
return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift);
|
||
|
}
|
||
|
|
||
|
cycle_t xen_clocksource_read(void)
|
||
|
{
|
||
|
struct shadow_time_info *shadow = &get_cpu_var(shadow_time);
|
||
|
cycle_t ret;
|
||
|
|
||
|
get_time_values_from_xen();
|
||
|
|
||
|
ret = shadow->system_timestamp + get_nsec_offset(shadow);
|
||
|
|
||
|
put_cpu_var(shadow_time);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void xen_read_wallclock(struct timespec *ts)
|
||
|
{
|
||
|
const struct shared_info *s = HYPERVISOR_shared_info;
|
||
|
u32 version;
|
||
|
u64 delta;
|
||
|
struct timespec now;
|
||
|
|
||
|
/* get wallclock at system boot */
|
||
|
do {
|
||
|
version = s->wc_version;
|
||
|
rmb(); /* fetch version before time */
|
||
|
now.tv_sec = s->wc_sec;
|
||
|
now.tv_nsec = s->wc_nsec;
|
||
|
rmb(); /* fetch time before checking version */
|
||
|
} while ((s->wc_version & 1) | (version ^ s->wc_version));
|
||
|
|
||
|
delta = xen_clocksource_read(); /* time since system boot */
|
||
|
delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec;
|
||
|
|
||
|
now.tv_nsec = do_div(delta, NSEC_PER_SEC);
|
||
|
now.tv_sec = delta;
|
||
|
|
||
|
set_normalized_timespec(ts, now.tv_sec, now.tv_nsec);
|
||
|
}
|
||
|
|
||
|
unsigned long xen_get_wallclock(void)
|
||
|
{
|
||
|
struct timespec ts;
|
||
|
|
||
|
xen_read_wallclock(&ts);
|
||
|
|
||
|
return ts.tv_sec;
|
||
|
}
|
||
|
|
||
|
int xen_set_wallclock(unsigned long now)
|
||
|
{
|
||
|
/* do nothing for domU */
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static struct clocksource xen_clocksource __read_mostly = {
|
||
|
.name = "xen",
|
||
|
.rating = 400,
|
||
|
.read = xen_clocksource_read,
|
||
|
.mask = ~0,
|
||
|
.mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
|
||
|
.shift = XEN_SHIFT,
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
Xen clockevent implementation
|
||
|
|
||
|
Xen has two clockevent implementations:
|
||
|
|
||
|
The old timer_op one works with all released versions of Xen prior
|
||
|
to version 3.0.4. This version of the hypervisor provides a
|
||
|
single-shot timer with nanosecond resolution. However, sharing the
|
||
|
same event channel is a 100Hz tick which is delivered while the
|
||
|
vcpu is running. We don't care about or use this tick, but it will
|
||
|
cause the core time code to think the timer fired too soon, and
|
||
|
will end up resetting it each time. It could be filtered, but
|
||
|
doing so has complications when the ktime clocksource is not yet
|
||
|
the xen clocksource (ie, at boot time).
|
||
|
|
||
|
The new vcpu_op-based timer interface allows the tick timer period
|
||
|
to be changed or turned off. The tick timer is not useful as a
|
||
|
periodic timer because events are only delivered to running vcpus.
|
||
|
The one-shot timer can report when a timeout is in the past, so
|
||
|
set_next_event is capable of returning -ETIME when appropriate.
|
||
|
This interface is used when available.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
Get a hypervisor absolute time. In theory we could maintain an
|
||
|
offset between the kernel's time and the hypervisor's time, and
|
||
|
apply that to a kernel's absolute timeout. Unfortunately the
|
||
|
hypervisor and kernel times can drift even if the kernel is using
|
||
|
the Xen clocksource, because ntp can warp the kernel's clocksource.
|
||
|
*/
|
||
|
static s64 get_abs_timeout(unsigned long delta)
|
||
|
{
|
||
|
return xen_clocksource_read() + delta;
|
||
|
}
|
||
|
|
||
|
static void xen_timerop_set_mode(enum clock_event_mode mode,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
switch (mode) {
|
||
|
case CLOCK_EVT_MODE_PERIODIC:
|
||
|
/* unsupported */
|
||
|
WARN_ON(1);
|
||
|
break;
|
||
|
|
||
|
case CLOCK_EVT_MODE_ONESHOT:
|
||
|
break;
|
||
|
|
||
|
case CLOCK_EVT_MODE_UNUSED:
|
||
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
||
|
HYPERVISOR_set_timer_op(0); /* cancel timeout */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int xen_timerop_set_next_event(unsigned long delta,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
|
||
|
|
||
|
if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
|
||
|
BUG();
|
||
|
|
||
|
/* We may have missed the deadline, but there's no real way of
|
||
|
knowing for sure. If the event was in the past, then we'll
|
||
|
get an immediate interrupt. */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct clock_event_device xen_timerop_clockevent = {
|
||
|
.name = "xen",
|
||
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
||
|
|
||
|
.max_delta_ns = 0xffffffff,
|
||
|
.min_delta_ns = TIMER_SLOP,
|
||
|
|
||
|
.mult = 1,
|
||
|
.shift = 0,
|
||
|
.rating = 500,
|
||
|
|
||
|
.set_mode = xen_timerop_set_mode,
|
||
|
.set_next_event = xen_timerop_set_next_event,
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
static void xen_vcpuop_set_mode(enum clock_event_mode mode,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
|
||
|
switch (mode) {
|
||
|
case CLOCK_EVT_MODE_PERIODIC:
|
||
|
WARN_ON(1); /* unsupported */
|
||
|
break;
|
||
|
|
||
|
case CLOCK_EVT_MODE_ONESHOT:
|
||
|
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
|
||
|
BUG();
|
||
|
break;
|
||
|
|
||
|
case CLOCK_EVT_MODE_UNUSED:
|
||
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
||
|
if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
|
||
|
HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
|
||
|
BUG();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int xen_vcpuop_set_next_event(unsigned long delta,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
struct vcpu_set_singleshot_timer single;
|
||
|
int ret;
|
||
|
|
||
|
WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
|
||
|
|
||
|
single.timeout_abs_ns = get_abs_timeout(delta);
|
||
|
single.flags = VCPU_SSHOTTMR_future;
|
||
|
|
||
|
ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
|
||
|
|
||
|
BUG_ON(ret != 0 && ret != -ETIME);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct clock_event_device xen_vcpuop_clockevent = {
|
||
|
.name = "xen",
|
||
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
||
|
|
||
|
.max_delta_ns = 0xffffffff,
|
||
|
.min_delta_ns = TIMER_SLOP,
|
||
|
|
||
|
.mult = 1,
|
||
|
.shift = 0,
|
||
|
.rating = 500,
|
||
|
|
||
|
.set_mode = xen_vcpuop_set_mode,
|
||
|
.set_next_event = xen_vcpuop_set_next_event,
|
||
|
};
|
||
|
|
||
|
static const struct clock_event_device *xen_clockevent =
|
||
|
&xen_timerop_clockevent;
|
||
|
static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
|
||
|
|
||
|
static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
|
||
|
irqreturn_t ret;
|
||
|
|
||
|
ret = IRQ_NONE;
|
||
|
if (evt->event_handler) {
|
||
|
evt->event_handler(evt);
|
||
|
ret = IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void xen_setup_timer(int cpu)
|
||
|
{
|
||
|
const char *name;
|
||
|
struct clock_event_device *evt;
|
||
|
int irq;
|
||
|
|
||
|
printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
|
||
|
|
||
|
name = kasprintf(GFP_KERNEL, "timer%d", cpu);
|
||
|
if (!name)
|
||
|
name = "<timer kasprintf failed>";
|
||
|
|
||
|
irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
|
||
|
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
|
||
|
name, NULL);
|
||
|
|
||
|
evt = &get_cpu_var(xen_clock_events);
|
||
|
memcpy(evt, xen_clockevent, sizeof(*evt));
|
||
|
|
||
|
evt->cpumask = cpumask_of_cpu(cpu);
|
||
|
evt->irq = irq;
|
||
|
clockevents_register_device(evt);
|
||
|
|
||
|
put_cpu_var(xen_clock_events);
|
||
|
}
|
||
|
|
||
|
__init void xen_time_init(void)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
|
||
|
get_time_values_from_xen();
|
||
|
|
||
|
clocksource_register(&xen_clocksource);
|
||
|
|
||
|
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
|
||
|
/* Successfully turned off 100hz tick, so we have the
|
||
|
vcpuop-based timer interface */
|
||
|
printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
|
||
|
xen_clockevent = &xen_vcpuop_clockevent;
|
||
|
}
|
||
|
|
||
|
/* Set initial system time with full resolution */
|
||
|
xen_read_wallclock(&xtime);
|
||
|
set_normalized_timespec(&wall_to_monotonic,
|
||
|
-xtime.tv_sec, -xtime.tv_nsec);
|
||
|
|
||
|
tsc_disable = 0;
|
||
|
|
||
|
xen_setup_timer(cpu);
|
||
|
}
|