linux/net/8021q/vlan_core.c

560 lines
13 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
#include <linux/netpoll.h>
#include <linux/export.h>
#include <net/gro.h>
#include "vlan.h"
bool vlan_do_receive(struct sk_buff **skbp)
{
vlan: Centralize handling of hardware acceleration. Currently each driver that is capable of vlan hardware acceleration must be aware of the vlan groups that are configured and then pass the stripped tag to a specialized receive function. This is different from other types of hardware offload in that it places a significant amount of knowledge in the driver itself rather keeping it in the networking core. This makes vlan offloading function more similarly to other forms of offloading (such as checksum offloading or TSO) by doing the following: * On receive, stripped vlans are passed directly to the network core, without attempting to check for vlan groups or reconstructing the header if no group * vlans are made less special by folding the logic into the main receive routines * On transmit, the device layer will add the vlan header in software if the hardware doesn't support it, instead of spreading that logic out in upper layers, such as bonding. There are a number of advantages to this: * Fixes all bugs with drivers incorrectly dropping vlan headers at once. * Avoids having to disable VLAN acceleration when in promiscuous mode (good for bridging since it always puts devices in promiscuous mode). * Keeps VLAN tag separate until given to ultimate consumer, which avoids needing to do header reconstruction as in tg3 unless absolutely necessary. * Consolidates common code in core networking. Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-20 17:56:06 +04:00
struct sk_buff *skb = *skbp;
__be16 vlan_proto = skb->vlan_proto;
u16 vlan_id = skb_vlan_tag_get_id(skb);
struct net_device *vlan_dev;
struct vlan_pcpu_stats *rx_stats;
vlan_dev = vlan_find_dev(skb->dev, vlan_proto, vlan_id);
if (!vlan_dev)
vlan: Centralize handling of hardware acceleration. Currently each driver that is capable of vlan hardware acceleration must be aware of the vlan groups that are configured and then pass the stripped tag to a specialized receive function. This is different from other types of hardware offload in that it places a significant amount of knowledge in the driver itself rather keeping it in the networking core. This makes vlan offloading function more similarly to other forms of offloading (such as checksum offloading or TSO) by doing the following: * On receive, stripped vlans are passed directly to the network core, without attempting to check for vlan groups or reconstructing the header if no group * vlans are made less special by folding the logic into the main receive routines * On transmit, the device layer will add the vlan header in software if the hardware doesn't support it, instead of spreading that logic out in upper layers, such as bonding. There are a number of advantages to this: * Fixes all bugs with drivers incorrectly dropping vlan headers at once. * Avoids having to disable VLAN acceleration when in promiscuous mode (good for bridging since it always puts devices in promiscuous mode). * Keeps VLAN tag separate until given to ultimate consumer, which avoids needing to do header reconstruction as in tg3 unless absolutely necessary. * Consolidates common code in core networking. Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-20 17:56:06 +04:00
return false;
vlan: Centralize handling of hardware acceleration. Currently each driver that is capable of vlan hardware acceleration must be aware of the vlan groups that are configured and then pass the stripped tag to a specialized receive function. This is different from other types of hardware offload in that it places a significant amount of knowledge in the driver itself rather keeping it in the networking core. This makes vlan offloading function more similarly to other forms of offloading (such as checksum offloading or TSO) by doing the following: * On receive, stripped vlans are passed directly to the network core, without attempting to check for vlan groups or reconstructing the header if no group * vlans are made less special by folding the logic into the main receive routines * On transmit, the device layer will add the vlan header in software if the hardware doesn't support it, instead of spreading that logic out in upper layers, such as bonding. There are a number of advantages to this: * Fixes all bugs with drivers incorrectly dropping vlan headers at once. * Avoids having to disable VLAN acceleration when in promiscuous mode (good for bridging since it always puts devices in promiscuous mode). * Keeps VLAN tag separate until given to ultimate consumer, which avoids needing to do header reconstruction as in tg3 unless absolutely necessary. * Consolidates common code in core networking. Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-20 17:56:06 +04:00
skb = *skbp = skb_share_check(skb, GFP_ATOMIC);
if (unlikely(!skb))
return false;
if (unlikely(!(vlan_dev->flags & IFF_UP))) {
kfree_skb(skb);
*skbp = NULL;
return false;
}
vlan: Centralize handling of hardware acceleration. Currently each driver that is capable of vlan hardware acceleration must be aware of the vlan groups that are configured and then pass the stripped tag to a specialized receive function. This is different from other types of hardware offload in that it places a significant amount of knowledge in the driver itself rather keeping it in the networking core. This makes vlan offloading function more similarly to other forms of offloading (such as checksum offloading or TSO) by doing the following: * On receive, stripped vlans are passed directly to the network core, without attempting to check for vlan groups or reconstructing the header if no group * vlans are made less special by folding the logic into the main receive routines * On transmit, the device layer will add the vlan header in software if the hardware doesn't support it, instead of spreading that logic out in upper layers, such as bonding. There are a number of advantages to this: * Fixes all bugs with drivers incorrectly dropping vlan headers at once. * Avoids having to disable VLAN acceleration when in promiscuous mode (good for bridging since it always puts devices in promiscuous mode). * Keeps VLAN tag separate until given to ultimate consumer, which avoids needing to do header reconstruction as in tg3 unless absolutely necessary. * Consolidates common code in core networking. Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-20 17:56:06 +04:00
skb->dev = vlan_dev;
if (unlikely(skb->pkt_type == PACKET_OTHERHOST)) {
/* Our lower layer thinks this is not local, let's make sure.
* This allows the VLAN to have a different MAC than the
* underlying device, and still route correctly. */
if (ether_addr_equal_64bits(eth_hdr(skb)->h_dest, vlan_dev->dev_addr))
skb->pkt_type = PACKET_HOST;
}
if (!(vlan_dev_priv(vlan_dev)->flags & VLAN_FLAG_REORDER_HDR) &&
!netif_is_macvlan_port(vlan_dev) &&
!netif_is_bridge_port(vlan_dev)) {
unsigned int offset = skb->data - skb_mac_header(skb);
/*
* vlan_insert_tag expect skb->data pointing to mac header.
* So change skb->data before calling it and change back to
* original position later
*/
skb_push(skb, offset);
skb = *skbp = vlan_insert_inner_tag(skb, skb->vlan_proto,
skb->vlan_tci, skb->mac_len);
if (!skb)
return false;
skb_pull(skb, offset + VLAN_HLEN);
skb_reset_mac_len(skb);
}
vlan: Centralize handling of hardware acceleration. Currently each driver that is capable of vlan hardware acceleration must be aware of the vlan groups that are configured and then pass the stripped tag to a specialized receive function. This is different from other types of hardware offload in that it places a significant amount of knowledge in the driver itself rather keeping it in the networking core. This makes vlan offloading function more similarly to other forms of offloading (such as checksum offloading or TSO) by doing the following: * On receive, stripped vlans are passed directly to the network core, without attempting to check for vlan groups or reconstructing the header if no group * vlans are made less special by folding the logic into the main receive routines * On transmit, the device layer will add the vlan header in software if the hardware doesn't support it, instead of spreading that logic out in upper layers, such as bonding. There are a number of advantages to this: * Fixes all bugs with drivers incorrectly dropping vlan headers at once. * Avoids having to disable VLAN acceleration when in promiscuous mode (good for bridging since it always puts devices in promiscuous mode). * Keeps VLAN tag separate until given to ultimate consumer, which avoids needing to do header reconstruction as in tg3 unless absolutely necessary. * Consolidates common code in core networking. Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-20 17:56:06 +04:00
skb->priority = vlan_get_ingress_priority(vlan_dev, skb->vlan_tci);
__vlan_hwaccel_clear_tag(skb);
rx_stats = this_cpu_ptr(vlan_dev_priv(vlan_dev)->vlan_pcpu_stats);
u64_stats_update_begin(&rx_stats->syncp);
rx_stats->rx_packets++;
rx_stats->rx_bytes += skb->len;
if (skb->pkt_type == PACKET_MULTICAST)
rx_stats->rx_multicast++;
u64_stats_update_end(&rx_stats->syncp);
vlan: Centralize handling of hardware acceleration. Currently each driver that is capable of vlan hardware acceleration must be aware of the vlan groups that are configured and then pass the stripped tag to a specialized receive function. This is different from other types of hardware offload in that it places a significant amount of knowledge in the driver itself rather keeping it in the networking core. This makes vlan offloading function more similarly to other forms of offloading (such as checksum offloading or TSO) by doing the following: * On receive, stripped vlans are passed directly to the network core, without attempting to check for vlan groups or reconstructing the header if no group * vlans are made less special by folding the logic into the main receive routines * On transmit, the device layer will add the vlan header in software if the hardware doesn't support it, instead of spreading that logic out in upper layers, such as bonding. There are a number of advantages to this: * Fixes all bugs with drivers incorrectly dropping vlan headers at once. * Avoids having to disable VLAN acceleration when in promiscuous mode (good for bridging since it always puts devices in promiscuous mode). * Keeps VLAN tag separate until given to ultimate consumer, which avoids needing to do header reconstruction as in tg3 unless absolutely necessary. * Consolidates common code in core networking. Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-20 17:56:06 +04:00
return true;
}
/* Must be invoked with rcu_read_lock. */
struct net_device *__vlan_find_dev_deep_rcu(struct net_device *dev,
__be16 vlan_proto, u16 vlan_id)
{
struct vlan_info *vlan_info = rcu_dereference(dev->vlan_info);
if (vlan_info) {
return vlan_group_get_device(&vlan_info->grp,
vlan_proto, vlan_id);
} else {
/*
* Lower devices of master uppers (bonding, team) do not have
* grp assigned to themselves. Grp is assigned to upper device
* instead.
*/
struct net_device *upper_dev;
upper_dev = netdev_master_upper_dev_get_rcu(dev);
if (upper_dev)
return __vlan_find_dev_deep_rcu(upper_dev,
vlan_proto, vlan_id);
}
return NULL;
}
EXPORT_SYMBOL(__vlan_find_dev_deep_rcu);
struct net_device *vlan_dev_real_dev(const struct net_device *dev)
{
struct net_device *ret = vlan_dev_priv(dev)->real_dev;
while (is_vlan_dev(ret))
ret = vlan_dev_priv(ret)->real_dev;
return ret;
}
EXPORT_SYMBOL(vlan_dev_real_dev);
u16 vlan_dev_vlan_id(const struct net_device *dev)
{
return vlan_dev_priv(dev)->vlan_id;
}
EXPORT_SYMBOL(vlan_dev_vlan_id);
__be16 vlan_dev_vlan_proto(const struct net_device *dev)
{
return vlan_dev_priv(dev)->vlan_proto;
}
EXPORT_SYMBOL(vlan_dev_vlan_proto);
/*
* vlan info and vid list
*/
static void vlan_group_free(struct vlan_group *grp)
{
int i, j;
for (i = 0; i < VLAN_PROTO_NUM; i++)
for (j = 0; j < VLAN_GROUP_ARRAY_SPLIT_PARTS; j++)
kfree(grp->vlan_devices_arrays[i][j]);
}
static void vlan_info_free(struct vlan_info *vlan_info)
{
vlan_group_free(&vlan_info->grp);
kfree(vlan_info);
}
static void vlan_info_rcu_free(struct rcu_head *rcu)
{
vlan_info_free(container_of(rcu, struct vlan_info, rcu));
}
static struct vlan_info *vlan_info_alloc(struct net_device *dev)
{
struct vlan_info *vlan_info;
vlan_info = kzalloc(sizeof(struct vlan_info), GFP_KERNEL);
if (!vlan_info)
return NULL;
vlan_info->real_dev = dev;
INIT_LIST_HEAD(&vlan_info->vid_list);
return vlan_info;
}
struct vlan_vid_info {
struct list_head list;
__be16 proto;
u16 vid;
int refcount;
};
static bool vlan_hw_filter_capable(const struct net_device *dev, __be16 proto)
{
if (proto == htons(ETH_P_8021Q) &&
dev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
return true;
if (proto == htons(ETH_P_8021AD) &&
dev->features & NETIF_F_HW_VLAN_STAG_FILTER)
return true;
return false;
}
static struct vlan_vid_info *vlan_vid_info_get(struct vlan_info *vlan_info,
__be16 proto, u16 vid)
{
struct vlan_vid_info *vid_info;
list_for_each_entry(vid_info, &vlan_info->vid_list, list) {
if (vid_info->proto == proto && vid_info->vid == vid)
return vid_info;
}
return NULL;
}
static struct vlan_vid_info *vlan_vid_info_alloc(__be16 proto, u16 vid)
{
struct vlan_vid_info *vid_info;
vid_info = kzalloc(sizeof(struct vlan_vid_info), GFP_KERNEL);
if (!vid_info)
return NULL;
vid_info->proto = proto;
vid_info->vid = vid;
return vid_info;
}
static int vlan_add_rx_filter_info(struct net_device *dev, __be16 proto, u16 vid)
{
if (!vlan_hw_filter_capable(dev, proto))
return 0;
if (netif_device_present(dev))
return dev->netdev_ops->ndo_vlan_rx_add_vid(dev, proto, vid);
else
return -ENODEV;
}
static int vlan_kill_rx_filter_info(struct net_device *dev, __be16 proto, u16 vid)
{
if (!vlan_hw_filter_capable(dev, proto))
return 0;
if (netif_device_present(dev))
return dev->netdev_ops->ndo_vlan_rx_kill_vid(dev, proto, vid);
else
return -ENODEV;
}
int vlan_for_each(struct net_device *dev,
int (*action)(struct net_device *dev, int vid, void *arg),
void *arg)
{
struct vlan_vid_info *vid_info;
struct vlan_info *vlan_info;
struct net_device *vdev;
int ret;
ASSERT_RTNL();
vlan_info = rtnl_dereference(dev->vlan_info);
if (!vlan_info)
return 0;
list_for_each_entry(vid_info, &vlan_info->vid_list, list) {
vdev = vlan_group_get_device(&vlan_info->grp, vid_info->proto,
vid_info->vid);
ret = action(vdev, vid_info->vid, arg);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(vlan_for_each);
int vlan_filter_push_vids(struct vlan_info *vlan_info, __be16 proto)
{
struct net_device *real_dev = vlan_info->real_dev;
struct vlan_vid_info *vlan_vid_info;
int err;
list_for_each_entry(vlan_vid_info, &vlan_info->vid_list, list) {
if (vlan_vid_info->proto == proto) {
err = vlan_add_rx_filter_info(real_dev, proto,
vlan_vid_info->vid);
if (err)
goto unwind;
}
}
return 0;
unwind:
list_for_each_entry_continue_reverse(vlan_vid_info,
&vlan_info->vid_list, list) {
if (vlan_vid_info->proto == proto)
vlan_kill_rx_filter_info(real_dev, proto,
vlan_vid_info->vid);
}
return err;
}
EXPORT_SYMBOL(vlan_filter_push_vids);
void vlan_filter_drop_vids(struct vlan_info *vlan_info, __be16 proto)
{
struct vlan_vid_info *vlan_vid_info;
list_for_each_entry(vlan_vid_info, &vlan_info->vid_list, list)
if (vlan_vid_info->proto == proto)
vlan_kill_rx_filter_info(vlan_info->real_dev,
vlan_vid_info->proto,
vlan_vid_info->vid);
}
EXPORT_SYMBOL(vlan_filter_drop_vids);
static int __vlan_vid_add(struct vlan_info *vlan_info, __be16 proto, u16 vid,
struct vlan_vid_info **pvid_info)
{
struct net_device *dev = vlan_info->real_dev;
struct vlan_vid_info *vid_info;
int err;
vid_info = vlan_vid_info_alloc(proto, vid);
if (!vid_info)
return -ENOMEM;
err = vlan_add_rx_filter_info(dev, proto, vid);
if (err) {
kfree(vid_info);
return err;
}
list_add(&vid_info->list, &vlan_info->vid_list);
vlan_info->nr_vids++;
*pvid_info = vid_info;
return 0;
}
int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid)
{
struct vlan_info *vlan_info;
struct vlan_vid_info *vid_info;
bool vlan_info_created = false;
int err;
ASSERT_RTNL();
vlan_info = rtnl_dereference(dev->vlan_info);
if (!vlan_info) {
vlan_info = vlan_info_alloc(dev);
if (!vlan_info)
return -ENOMEM;
vlan_info_created = true;
}
vid_info = vlan_vid_info_get(vlan_info, proto, vid);
if (!vid_info) {
err = __vlan_vid_add(vlan_info, proto, vid, &vid_info);
if (err)
goto out_free_vlan_info;
}
vid_info->refcount++;
if (vlan_info_created)
rcu_assign_pointer(dev->vlan_info, vlan_info);
return 0;
out_free_vlan_info:
if (vlan_info_created)
kfree(vlan_info);
return err;
}
EXPORT_SYMBOL(vlan_vid_add);
static void __vlan_vid_del(struct vlan_info *vlan_info,
struct vlan_vid_info *vid_info)
{
struct net_device *dev = vlan_info->real_dev;
__be16 proto = vid_info->proto;
u16 vid = vid_info->vid;
int err;
err = vlan_kill_rx_filter_info(dev, proto, vid);
if (err && dev->reg_state != NETREG_UNREGISTERING)
netdev_warn(dev, "failed to kill vid %04x/%d\n", proto, vid);
list_del(&vid_info->list);
kfree(vid_info);
vlan_info->nr_vids--;
}
void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid)
{
struct vlan_info *vlan_info;
struct vlan_vid_info *vid_info;
ASSERT_RTNL();
vlan_info = rtnl_dereference(dev->vlan_info);
if (!vlan_info)
return;
vid_info = vlan_vid_info_get(vlan_info, proto, vid);
if (!vid_info)
return;
vid_info->refcount--;
if (vid_info->refcount == 0) {
__vlan_vid_del(vlan_info, vid_info);
if (vlan_info->nr_vids == 0) {
RCU_INIT_POINTER(dev->vlan_info, NULL);
call_rcu(&vlan_info->rcu, vlan_info_rcu_free);
}
}
}
EXPORT_SYMBOL(vlan_vid_del);
int vlan_vids_add_by_dev(struct net_device *dev,
const struct net_device *by_dev)
{
struct vlan_vid_info *vid_info;
struct vlan_info *vlan_info;
int err;
ASSERT_RTNL();
vlan_info = rtnl_dereference(by_dev->vlan_info);
if (!vlan_info)
return 0;
list_for_each_entry(vid_info, &vlan_info->vid_list, list) {
err = vlan_vid_add(dev, vid_info->proto, vid_info->vid);
if (err)
goto unwind;
}
return 0;
unwind:
list_for_each_entry_continue_reverse(vid_info,
&vlan_info->vid_list,
list) {
vlan_vid_del(dev, vid_info->proto, vid_info->vid);
}
return err;
}
EXPORT_SYMBOL(vlan_vids_add_by_dev);
void vlan_vids_del_by_dev(struct net_device *dev,
const struct net_device *by_dev)
{
struct vlan_vid_info *vid_info;
struct vlan_info *vlan_info;
ASSERT_RTNL();
vlan_info = rtnl_dereference(by_dev->vlan_info);
if (!vlan_info)
return;
list_for_each_entry(vid_info, &vlan_info->vid_list, list)
vlan_vid_del(dev, vid_info->proto, vid_info->vid);
}
EXPORT_SYMBOL(vlan_vids_del_by_dev);
bool vlan_uses_dev(const struct net_device *dev)
{
struct vlan_info *vlan_info;
ASSERT_RTNL();
vlan_info = rtnl_dereference(dev->vlan_info);
if (!vlan_info)
return false;
return vlan_info->grp.nr_vlan_devs ? true : false;
}
EXPORT_SYMBOL(vlan_uses_dev);
static struct sk_buff *vlan_gro_receive(struct list_head *head,
struct sk_buff *skb)
{
const struct packet_offload *ptype;
unsigned int hlen, off_vlan;
struct sk_buff *pp = NULL;
struct vlan_hdr *vhdr;
struct sk_buff *p;
__be16 type;
int flush = 1;
off_vlan = skb_gro_offset(skb);
hlen = off_vlan + sizeof(*vhdr);
vhdr = skb_gro_header_fast(skb, off_vlan);
if (skb_gro_header_hard(skb, hlen)) {
vhdr = skb_gro_header_slow(skb, hlen, off_vlan);
if (unlikely(!vhdr))
goto out;
}
type = vhdr->h_vlan_encapsulated_proto;
rcu_read_lock();
ptype = gro_find_receive_by_type(type);
if (!ptype)
goto out_unlock;
flush = 0;
list_for_each_entry(p, head, list) {
struct vlan_hdr *vhdr2;
if (!NAPI_GRO_CB(p)->same_flow)
continue;
vhdr2 = (struct vlan_hdr *)(p->data + off_vlan);
if (compare_vlan_header(vhdr, vhdr2))
NAPI_GRO_CB(p)->same_flow = 0;
}
skb_gro_pull(skb, sizeof(*vhdr));
skb_gro_postpull_rcsum(skb, vhdr, sizeof(*vhdr));
pp = indirect_call_gro_receive_inet(ptype->callbacks.gro_receive,
ipv6_gro_receive, inet_gro_receive,
head, skb);
out_unlock:
rcu_read_unlock();
out:
skb_gro_flush_final(skb, pp, flush);
return pp;
}
static int vlan_gro_complete(struct sk_buff *skb, int nhoff)
{
struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data + nhoff);
__be16 type = vhdr->h_vlan_encapsulated_proto;
struct packet_offload *ptype;
int err = -ENOENT;
rcu_read_lock();
ptype = gro_find_complete_by_type(type);
if (ptype)
err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
ipv6_gro_complete, inet_gro_complete,
skb, nhoff + sizeof(*vhdr));
rcu_read_unlock();
return err;
}
static struct packet_offload vlan_packet_offloads[] __read_mostly = {
{
.type = cpu_to_be16(ETH_P_8021Q),
.priority = 10,
.callbacks = {
.gro_receive = vlan_gro_receive,
.gro_complete = vlan_gro_complete,
},
},
{
.type = cpu_to_be16(ETH_P_8021AD),
.priority = 10,
.callbacks = {
.gro_receive = vlan_gro_receive,
.gro_complete = vlan_gro_complete,
},
},
};
static int __init vlan_offload_init(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(vlan_packet_offloads); i++)
dev_add_offload(&vlan_packet_offloads[i]);
return 0;
}
fs_initcall(vlan_offload_init);