linux/fs/cifs/readdir.c

883 lines
25 KiB
C
Raw Normal View History

/*
* fs/cifs/readdir.c
*
* Directory search handling
*
* Copyright (C) International Business Machines Corp., 2004, 2008
* Copyright (C) Red Hat, Inc., 2011
* Author(s): Steve French (sfrench@us.ibm.com)
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/stat.h>
#include "cifspdu.h"
#include "cifsglob.h"
#include "cifsproto.h"
#include "cifs_unicode.h"
#include "cifs_debug.h"
#include "cifs_fs_sb.h"
#include "cifsfs.h"
/*
* To be safe - for UCS to UTF-8 with strings loaded with the rare long
* characters alloc more to account for such multibyte target UTF-8
* characters.
*/
#define UNICODE_NAME_MAX ((4 * NAME_MAX) + 2)
#ifdef CONFIG_CIFS_DEBUG2
static void dump_cifs_file_struct(struct file *file, char *label)
{
struct cifsFileInfo *cf;
if (file) {
cf = file->private_data;
if (cf == NULL) {
cifs_dbg(FYI, "empty cifs private file data\n");
return;
}
if (cf->invalidHandle)
cifs_dbg(FYI, "invalid handle\n");
if (cf->srch_inf.endOfSearch)
cifs_dbg(FYI, "end of search\n");
if (cf->srch_inf.emptyDir)
cifs_dbg(FYI, "empty dir\n");
}
}
#else
static inline void dump_cifs_file_struct(struct file *file, char *label)
{
}
#endif /* DEBUG2 */
/*
* Attempt to preload the dcache with the results from the FIND_FIRST/NEXT
*
* Find the dentry that matches "name". If there isn't one, create one. If it's
* a negative dentry or the uniqueid or filetype(mode) changed,
* then drop it and recreate it.
*/
static void
cifs_prime_dcache(struct dentry *parent, struct qstr *name,
struct cifs_fattr *fattr)
{
struct dentry *dentry, *alias;
struct inode *inode;
struct super_block *sb = parent->d_sb;
struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
cifs_dbg(FYI, "%s: for %s\n", __func__, name->name);
dentry = d_hash_and_lookup(parent, name);
if (!dentry) {
/*
* If we know that the inode will need to be revalidated
* immediately, then don't create a new dentry for it.
* We'll end up doing an on the wire call either way and
* this spares us an invalidation.
*/
if (fattr->cf_flags & CIFS_FATTR_NEED_REVAL)
return;
retry:
dentry = d_alloc_parallel(parent, name, &wq);
}
if (IS_ERR(dentry))
return;
if (!d_in_lookup(dentry)) {
inode = d_inode(dentry);
if (inode) {
if (d_mountpoint(dentry)) {
dput(dentry);
return;
}
/*
* If we're generating inode numbers, then we don't
* want to clobber the existing one with the one that
* the readdir code created.
*/
if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM))
fattr->cf_uniqueid = CIFS_I(inode)->uniqueid;
/* update inode in place
* if both i_ino and i_mode didn't change */
if (CIFS_I(inode)->uniqueid == fattr->cf_uniqueid &&
(inode->i_mode & S_IFMT) ==
(fattr->cf_mode & S_IFMT)) {
cifs_fattr_to_inode(inode, fattr);
dput(dentry);
return;
}
}
d_invalidate(dentry);
dput(dentry);
goto retry;
} else {
inode = cifs_iget(sb, fattr);
if (!inode)
inode = ERR_PTR(-ENOMEM);
alias = d_splice_alias(inode, dentry);
d_lookup_done(dentry);
if (alias && !IS_ERR(alias))
dput(alias);
}
dput(dentry);
}
static void
cifs_fill_common_info(struct cifs_fattr *fattr, struct cifs_sb_info *cifs_sb)
{
fattr->cf_uid = cifs_sb->mnt_uid;
fattr->cf_gid = cifs_sb->mnt_gid;
if (fattr->cf_cifsattrs & ATTR_DIRECTORY) {
fattr->cf_mode = S_IFDIR | cifs_sb->mnt_dir_mode;
fattr->cf_dtype = DT_DIR;
} else {
fattr->cf_mode = S_IFREG | cifs_sb->mnt_file_mode;
fattr->cf_dtype = DT_REG;
}
/*
* We need to revalidate it further to make a decision about whether it
* is a symbolic link, DFS referral or a reparse point with a direct
* access like junctions, deduplicated files, NFS symlinks.
*/
if (fattr->cf_cifsattrs & ATTR_REPARSE)
fattr->cf_flags |= CIFS_FATTR_NEED_REVAL;
/* non-unix readdir doesn't provide nlink */
fattr->cf_flags |= CIFS_FATTR_UNKNOWN_NLINK;
if (fattr->cf_cifsattrs & ATTR_READONLY)
fattr->cf_mode &= ~S_IWUGO;
/*
* We of course don't get ACL info in FIND_FIRST/NEXT results, so
* mark it for revalidation so that "ls -l" will look right. It might
* be super-slow, but if we don't do this then the ownership of files
* may look wrong since the inodes may not have timed out by the time
* "ls" does a stat() call on them.
*/
if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_ACL)
fattr->cf_flags |= CIFS_FATTR_NEED_REVAL;
if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_UNX_EMUL &&
fattr->cf_cifsattrs & ATTR_SYSTEM) {
if (fattr->cf_eof == 0) {
fattr->cf_mode &= ~S_IFMT;
fattr->cf_mode |= S_IFIFO;
fattr->cf_dtype = DT_FIFO;
} else {
/*
* trying to get the type and mode via SFU can be slow,
* so just call those regular files for now, and mark
* for reval
*/
fattr->cf_flags |= CIFS_FATTR_NEED_REVAL;
}
}
}
void
cifs_dir_info_to_fattr(struct cifs_fattr *fattr, FILE_DIRECTORY_INFO *info,
struct cifs_sb_info *cifs_sb)
{
memset(fattr, 0, sizeof(*fattr));
fattr->cf_cifsattrs = le32_to_cpu(info->ExtFileAttributes);
fattr->cf_eof = le64_to_cpu(info->EndOfFile);
fattr->cf_bytes = le64_to_cpu(info->AllocationSize);
fattr->cf_createtime = le64_to_cpu(info->CreationTime);
fattr->cf_atime = cifs_NTtimeToUnix(info->LastAccessTime);
fattr->cf_ctime = cifs_NTtimeToUnix(info->ChangeTime);
fattr->cf_mtime = cifs_NTtimeToUnix(info->LastWriteTime);
cifs_fill_common_info(fattr, cifs_sb);
}
static void
cifs_std_info_to_fattr(struct cifs_fattr *fattr, FIND_FILE_STANDARD_INFO *info,
struct cifs_sb_info *cifs_sb)
{
int offset = cifs_sb_master_tcon(cifs_sb)->ses->server->timeAdj;
memset(fattr, 0, sizeof(*fattr));
fattr->cf_atime = cnvrtDosUnixTm(info->LastAccessDate,
info->LastAccessTime, offset);
fattr->cf_ctime = cnvrtDosUnixTm(info->LastWriteDate,
info->LastWriteTime, offset);
fattr->cf_mtime = cnvrtDosUnixTm(info->LastWriteDate,
info->LastWriteTime, offset);
fattr->cf_cifsattrs = le16_to_cpu(info->Attributes);
fattr->cf_bytes = le32_to_cpu(info->AllocationSize);
fattr->cf_eof = le32_to_cpu(info->DataSize);
cifs_fill_common_info(fattr, cifs_sb);
}
/* BB eventually need to add the following helper function to
resolve NT_STATUS_STOPPED_ON_SYMLINK return code when
we try to do FindFirst on (NTFS) directory symlinks */
/*
int get_symlink_reparse_path(char *full_path, struct cifs_sb_info *cifs_sb,
unsigned int xid)
{
__u16 fid;
int len;
int oplock = 0;
int rc;
struct cifs_tcon *ptcon = cifs_sb_tcon(cifs_sb);
char *tmpbuffer;
rc = CIFSSMBOpen(xid, ptcon, full_path, FILE_OPEN, GENERIC_READ,
OPEN_REPARSE_POINT, &fid, &oplock, NULL,
cifs_sb->local_nls,
Remap reserved posix characters by default (part 3/3) This is a bigger patch, but its size is mostly due to a single change for how we check for remapping illegal characters in file names - a lot of repeated, small changes to the way callers request converting file names. The final patch in the series does the following: 1) changes default behavior for cifs to be more intuitive. Currently we do not map by default to seven reserved characters, ie those valid in POSIX but not in NTFS/CIFS/SMB3/Windows, unless a mount option (mapchars) is specified. Change this to by default always map and map using the SFM maping (like the Mac uses) unless the server negotiates the CIFS Unix Extensions (like Samba does when mounting with the cifs protocol) when the remapping of the characters is unnecessary. This should help SMB3 mounts in particular since Samba will likely be able to implement this mapping with its new "vfs_fruit" module as it will be doing for the Mac. 2) if the user specifies the existing "mapchars" mount option then use the "SFU" (Microsoft Services for Unix, SUA) style mapping of the seven characters instead. 3) if the user specifies "nomapposix" then disable SFM/MAC style mapping (so no character remapping would be used unless the user specifies "mapchars" on mount as well, as above). 4) change all the places in the code that check for the superblock flag on the mount which is set by mapchars and passed in on all path based operation and change it to use a small function call instead to set the mapping type properly (and check for the mapping type in the cifs unicode functions) Signed-off-by: Steve French <smfrench@gmail.com>
2014-09-27 11:19:01 +04:00
cifs_remap(cifs_sb);
if (!rc) {
tmpbuffer = kmalloc(maxpath);
rc = CIFSSMBQueryReparseLinkInfo(xid, ptcon, full_path,
tmpbuffer,
maxpath -1,
fid,
cifs_sb->local_nls);
if (CIFSSMBClose(xid, ptcon, fid)) {
cifs_dbg(FYI, "Error closing temporary reparsepoint open\n");
}
}
}
*/
static int
initiate_cifs_search(const unsigned int xid, struct file *file)
{
__u16 search_flags;
int rc = 0;
char *full_path = NULL;
struct cifsFileInfo *cifsFile;
struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
struct tcon_link *tlink = NULL;
struct cifs_tcon *tcon;
struct TCP_Server_Info *server;
if (file->private_data == NULL) {
tlink = cifs_sb_tlink(cifs_sb);
if (IS_ERR(tlink))
return PTR_ERR(tlink);
cifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
if (cifsFile == NULL) {
rc = -ENOMEM;
goto error_exit;
}
spin_lock_init(&cifsFile->file_info_lock);
file->private_data = cifsFile;
cifsFile->tlink = cifs_get_tlink(tlink);
tcon = tlink_tcon(tlink);
} else {
cifsFile = file->private_data;
tcon = tlink_tcon(cifsFile->tlink);
}
server = tcon->ses->server;
if (!server->ops->query_dir_first) {
rc = -ENOSYS;
goto error_exit;
}
cifsFile->invalidHandle = true;
cifsFile->srch_inf.endOfSearch = false;
full_path = build_path_from_dentry(file_dentry(file));
if (full_path == NULL) {
rc = -ENOMEM;
goto error_exit;
}
cifs_dbg(FYI, "Full path: %s start at: %lld\n", full_path, file->f_pos);
ffirst_retry:
/* test for Unix extensions */
/* but now check for them on the share/mount not on the SMB session */
/* if (cap_unix(tcon->ses) { */
if (tcon->unix_ext)
cifsFile->srch_inf.info_level = SMB_FIND_FILE_UNIX;
else if ((tcon->ses->capabilities &
tcon->ses->server->vals->cap_nt_find) == 0) {
cifsFile->srch_inf.info_level = SMB_FIND_FILE_INFO_STANDARD;
} else if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
cifsFile->srch_inf.info_level = SMB_FIND_FILE_ID_FULL_DIR_INFO;
} else /* not srvinos - BB fixme add check for backlevel? */ {
cifsFile->srch_inf.info_level = SMB_FIND_FILE_DIRECTORY_INFO;
}
search_flags = CIFS_SEARCH_CLOSE_AT_END | CIFS_SEARCH_RETURN_RESUME;
if (backup_cred(cifs_sb))
search_flags |= CIFS_SEARCH_BACKUP_SEARCH;
rc = server->ops->query_dir_first(xid, tcon, full_path, cifs_sb,
&cifsFile->fid, search_flags,
&cifsFile->srch_inf);
if (rc == 0)
cifsFile->invalidHandle = false;
/* BB add following call to handle readdir on new NTFS symlink errors
else if STATUS_STOPPED_ON_SYMLINK
call get_symlink_reparse_path and retry with new path */
else if ((rc == -EOPNOTSUPP) &&
(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM)) {
cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
goto ffirst_retry;
}
error_exit:
kfree(full_path);
cifs_put_tlink(tlink);
return rc;
}
/* return length of unicode string in bytes */
static int cifs_unicode_bytelen(const char *str)
{
int len;
const __le16 *ustr = (const __le16 *)str;
for (len = 0; len <= PATH_MAX; len++) {
if (ustr[len] == 0)
return len << 1;
}
cifs_dbg(FYI, "Unicode string longer than PATH_MAX found\n");
return len << 1;
}
static char *nxt_dir_entry(char *old_entry, char *end_of_smb, int level)
{
char *new_entry;
FILE_DIRECTORY_INFO *pDirInfo = (FILE_DIRECTORY_INFO *)old_entry;
if (level == SMB_FIND_FILE_INFO_STANDARD) {
FIND_FILE_STANDARD_INFO *pfData;
pfData = (FIND_FILE_STANDARD_INFO *)pDirInfo;
new_entry = old_entry + sizeof(FIND_FILE_STANDARD_INFO) +
pfData->FileNameLength;
} else
new_entry = old_entry + le32_to_cpu(pDirInfo->NextEntryOffset);
cifs_dbg(FYI, "new entry %p old entry %p\n", new_entry, old_entry);
/* validate that new_entry is not past end of SMB */
if (new_entry >= end_of_smb) {
cifs_dbg(VFS, "search entry %p began after end of SMB %p old entry %p\n",
new_entry, end_of_smb, old_entry);
return NULL;
} else if (((level == SMB_FIND_FILE_INFO_STANDARD) &&
(new_entry + sizeof(FIND_FILE_STANDARD_INFO) > end_of_smb))
|| ((level != SMB_FIND_FILE_INFO_STANDARD) &&
(new_entry + sizeof(FILE_DIRECTORY_INFO) > end_of_smb))) {
cifs_dbg(VFS, "search entry %p extends after end of SMB %p\n",
new_entry, end_of_smb);
return NULL;
} else
return new_entry;
}
struct cifs_dirent {
const char *name;
size_t namelen;
u32 resume_key;
u64 ino;
};
static void cifs_fill_dirent_unix(struct cifs_dirent *de,
const FILE_UNIX_INFO *info, bool is_unicode)
{
de->name = &info->FileName[0];
if (is_unicode)
de->namelen = cifs_unicode_bytelen(de->name);
else
de->namelen = strnlen(de->name, PATH_MAX);
de->resume_key = info->ResumeKey;
de->ino = le64_to_cpu(info->basic.UniqueId);
}
static void cifs_fill_dirent_dir(struct cifs_dirent *de,
const FILE_DIRECTORY_INFO *info)
{
de->name = &info->FileName[0];
de->namelen = le32_to_cpu(info->FileNameLength);
de->resume_key = info->FileIndex;
}
static void cifs_fill_dirent_full(struct cifs_dirent *de,
const FILE_FULL_DIRECTORY_INFO *info)
{
de->name = &info->FileName[0];
de->namelen = le32_to_cpu(info->FileNameLength);
de->resume_key = info->FileIndex;
}
static void cifs_fill_dirent_search(struct cifs_dirent *de,
const SEARCH_ID_FULL_DIR_INFO *info)
{
de->name = &info->FileName[0];
de->namelen = le32_to_cpu(info->FileNameLength);
de->resume_key = info->FileIndex;
de->ino = le64_to_cpu(info->UniqueId);
}
static void cifs_fill_dirent_both(struct cifs_dirent *de,
const FILE_BOTH_DIRECTORY_INFO *info)
{
de->name = &info->FileName[0];
de->namelen = le32_to_cpu(info->FileNameLength);
de->resume_key = info->FileIndex;
}
static void cifs_fill_dirent_std(struct cifs_dirent *de,
const FIND_FILE_STANDARD_INFO *info)
{
de->name = &info->FileName[0];
/* one byte length, no endianess conversion */
de->namelen = info->FileNameLength;
de->resume_key = info->ResumeKey;
}
static int cifs_fill_dirent(struct cifs_dirent *de, const void *info,
u16 level, bool is_unicode)
{
memset(de, 0, sizeof(*de));
switch (level) {
case SMB_FIND_FILE_UNIX:
cifs_fill_dirent_unix(de, info, is_unicode);
break;
case SMB_FIND_FILE_DIRECTORY_INFO:
cifs_fill_dirent_dir(de, info);
break;
case SMB_FIND_FILE_FULL_DIRECTORY_INFO:
cifs_fill_dirent_full(de, info);
break;
case SMB_FIND_FILE_ID_FULL_DIR_INFO:
cifs_fill_dirent_search(de, info);
break;
case SMB_FIND_FILE_BOTH_DIRECTORY_INFO:
cifs_fill_dirent_both(de, info);
break;
case SMB_FIND_FILE_INFO_STANDARD:
cifs_fill_dirent_std(de, info);
break;
default:
cifs_dbg(FYI, "Unknown findfirst level %d\n", level);
return -EINVAL;
}
return 0;
}
#define UNICODE_DOT cpu_to_le16(0x2e)
/* return 0 if no match and 1 for . (current directory) and 2 for .. (parent) */
static int cifs_entry_is_dot(struct cifs_dirent *de, bool is_unicode)
{
int rc = 0;
if (!de->name)
return 0;
if (is_unicode) {
__le16 *ufilename = (__le16 *)de->name;
if (de->namelen == 2) {
/* check for . */
if (ufilename[0] == UNICODE_DOT)
rc = 1;
} else if (de->namelen == 4) {
/* check for .. */
if (ufilename[0] == UNICODE_DOT &&
ufilename[1] == UNICODE_DOT)
rc = 2;
}
} else /* ASCII */ {
if (de->namelen == 1) {
if (de->name[0] == '.')
rc = 1;
} else if (de->namelen == 2) {
if (de->name[0] == '.' && de->name[1] == '.')
rc = 2;
}
}
return rc;
}
/* Check if directory that we are searching has changed so we can decide
whether we can use the cached search results from the previous search */
static int is_dir_changed(struct file *file)
{
struct inode *inode = file_inode(file);
struct cifsInodeInfo *cifsInfo = CIFS_I(inode);
if (cifsInfo->time == 0)
return 1; /* directory was changed, perhaps due to unlink */
else
return 0;
}
static int cifs_save_resume_key(const char *current_entry,
struct cifsFileInfo *file_info)
{
struct cifs_dirent de;
int rc;
rc = cifs_fill_dirent(&de, current_entry, file_info->srch_inf.info_level,
file_info->srch_inf.unicode);
if (!rc) {
file_info->srch_inf.presume_name = de.name;
file_info->srch_inf.resume_name_len = de.namelen;
file_info->srch_inf.resume_key = de.resume_key;
}
return rc;
}
/*
* Find the corresponding entry in the search. Note that the SMB server returns
* search entries for . and .. which complicates logic here if we choose to
* parse for them and we do not assume that they are located in the findfirst
* return buffer. We start counting in the buffer with entry 2 and increment for
* every entry (do not increment for . or .. entry).
*/
static int
find_cifs_entry(const unsigned int xid, struct cifs_tcon *tcon, loff_t pos,
struct file *file, char **current_entry, int *num_to_ret)
{
__u16 search_flags;
int rc = 0;
int pos_in_buf = 0;
loff_t first_entry_in_buffer;
loff_t index_to_find = pos;
struct cifsFileInfo *cfile = file->private_data;
struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
struct TCP_Server_Info *server = tcon->ses->server;
/* check if index in the buffer */
if (!server->ops->query_dir_first || !server->ops->query_dir_next)
return -ENOSYS;
if ((cfile == NULL) || (current_entry == NULL) || (num_to_ret == NULL))
return -ENOENT;
*current_entry = NULL;
first_entry_in_buffer = cfile->srch_inf.index_of_last_entry -
cfile->srch_inf.entries_in_buffer;
/*
* If first entry in buf is zero then is first buffer
* in search response data which means it is likely . and ..
* will be in this buffer, although some servers do not return
* . and .. for the root of a drive and for those we need
* to start two entries earlier.
*/
dump_cifs_file_struct(file, "In fce ");
if (((index_to_find < cfile->srch_inf.index_of_last_entry) &&
is_dir_changed(file)) || (index_to_find < first_entry_in_buffer)) {
/* close and restart search */
cifs_dbg(FYI, "search backing up - close and restart search\n");
spin_lock(&cfile->file_info_lock);
if (server->ops->dir_needs_close(cfile)) {
cfile->invalidHandle = true;
spin_unlock(&cfile->file_info_lock);
if (server->ops->close_dir)
server->ops->close_dir(xid, tcon, &cfile->fid);
} else
spin_unlock(&cfile->file_info_lock);
if (cfile->srch_inf.ntwrk_buf_start) {
cifs_dbg(FYI, "freeing SMB ff cache buf on search rewind\n");
if (cfile->srch_inf.smallBuf)
cifs_small_buf_release(cfile->srch_inf.
ntwrk_buf_start);
else
cifs_buf_release(cfile->srch_inf.
ntwrk_buf_start);
cfile->srch_inf.ntwrk_buf_start = NULL;
}
rc = initiate_cifs_search(xid, file);
if (rc) {
cifs_dbg(FYI, "error %d reinitiating a search on rewind\n",
rc);
return rc;
}
/* FindFirst/Next set last_entry to NULL on malformed reply */
if (cfile->srch_inf.last_entry)
cifs_save_resume_key(cfile->srch_inf.last_entry, cfile);
}
search_flags = CIFS_SEARCH_CLOSE_AT_END | CIFS_SEARCH_RETURN_RESUME;
if (backup_cred(cifs_sb))
search_flags |= CIFS_SEARCH_BACKUP_SEARCH;
while ((index_to_find >= cfile->srch_inf.index_of_last_entry) &&
(rc == 0) && !cfile->srch_inf.endOfSearch) {
cifs_dbg(FYI, "calling findnext2\n");
rc = server->ops->query_dir_next(xid, tcon, &cfile->fid,
search_flags,
&cfile->srch_inf);
/* FindFirst/Next set last_entry to NULL on malformed reply */
if (cfile->srch_inf.last_entry)
cifs_save_resume_key(cfile->srch_inf.last_entry, cfile);
if (rc)
return -ENOENT;
}
if (index_to_find < cfile->srch_inf.index_of_last_entry) {
/* we found the buffer that contains the entry */
/* scan and find it */
int i;
char *cur_ent;
char *end_of_smb = cfile->srch_inf.ntwrk_buf_start +
server->ops->calc_smb_size(
cfile->srch_inf.ntwrk_buf_start,
server);
cur_ent = cfile->srch_inf.srch_entries_start;
first_entry_in_buffer = cfile->srch_inf.index_of_last_entry
- cfile->srch_inf.entries_in_buffer;
pos_in_buf = index_to_find - first_entry_in_buffer;
cifs_dbg(FYI, "found entry - pos_in_buf %d\n", pos_in_buf);
for (i = 0; (i < (pos_in_buf)) && (cur_ent != NULL); i++) {
/* go entry by entry figuring out which is first */
cur_ent = nxt_dir_entry(cur_ent, end_of_smb,
cfile->srch_inf.info_level);
}
if ((cur_ent == NULL) && (i < pos_in_buf)) {
/* BB fixme - check if we should flag this error */
cifs_dbg(VFS, "reached end of buf searching for pos in buf %d index to find %lld rc %d\n",
pos_in_buf, index_to_find, rc);
}
rc = 0;
*current_entry = cur_ent;
} else {
cifs_dbg(FYI, "index not in buffer - could not findnext into it\n");
return 0;
}
if (pos_in_buf >= cfile->srch_inf.entries_in_buffer) {
cifs_dbg(FYI, "can not return entries pos_in_buf beyond last\n");
*num_to_ret = 0;
} else
*num_to_ret = cfile->srch_inf.entries_in_buffer - pos_in_buf;
return rc;
}
static int cifs_filldir(char *find_entry, struct file *file,
struct dir_context *ctx,
char *scratch_buf, unsigned int max_len)
{
struct cifsFileInfo *file_info = file->private_data;
struct super_block *sb = file_inode(file)->i_sb;
struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
struct cifs_dirent de = { NULL, };
struct cifs_fattr fattr;
struct qstr name;
int rc = 0;
ino_t ino;
rc = cifs_fill_dirent(&de, find_entry, file_info->srch_inf.info_level,
file_info->srch_inf.unicode);
if (rc)
return rc;
if (de.namelen > max_len) {
cifs_dbg(VFS, "bad search response length %zd past smb end\n",
de.namelen);
return -EINVAL;
}
/* skip . and .. since we added them first */
if (cifs_entry_is_dot(&de, file_info->srch_inf.unicode))
return 0;
if (file_info->srch_inf.unicode) {
struct nls_table *nlt = cifs_sb->local_nls;
Allow conversion of characters in Mac remap range. Part 1 This allows directory listings to Mac to display filenames correctly which have been created with illegal (to Windows) characters in their filename. It does not allow converting the other direction yet ie opening files with these characters (followon patch). There are seven reserved characters that need to be remapped when mounting to Windows, Mac (or any server without Unix Extensions) which are valid in POSIX but not in the other OS. : \ < > ? * | We used the normal UCS-2 remap range for this in order to convert this to/from UTF8 as did Windows Services for Unix (basically add 0xF000 to any of the 7 reserved characters), at least when the "mapchars" mount option was specified. Mac used a very slightly different "Services for Mac" remap range 0xF021 through 0xF027. The attached patch allows cifs.ko (the kernel client) to read directories on macs containing files with these characters and display their names properly. In theory this even might be useful on mounts to Samba when the vfs_catia or new "vfs_fruit" module is loaded. Currently the 7 reserved characters look very strange in directory listings from cifs.ko to Mac server. This patch allows these file name characters to be read (requires specifying mapchars on mount). Two additional changes are needed: 1) Make it more automatic: a way of detecting enough info so that we know to try to always remap these characters or not. Various have suggested that the SFM approach be made the default when the server does not support POSIX Unix extensions (cifs mounts to Samba for example) so need to make SFM remapping the default unless mapchars (SFU style mapping) specified on mount or no mapping explicitly requested or no mapping needed (cifs mounts to Samba). 2) Adding a patch to map the characters the other direction (ie UTF-8 to UCS-2 on open). This patch does it for translating readdir entries (ie UCS-2 to UTF-8) Signed-off-by: Steve French <smfrench@gmail.com> Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
2014-09-25 22:20:05 +04:00
int map_type;
Remap reserved posix characters by default (part 3/3) This is a bigger patch, but its size is mostly due to a single change for how we check for remapping illegal characters in file names - a lot of repeated, small changes to the way callers request converting file names. The final patch in the series does the following: 1) changes default behavior for cifs to be more intuitive. Currently we do not map by default to seven reserved characters, ie those valid in POSIX but not in NTFS/CIFS/SMB3/Windows, unless a mount option (mapchars) is specified. Change this to by default always map and map using the SFM maping (like the Mac uses) unless the server negotiates the CIFS Unix Extensions (like Samba does when mounting with the cifs protocol) when the remapping of the characters is unnecessary. This should help SMB3 mounts in particular since Samba will likely be able to implement this mapping with its new "vfs_fruit" module as it will be doing for the Mac. 2) if the user specifies the existing "mapchars" mount option then use the "SFU" (Microsoft Services for Unix, SUA) style mapping of the seven characters instead. 3) if the user specifies "nomapposix" then disable SFM/MAC style mapping (so no character remapping would be used unless the user specifies "mapchars" on mount as well, as above). 4) change all the places in the code that check for the superblock flag on the mount which is set by mapchars and passed in on all path based operation and change it to use a small function call instead to set the mapping type properly (and check for the mapping type in the cifs unicode functions) Signed-off-by: Steve French <smfrench@gmail.com>
2014-09-27 11:19:01 +04:00
map_type = cifs_remap(cifs_sb);
name.name = scratch_buf;
name.len =
cifs_from_utf16((char *)name.name, (__le16 *)de.name,
UNICODE_NAME_MAX,
min_t(size_t, de.namelen,
Allow conversion of characters in Mac remap range. Part 1 This allows directory listings to Mac to display filenames correctly which have been created with illegal (to Windows) characters in their filename. It does not allow converting the other direction yet ie opening files with these characters (followon patch). There are seven reserved characters that need to be remapped when mounting to Windows, Mac (or any server without Unix Extensions) which are valid in POSIX but not in the other OS. : \ < > ? * | We used the normal UCS-2 remap range for this in order to convert this to/from UTF8 as did Windows Services for Unix (basically add 0xF000 to any of the 7 reserved characters), at least when the "mapchars" mount option was specified. Mac used a very slightly different "Services for Mac" remap range 0xF021 through 0xF027. The attached patch allows cifs.ko (the kernel client) to read directories on macs containing files with these characters and display their names properly. In theory this even might be useful on mounts to Samba when the vfs_catia or new "vfs_fruit" module is loaded. Currently the 7 reserved characters look very strange in directory listings from cifs.ko to Mac server. This patch allows these file name characters to be read (requires specifying mapchars on mount). Two additional changes are needed: 1) Make it more automatic: a way of detecting enough info so that we know to try to always remap these characters or not. Various have suggested that the SFM approach be made the default when the server does not support POSIX Unix extensions (cifs mounts to Samba for example) so need to make SFM remapping the default unless mapchars (SFU style mapping) specified on mount or no mapping explicitly requested or no mapping needed (cifs mounts to Samba). 2) Adding a patch to map the characters the other direction (ie UTF-8 to UCS-2 on open). This patch does it for translating readdir entries (ie UCS-2 to UTF-8) Signed-off-by: Steve French <smfrench@gmail.com> Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
2014-09-25 22:20:05 +04:00
(size_t)max_len), nlt, map_type);
name.len -= nls_nullsize(nlt);
} else {
name.name = de.name;
name.len = de.namelen;
}
switch (file_info->srch_inf.info_level) {
case SMB_FIND_FILE_UNIX:
cifs_unix_basic_to_fattr(&fattr,
&((FILE_UNIX_INFO *)find_entry)->basic,
cifs_sb);
break;
case SMB_FIND_FILE_INFO_STANDARD:
cifs_std_info_to_fattr(&fattr,
(FIND_FILE_STANDARD_INFO *)find_entry,
cifs_sb);
break;
default:
cifs_dir_info_to_fattr(&fattr,
(FILE_DIRECTORY_INFO *)find_entry,
cifs_sb);
break;
}
if (de.ino && (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM)) {
fattr.cf_uniqueid = de.ino;
} else {
fattr.cf_uniqueid = iunique(sb, ROOT_I);
cifs_autodisable_serverino(cifs_sb);
}
if ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MF_SYMLINKS) &&
couldbe_mf_symlink(&fattr))
/*
* trying to get the type and mode can be slow,
* so just call those regular files for now, and mark
* for reval
*/
fattr.cf_flags |= CIFS_FATTR_NEED_REVAL;
cifs_prime_dcache(file_dentry(file), &name, &fattr);
ino = cifs_uniqueid_to_ino_t(fattr.cf_uniqueid);
return !dir_emit(ctx, name.name, name.len, ino, fattr.cf_dtype);
}
int cifs_readdir(struct file *file, struct dir_context *ctx)
{
int rc = 0;
unsigned int xid;
int i;
struct cifs_tcon *tcon;
struct cifsFileInfo *cifsFile = NULL;
char *current_entry;
int num_to_fill = 0;
char *tmp_buf = NULL;
char *end_of_smb;
unsigned int max_len;
xid = get_xid();
/*
* Ensure FindFirst doesn't fail before doing filldir() for '.' and
* '..'. Otherwise we won't be able to notify VFS in case of failure.
*/
if (file->private_data == NULL) {
rc = initiate_cifs_search(xid, file);
cifs_dbg(FYI, "initiate cifs search rc %d\n", rc);
if (rc)
goto rddir2_exit;
}
if (!dir_emit_dots(file, ctx))
goto rddir2_exit;
/* 1) If search is active,
is in current search buffer?
if it before then restart search
if after then keep searching till find it */
cifsFile = file->private_data;
if (cifsFile->srch_inf.endOfSearch) {
if (cifsFile->srch_inf.emptyDir) {
cifs_dbg(FYI, "End of search, empty dir\n");
rc = 0;
goto rddir2_exit;
}
} /* else {
cifsFile->invalidHandle = true;
tcon->ses->server->close(xid, tcon, &cifsFile->fid);
} */
tcon = tlink_tcon(cifsFile->tlink);
rc = find_cifs_entry(xid, tcon, ctx->pos, file, &current_entry,
&num_to_fill);
if (rc) {
cifs_dbg(FYI, "fce error %d\n", rc);
goto rddir2_exit;
} else if (current_entry != NULL) {
cifs_dbg(FYI, "entry %lld found\n", ctx->pos);
} else {
cifs_dbg(FYI, "could not find entry\n");
goto rddir2_exit;
}
cifs_dbg(FYI, "loop through %d times filling dir for net buf %p\n",
num_to_fill, cifsFile->srch_inf.ntwrk_buf_start);
max_len = tcon->ses->server->ops->calc_smb_size(
cifsFile->srch_inf.ntwrk_buf_start,
tcon->ses->server);
end_of_smb = cifsFile->srch_inf.ntwrk_buf_start + max_len;
tmp_buf = kmalloc(UNICODE_NAME_MAX, GFP_KERNEL);
if (tmp_buf == NULL) {
rc = -ENOMEM;
goto rddir2_exit;
}
for (i = 0; i < num_to_fill; i++) {
if (current_entry == NULL) {
/* evaluate whether this case is an error */
cifs_dbg(VFS, "past SMB end, num to fill %d i %d\n",
num_to_fill, i);
break;
}
/*
* if buggy server returns . and .. late do we want to
* check for that here?
*/
*tmp_buf = 0;
rc = cifs_filldir(current_entry, file, ctx,
tmp_buf, max_len);
if (rc) {
if (rc > 0)
rc = 0;
break;
}
ctx->pos++;
if (ctx->pos ==
cifsFile->srch_inf.index_of_last_entry) {
cifs_dbg(FYI, "last entry in buf at pos %lld %s\n",
ctx->pos, tmp_buf);
cifs_save_resume_key(current_entry, cifsFile);
break;
} else
current_entry =
nxt_dir_entry(current_entry, end_of_smb,
cifsFile->srch_inf.info_level);
}
kfree(tmp_buf);
rddir2_exit:
free_xid(xid);
return rc;
}