linux/drivers/net/qlcnic/qlcnic_init.c

1769 lines
41 KiB
C
Raw Normal View History

/*
* QLogic qlcnic NIC Driver
* Copyright (c) 2009-2010 QLogic Corporation
*
* See LICENSE.qlcnic for copyright and licensing details.
*/
#include <linux/netdevice.h>
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/if_vlan.h>
#include "qlcnic.h"
struct crb_addr_pair {
u32 addr;
u32 data;
};
#define QLCNIC_MAX_CRB_XFORM 60
static unsigned int crb_addr_xform[QLCNIC_MAX_CRB_XFORM];
#define crb_addr_transform(name) \
(crb_addr_xform[QLCNIC_HW_PX_MAP_CRB_##name] = \
QLCNIC_HW_CRB_HUB_AGT_ADR_##name << 20)
#define QLCNIC_ADDR_ERROR (0xffffffff)
static void
qlcnic_post_rx_buffers_nodb(struct qlcnic_adapter *adapter,
struct qlcnic_host_rds_ring *rds_ring);
static int
qlcnic_check_fw_hearbeat(struct qlcnic_adapter *adapter);
static void crb_addr_transform_setup(void)
{
crb_addr_transform(XDMA);
crb_addr_transform(TIMR);
crb_addr_transform(SRE);
crb_addr_transform(SQN3);
crb_addr_transform(SQN2);
crb_addr_transform(SQN1);
crb_addr_transform(SQN0);
crb_addr_transform(SQS3);
crb_addr_transform(SQS2);
crb_addr_transform(SQS1);
crb_addr_transform(SQS0);
crb_addr_transform(RPMX7);
crb_addr_transform(RPMX6);
crb_addr_transform(RPMX5);
crb_addr_transform(RPMX4);
crb_addr_transform(RPMX3);
crb_addr_transform(RPMX2);
crb_addr_transform(RPMX1);
crb_addr_transform(RPMX0);
crb_addr_transform(ROMUSB);
crb_addr_transform(SN);
crb_addr_transform(QMN);
crb_addr_transform(QMS);
crb_addr_transform(PGNI);
crb_addr_transform(PGND);
crb_addr_transform(PGN3);
crb_addr_transform(PGN2);
crb_addr_transform(PGN1);
crb_addr_transform(PGN0);
crb_addr_transform(PGSI);
crb_addr_transform(PGSD);
crb_addr_transform(PGS3);
crb_addr_transform(PGS2);
crb_addr_transform(PGS1);
crb_addr_transform(PGS0);
crb_addr_transform(PS);
crb_addr_transform(PH);
crb_addr_transform(NIU);
crb_addr_transform(I2Q);
crb_addr_transform(EG);
crb_addr_transform(MN);
crb_addr_transform(MS);
crb_addr_transform(CAS2);
crb_addr_transform(CAS1);
crb_addr_transform(CAS0);
crb_addr_transform(CAM);
crb_addr_transform(C2C1);
crb_addr_transform(C2C0);
crb_addr_transform(SMB);
crb_addr_transform(OCM0);
crb_addr_transform(I2C0);
}
void qlcnic_release_rx_buffers(struct qlcnic_adapter *adapter)
{
struct qlcnic_recv_context *recv_ctx;
struct qlcnic_host_rds_ring *rds_ring;
struct qlcnic_rx_buffer *rx_buf;
int i, ring;
recv_ctx = adapter->recv_ctx;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
for (i = 0; i < rds_ring->num_desc; ++i) {
rx_buf = &(rds_ring->rx_buf_arr[i]);
if (rx_buf->skb == NULL)
continue;
pci_unmap_single(adapter->pdev,
rx_buf->dma,
rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(rx_buf->skb);
}
}
}
void qlcnic_reset_rx_buffers_list(struct qlcnic_adapter *adapter)
{
struct qlcnic_recv_context *recv_ctx;
struct qlcnic_host_rds_ring *rds_ring;
struct qlcnic_rx_buffer *rx_buf;
int i, ring;
recv_ctx = adapter->recv_ctx;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
INIT_LIST_HEAD(&rds_ring->free_list);
rx_buf = rds_ring->rx_buf_arr;
for (i = 0; i < rds_ring->num_desc; i++) {
list_add_tail(&rx_buf->list,
&rds_ring->free_list);
rx_buf++;
}
}
}
void qlcnic_release_tx_buffers(struct qlcnic_adapter *adapter)
{
struct qlcnic_cmd_buffer *cmd_buf;
struct qlcnic_skb_frag *buffrag;
int i, j;
struct qlcnic_host_tx_ring *tx_ring = adapter->tx_ring;
cmd_buf = tx_ring->cmd_buf_arr;
for (i = 0; i < tx_ring->num_desc; i++) {
buffrag = cmd_buf->frag_array;
if (buffrag->dma) {
pci_unmap_single(adapter->pdev, buffrag->dma,
buffrag->length, PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
for (j = 0; j < cmd_buf->frag_count; j++) {
buffrag++;
if (buffrag->dma) {
pci_unmap_page(adapter->pdev, buffrag->dma,
buffrag->length,
PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
}
if (cmd_buf->skb) {
dev_kfree_skb_any(cmd_buf->skb);
cmd_buf->skb = NULL;
}
cmd_buf++;
}
}
void qlcnic_free_sw_resources(struct qlcnic_adapter *adapter)
{
struct qlcnic_recv_context *recv_ctx;
struct qlcnic_host_rds_ring *rds_ring;
struct qlcnic_host_tx_ring *tx_ring;
int ring;
recv_ctx = adapter->recv_ctx;
if (recv_ctx->rds_rings == NULL)
goto skip_rds;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
vfree(rds_ring->rx_buf_arr);
rds_ring->rx_buf_arr = NULL;
}
kfree(recv_ctx->rds_rings);
skip_rds:
if (adapter->tx_ring == NULL)
return;
tx_ring = adapter->tx_ring;
vfree(tx_ring->cmd_buf_arr);
tx_ring->cmd_buf_arr = NULL;
kfree(adapter->tx_ring);
adapter->tx_ring = NULL;
}
int qlcnic_alloc_sw_resources(struct qlcnic_adapter *adapter)
{
struct qlcnic_recv_context *recv_ctx;
struct qlcnic_host_rds_ring *rds_ring;
struct qlcnic_host_sds_ring *sds_ring;
struct qlcnic_host_tx_ring *tx_ring;
struct qlcnic_rx_buffer *rx_buf;
int ring, i, size;
struct qlcnic_cmd_buffer *cmd_buf_arr;
struct net_device *netdev = adapter->netdev;
size = sizeof(struct qlcnic_host_tx_ring);
tx_ring = kzalloc(size, GFP_KERNEL);
if (tx_ring == NULL) {
dev_err(&netdev->dev, "failed to allocate tx ring struct\n");
return -ENOMEM;
}
adapter->tx_ring = tx_ring;
tx_ring->num_desc = adapter->num_txd;
tx_ring->txq = netdev_get_tx_queue(netdev, 0);
cmd_buf_arr = vzalloc(TX_BUFF_RINGSIZE(tx_ring));
if (cmd_buf_arr == NULL) {
dev_err(&netdev->dev, "failed to allocate cmd buffer ring\n");
goto err_out;
}
tx_ring->cmd_buf_arr = cmd_buf_arr;
recv_ctx = adapter->recv_ctx;
size = adapter->max_rds_rings * sizeof(struct qlcnic_host_rds_ring);
rds_ring = kzalloc(size, GFP_KERNEL);
if (rds_ring == NULL) {
dev_err(&netdev->dev, "failed to allocate rds ring struct\n");
goto err_out;
}
recv_ctx->rds_rings = rds_ring;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
switch (ring) {
case RCV_RING_NORMAL:
rds_ring->num_desc = adapter->num_rxd;
rds_ring->dma_size = QLCNIC_P3P_RX_BUF_MAX_LEN;
rds_ring->skb_size = rds_ring->dma_size + NET_IP_ALIGN;
break;
case RCV_RING_JUMBO:
rds_ring->num_desc = adapter->num_jumbo_rxd;
rds_ring->dma_size =
QLCNIC_P3P_RX_JUMBO_BUF_MAX_LEN;
if (adapter->capabilities & QLCNIC_FW_CAPABILITY_HW_LRO)
rds_ring->dma_size += QLCNIC_LRO_BUFFER_EXTRA;
rds_ring->skb_size =
rds_ring->dma_size + NET_IP_ALIGN;
break;
}
rds_ring->rx_buf_arr = vzalloc(RCV_BUFF_RINGSIZE(rds_ring));
if (rds_ring->rx_buf_arr == NULL) {
dev_err(&netdev->dev, "Failed to allocate "
"rx buffer ring %d\n", ring);
goto err_out;
}
INIT_LIST_HEAD(&rds_ring->free_list);
/*
* Now go through all of them, set reference handles
* and put them in the queues.
*/
rx_buf = rds_ring->rx_buf_arr;
for (i = 0; i < rds_ring->num_desc; i++) {
list_add_tail(&rx_buf->list,
&rds_ring->free_list);
rx_buf->ref_handle = i;
rx_buf++;
}
spin_lock_init(&rds_ring->lock);
}
for (ring = 0; ring < adapter->max_sds_rings; ring++) {
sds_ring = &recv_ctx->sds_rings[ring];
sds_ring->irq = adapter->msix_entries[ring].vector;
sds_ring->adapter = adapter;
sds_ring->num_desc = adapter->num_rxd;
for (i = 0; i < NUM_RCV_DESC_RINGS; i++)
INIT_LIST_HEAD(&sds_ring->free_list[i]);
}
return 0;
err_out:
qlcnic_free_sw_resources(adapter);
return -ENOMEM;
}
/*
* Utility to translate from internal Phantom CRB address
* to external PCI CRB address.
*/
static u32 qlcnic_decode_crb_addr(u32 addr)
{
int i;
u32 base_addr, offset, pci_base;
crb_addr_transform_setup();
pci_base = QLCNIC_ADDR_ERROR;
base_addr = addr & 0xfff00000;
offset = addr & 0x000fffff;
for (i = 0; i < QLCNIC_MAX_CRB_XFORM; i++) {
if (crb_addr_xform[i] == base_addr) {
pci_base = i << 20;
break;
}
}
if (pci_base == QLCNIC_ADDR_ERROR)
return pci_base;
else
return pci_base + offset;
}
#define QLCNIC_MAX_ROM_WAIT_USEC 100
static int qlcnic_wait_rom_done(struct qlcnic_adapter *adapter)
{
long timeout = 0;
long done = 0;
cond_resched();
while (done == 0) {
done = QLCRD32(adapter, QLCNIC_ROMUSB_GLB_STATUS);
done &= 2;
if (++timeout >= QLCNIC_MAX_ROM_WAIT_USEC) {
dev_err(&adapter->pdev->dev,
"Timeout reached waiting for rom done");
return -EIO;
}
udelay(1);
}
return 0;
}
static int do_rom_fast_read(struct qlcnic_adapter *adapter,
u32 addr, u32 *valp)
{
QLCWR32(adapter, QLCNIC_ROMUSB_ROM_ADDRESS, addr);
QLCWR32(adapter, QLCNIC_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
QLCWR32(adapter, QLCNIC_ROMUSB_ROM_ABYTE_CNT, 3);
QLCWR32(adapter, QLCNIC_ROMUSB_ROM_INSTR_OPCODE, 0xb);
if (qlcnic_wait_rom_done(adapter)) {
dev_err(&adapter->pdev->dev, "Error waiting for rom done\n");
return -EIO;
}
/* reset abyte_cnt and dummy_byte_cnt */
QLCWR32(adapter, QLCNIC_ROMUSB_ROM_ABYTE_CNT, 0);
udelay(10);
QLCWR32(adapter, QLCNIC_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
*valp = QLCRD32(adapter, QLCNIC_ROMUSB_ROM_RDATA);
return 0;
}
static int do_rom_fast_read_words(struct qlcnic_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int addridx;
int ret = 0;
for (addridx = addr; addridx < (addr + size); addridx += 4) {
int v;
ret = do_rom_fast_read(adapter, addridx, &v);
if (ret != 0)
break;
*(__le32 *)bytes = cpu_to_le32(v);
bytes += 4;
}
return ret;
}
int
qlcnic_rom_fast_read_words(struct qlcnic_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int ret;
ret = qlcnic_rom_lock(adapter);
if (ret < 0)
return ret;
ret = do_rom_fast_read_words(adapter, addr, bytes, size);
qlcnic_rom_unlock(adapter);
return ret;
}
int qlcnic_rom_fast_read(struct qlcnic_adapter *adapter, u32 addr, u32 *valp)
{
int ret;
if (qlcnic_rom_lock(adapter) != 0)
return -EIO;
ret = do_rom_fast_read(adapter, addr, valp);
qlcnic_rom_unlock(adapter);
return ret;
}
int qlcnic_pinit_from_rom(struct qlcnic_adapter *adapter)
{
int addr, val;
int i, n, init_delay;
struct crb_addr_pair *buf;
unsigned offset;
u32 off;
struct pci_dev *pdev = adapter->pdev;
QLCWR32(adapter, CRB_CMDPEG_STATE, 0);
QLCWR32(adapter, CRB_RCVPEG_STATE, 0);
qlcnic_rom_lock(adapter);
QLCWR32(adapter, QLCNIC_ROMUSB_GLB_SW_RESET, 0xfeffffff);
qlcnic_rom_unlock(adapter);
/* Init HW CRB block */
if (qlcnic_rom_fast_read(adapter, 0, &n) != 0 || (n != 0xcafecafe) ||
qlcnic_rom_fast_read(adapter, 4, &n) != 0) {
dev_err(&pdev->dev, "ERROR Reading crb_init area: val:%x\n", n);
return -EIO;
}
offset = n & 0xffffU;
n = (n >> 16) & 0xffffU;
if (n >= 1024) {
dev_err(&pdev->dev, "QLOGIC card flash not initialized.\n");
return -EIO;
}
buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
if (buf == NULL) {
dev_err(&pdev->dev, "Unable to calloc memory for rom read.\n");
return -ENOMEM;
}
for (i = 0; i < n; i++) {
if (qlcnic_rom_fast_read(adapter, 8*i + 4*offset, &val) != 0 ||
qlcnic_rom_fast_read(adapter, 8*i + 4*offset + 4, &addr) != 0) {
kfree(buf);
return -EIO;
}
buf[i].addr = addr;
buf[i].data = val;
}
for (i = 0; i < n; i++) {
off = qlcnic_decode_crb_addr(buf[i].addr);
if (off == QLCNIC_ADDR_ERROR) {
dev_err(&pdev->dev, "CRB init value out of range %x\n",
buf[i].addr);
continue;
}
off += QLCNIC_PCI_CRBSPACE;
if (off & 1)
continue;
/* skipping cold reboot MAGIC */
if (off == QLCNIC_CAM_RAM(0x1fc))
continue;
if (off == (QLCNIC_CRB_I2C0 + 0x1c))
continue;
if (off == (ROMUSB_GLB + 0xbc)) /* do not reset PCI */
continue;
if (off == (ROMUSB_GLB + 0xa8))
continue;
if (off == (ROMUSB_GLB + 0xc8)) /* core clock */
continue;
if (off == (ROMUSB_GLB + 0x24)) /* MN clock */
continue;
if (off == (ROMUSB_GLB + 0x1c)) /* MS clock */
continue;
if ((off & 0x0ff00000) == QLCNIC_CRB_DDR_NET)
continue;
/* skip the function enable register */
if (off == QLCNIC_PCIE_REG(PCIE_SETUP_FUNCTION))
continue;
if (off == QLCNIC_PCIE_REG(PCIE_SETUP_FUNCTION2))
continue;
if ((off & 0x0ff00000) == QLCNIC_CRB_SMB)
continue;
init_delay = 1;
/* After writing this register, HW needs time for CRB */
/* to quiet down (else crb_window returns 0xffffffff) */
if (off == QLCNIC_ROMUSB_GLB_SW_RESET)
init_delay = 1000;
QLCWR32(adapter, off, buf[i].data);
msleep(init_delay);
}
kfree(buf);
/* Initialize protocol process engine */
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_D + 0xec, 0x1e);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_D + 0x4c, 8);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_I + 0x4c, 8);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_0 + 0x8, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_0 + 0xc, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_1 + 0x8, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_1 + 0xc, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_2 + 0x8, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_2 + 0xc, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_3 + 0x8, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_3 + 0xc, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_4 + 0x8, 0);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_4 + 0xc, 0);
msleep(1);
QLCWR32(adapter, QLCNIC_PEG_HALT_STATUS1, 0);
QLCWR32(adapter, QLCNIC_PEG_HALT_STATUS2, 0);
return 0;
}
static int qlcnic_cmd_peg_ready(struct qlcnic_adapter *adapter)
{
u32 val;
int retries = QLCNIC_CMDPEG_CHECK_RETRY_COUNT;
do {
val = QLCRD32(adapter, CRB_CMDPEG_STATE);
switch (val) {
case PHAN_INITIALIZE_COMPLETE:
case PHAN_INITIALIZE_ACK:
return 0;
case PHAN_INITIALIZE_FAILED:
goto out_err;
default:
break;
}
msleep(QLCNIC_CMDPEG_CHECK_DELAY);
} while (--retries);
QLCWR32(adapter, CRB_CMDPEG_STATE, PHAN_INITIALIZE_FAILED);
out_err:
dev_err(&adapter->pdev->dev, "Command Peg initialization not "
"complete, state: 0x%x.\n", val);
return -EIO;
}
static int
qlcnic_receive_peg_ready(struct qlcnic_adapter *adapter)
{
u32 val;
int retries = QLCNIC_RCVPEG_CHECK_RETRY_COUNT;
do {
val = QLCRD32(adapter, CRB_RCVPEG_STATE);
if (val == PHAN_PEG_RCV_INITIALIZED)
return 0;
msleep(QLCNIC_RCVPEG_CHECK_DELAY);
} while (--retries);
if (!retries) {
dev_err(&adapter->pdev->dev, "Receive Peg initialization not "
"complete, state: 0x%x.\n", val);
return -EIO;
}
return 0;
}
int
qlcnic_check_fw_status(struct qlcnic_adapter *adapter)
{
int err;
err = qlcnic_cmd_peg_ready(adapter);
if (err)
return err;
err = qlcnic_receive_peg_ready(adapter);
if (err)
return err;
QLCWR32(adapter, CRB_CMDPEG_STATE, PHAN_INITIALIZE_ACK);
return err;
}
int
qlcnic_setup_idc_param(struct qlcnic_adapter *adapter) {
int timeo;
u32 val;
val = QLCRD32(adapter, QLCNIC_CRB_DEV_PARTITION_INFO);
val = QLC_DEV_GET_DRV(val, adapter->portnum);
if ((val & 0x3) != QLCNIC_TYPE_NIC) {
dev_err(&adapter->pdev->dev,
"Not an Ethernet NIC func=%u\n", val);
return -EIO;
}
adapter->physical_port = (val >> 2);
if (qlcnic_rom_fast_read(adapter, QLCNIC_ROM_DEV_INIT_TIMEOUT, &timeo))
timeo = QLCNIC_INIT_TIMEOUT_SECS;
adapter->dev_init_timeo = timeo;
if (qlcnic_rom_fast_read(adapter, QLCNIC_ROM_DRV_RESET_TIMEOUT, &timeo))
timeo = QLCNIC_RESET_TIMEOUT_SECS;
adapter->reset_ack_timeo = timeo;
return 0;
}
static int qlcnic_get_flt_entry(struct qlcnic_adapter *adapter, u8 region,
struct qlcnic_flt_entry *region_entry)
{
struct qlcnic_flt_header flt_hdr;
struct qlcnic_flt_entry *flt_entry;
int i = 0, ret;
u32 entry_size;
memset(region_entry, 0, sizeof(struct qlcnic_flt_entry));
ret = qlcnic_rom_fast_read_words(adapter, QLCNIC_FLT_LOCATION,
(u8 *)&flt_hdr,
sizeof(struct qlcnic_flt_header));
if (ret) {
dev_warn(&adapter->pdev->dev,
"error reading flash layout header\n");
return -EIO;
}
entry_size = flt_hdr.len - sizeof(struct qlcnic_flt_header);
flt_entry = (struct qlcnic_flt_entry *)vzalloc(entry_size);
if (flt_entry == NULL) {
dev_warn(&adapter->pdev->dev, "error allocating memory\n");
return -EIO;
}
ret = qlcnic_rom_fast_read_words(adapter, QLCNIC_FLT_LOCATION +
sizeof(struct qlcnic_flt_header),
(u8 *)flt_entry, entry_size);
if (ret) {
dev_warn(&adapter->pdev->dev,
"error reading flash layout entries\n");
goto err_out;
}
while (i < (entry_size/sizeof(struct qlcnic_flt_entry))) {
if (flt_entry[i].region == region)
break;
i++;
}
if (i >= (entry_size/sizeof(struct qlcnic_flt_entry))) {
dev_warn(&adapter->pdev->dev,
"region=%x not found in %d regions\n", region, i);
ret = -EIO;
goto err_out;
}
memcpy(region_entry, &flt_entry[i], sizeof(struct qlcnic_flt_entry));
err_out:
vfree(flt_entry);
return ret;
}
int
qlcnic_check_flash_fw_ver(struct qlcnic_adapter *adapter)
{
struct qlcnic_flt_entry fw_entry;
u32 ver = -1, min_ver;
int ret;
ret = qlcnic_get_flt_entry(adapter, QLCNIC_FW_IMAGE_REGION, &fw_entry);
if (!ret)
/* 0-4:-signature, 4-8:-fw version */
qlcnic_rom_fast_read(adapter, fw_entry.start_addr + 4,
(int *)&ver);
else
qlcnic_rom_fast_read(adapter, QLCNIC_FW_VERSION_OFFSET,
(int *)&ver);
ver = QLCNIC_DECODE_VERSION(ver);
min_ver = QLCNIC_MIN_FW_VERSION;
if (ver < min_ver) {
dev_err(&adapter->pdev->dev,
"firmware version %d.%d.%d unsupported."
"Min supported version %d.%d.%d\n",
_major(ver), _minor(ver), _build(ver),
_major(min_ver), _minor(min_ver), _build(min_ver));
return -EINVAL;
}
return 0;
}
static int
qlcnic_has_mn(struct qlcnic_adapter *adapter)
{
u32 capability;
capability = 0;
capability = QLCRD32(adapter, QLCNIC_PEG_TUNE_CAPABILITY);
if (capability & QLCNIC_PEG_TUNE_MN_PRESENT)
return 1;
return 0;
}
static
struct uni_table_desc *qlcnic_get_table_desc(const u8 *unirom, int section)
{
u32 i;
struct uni_table_desc *directory = (struct uni_table_desc *) &unirom[0];
__le32 entries = cpu_to_le32(directory->num_entries);
for (i = 0; i < entries; i++) {
__le32 offs = cpu_to_le32(directory->findex) +
(i * cpu_to_le32(directory->entry_size));
__le32 tab_type = cpu_to_le32(*((u32 *)&unirom[offs] + 8));
if (tab_type == section)
return (struct uni_table_desc *) &unirom[offs];
}
return NULL;
}
#define FILEHEADER_SIZE (14 * 4)
static int
qlcnic_validate_header(struct qlcnic_adapter *adapter)
{
const u8 *unirom = adapter->fw->data;
struct uni_table_desc *directory = (struct uni_table_desc *) &unirom[0];
__le32 fw_file_size = adapter->fw->size;
__le32 entries;
__le32 entry_size;
__le32 tab_size;
if (fw_file_size < FILEHEADER_SIZE)
return -EINVAL;
entries = cpu_to_le32(directory->num_entries);
entry_size = cpu_to_le32(directory->entry_size);
tab_size = cpu_to_le32(directory->findex) + (entries * entry_size);
if (fw_file_size < tab_size)
return -EINVAL;
return 0;
}
static int
qlcnic_validate_bootld(struct qlcnic_adapter *adapter)
{
struct uni_table_desc *tab_desc;
struct uni_data_desc *descr;
const u8 *unirom = adapter->fw->data;
int idx = cpu_to_le32(*((int *)&unirom[adapter->file_prd_off] +
QLCNIC_UNI_BOOTLD_IDX_OFF));
__le32 offs;
__le32 tab_size;
__le32 data_size;
tab_desc = qlcnic_get_table_desc(unirom, QLCNIC_UNI_DIR_SECT_BOOTLD);
if (!tab_desc)
return -EINVAL;
tab_size = cpu_to_le32(tab_desc->findex) +
(cpu_to_le32(tab_desc->entry_size) * (idx + 1));
if (adapter->fw->size < tab_size)
return -EINVAL;
offs = cpu_to_le32(tab_desc->findex) +
(cpu_to_le32(tab_desc->entry_size) * (idx));
descr = (struct uni_data_desc *)&unirom[offs];
data_size = cpu_to_le32(descr->findex) + cpu_to_le32(descr->size);
if (adapter->fw->size < data_size)
return -EINVAL;
return 0;
}
static int
qlcnic_validate_fw(struct qlcnic_adapter *adapter)
{
struct uni_table_desc *tab_desc;
struct uni_data_desc *descr;
const u8 *unirom = adapter->fw->data;
int idx = cpu_to_le32(*((int *)&unirom[adapter->file_prd_off] +
QLCNIC_UNI_FIRMWARE_IDX_OFF));
__le32 offs;
__le32 tab_size;
__le32 data_size;
tab_desc = qlcnic_get_table_desc(unirom, QLCNIC_UNI_DIR_SECT_FW);
if (!tab_desc)
return -EINVAL;
tab_size = cpu_to_le32(tab_desc->findex) +
(cpu_to_le32(tab_desc->entry_size) * (idx + 1));
if (adapter->fw->size < tab_size)
return -EINVAL;
offs = cpu_to_le32(tab_desc->findex) +
(cpu_to_le32(tab_desc->entry_size) * (idx));
descr = (struct uni_data_desc *)&unirom[offs];
data_size = cpu_to_le32(descr->findex) + cpu_to_le32(descr->size);
if (adapter->fw->size < data_size)
return -EINVAL;
return 0;
}
static int
qlcnic_validate_product_offs(struct qlcnic_adapter *adapter)
{
struct uni_table_desc *ptab_descr;
const u8 *unirom = adapter->fw->data;
int mn_present = qlcnic_has_mn(adapter);
__le32 entries;
__le32 entry_size;
__le32 tab_size;
u32 i;
ptab_descr = qlcnic_get_table_desc(unirom,
QLCNIC_UNI_DIR_SECT_PRODUCT_TBL);
if (!ptab_descr)
return -EINVAL;
entries = cpu_to_le32(ptab_descr->num_entries);
entry_size = cpu_to_le32(ptab_descr->entry_size);
tab_size = cpu_to_le32(ptab_descr->findex) + (entries * entry_size);
if (adapter->fw->size < tab_size)
return -EINVAL;
nomn:
for (i = 0; i < entries; i++) {
__le32 flags, file_chiprev, offs;
u8 chiprev = adapter->ahw->revision_id;
u32 flagbit;
offs = cpu_to_le32(ptab_descr->findex) +
(i * cpu_to_le32(ptab_descr->entry_size));
flags = cpu_to_le32(*((int *)&unirom[offs] +
QLCNIC_UNI_FLAGS_OFF));
file_chiprev = cpu_to_le32(*((int *)&unirom[offs] +
QLCNIC_UNI_CHIP_REV_OFF));
flagbit = mn_present ? 1 : 2;
if ((chiprev == file_chiprev) &&
((1ULL << flagbit) & flags)) {
adapter->file_prd_off = offs;
return 0;
}
}
if (mn_present) {
mn_present = 0;
goto nomn;
}
return -EINVAL;
}
static int
qlcnic_validate_unified_romimage(struct qlcnic_adapter *adapter)
{
if (qlcnic_validate_header(adapter)) {
dev_err(&adapter->pdev->dev,
"unified image: header validation failed\n");
return -EINVAL;
}
if (qlcnic_validate_product_offs(adapter)) {
dev_err(&adapter->pdev->dev,
"unified image: product validation failed\n");
return -EINVAL;
}
if (qlcnic_validate_bootld(adapter)) {
dev_err(&adapter->pdev->dev,
"unified image: bootld validation failed\n");
return -EINVAL;
}
if (qlcnic_validate_fw(adapter)) {
dev_err(&adapter->pdev->dev,
"unified image: firmware validation failed\n");
return -EINVAL;
}
return 0;
}
static
struct uni_data_desc *qlcnic_get_data_desc(struct qlcnic_adapter *adapter,
u32 section, u32 idx_offset)
{
const u8 *unirom = adapter->fw->data;
int idx = cpu_to_le32(*((int *)&unirom[adapter->file_prd_off] +
idx_offset));
struct uni_table_desc *tab_desc;
__le32 offs;
tab_desc = qlcnic_get_table_desc(unirom, section);
if (tab_desc == NULL)
return NULL;
offs = cpu_to_le32(tab_desc->findex) +
(cpu_to_le32(tab_desc->entry_size) * idx);
return (struct uni_data_desc *)&unirom[offs];
}
static u8 *
qlcnic_get_bootld_offs(struct qlcnic_adapter *adapter)
{
u32 offs = QLCNIC_BOOTLD_START;
if (adapter->fw_type == QLCNIC_UNIFIED_ROMIMAGE)
offs = cpu_to_le32((qlcnic_get_data_desc(adapter,
QLCNIC_UNI_DIR_SECT_BOOTLD,
QLCNIC_UNI_BOOTLD_IDX_OFF))->findex);
return (u8 *)&adapter->fw->data[offs];
}
static u8 *
qlcnic_get_fw_offs(struct qlcnic_adapter *adapter)
{
u32 offs = QLCNIC_IMAGE_START;
if (adapter->fw_type == QLCNIC_UNIFIED_ROMIMAGE)
offs = cpu_to_le32((qlcnic_get_data_desc(adapter,
QLCNIC_UNI_DIR_SECT_FW,
QLCNIC_UNI_FIRMWARE_IDX_OFF))->findex);
return (u8 *)&adapter->fw->data[offs];
}
static __le32
qlcnic_get_fw_size(struct qlcnic_adapter *adapter)
{
if (adapter->fw_type == QLCNIC_UNIFIED_ROMIMAGE)
return cpu_to_le32((qlcnic_get_data_desc(adapter,
QLCNIC_UNI_DIR_SECT_FW,
QLCNIC_UNI_FIRMWARE_IDX_OFF))->size);
else
return cpu_to_le32(
*(u32 *)&adapter->fw->data[QLCNIC_FW_SIZE_OFFSET]);
}
static __le32
qlcnic_get_fw_version(struct qlcnic_adapter *adapter)
{
struct uni_data_desc *fw_data_desc;
const struct firmware *fw = adapter->fw;
__le32 major, minor, sub;
const u8 *ver_str;
int i, ret;
if (adapter->fw_type != QLCNIC_UNIFIED_ROMIMAGE)
return cpu_to_le32(*(u32 *)&fw->data[QLCNIC_FW_VERSION_OFFSET]);
fw_data_desc = qlcnic_get_data_desc(adapter, QLCNIC_UNI_DIR_SECT_FW,
QLCNIC_UNI_FIRMWARE_IDX_OFF);
ver_str = fw->data + cpu_to_le32(fw_data_desc->findex) +
cpu_to_le32(fw_data_desc->size) - 17;
for (i = 0; i < 12; i++) {
if (!strncmp(&ver_str[i], "REV=", 4)) {
ret = sscanf(&ver_str[i+4], "%u.%u.%u ",
&major, &minor, &sub);
if (ret != 3)
return 0;
else
return major + (minor << 8) + (sub << 16);
}
}
return 0;
}
static __le32
qlcnic_get_bios_version(struct qlcnic_adapter *adapter)
{
const struct firmware *fw = adapter->fw;
__le32 bios_ver, prd_off = adapter->file_prd_off;
if (adapter->fw_type != QLCNIC_UNIFIED_ROMIMAGE)
return cpu_to_le32(
*(u32 *)&fw->data[QLCNIC_BIOS_VERSION_OFFSET]);
bios_ver = cpu_to_le32(*((u32 *) (&fw->data[prd_off])
+ QLCNIC_UNI_BIOS_VERSION_OFF));
return (bios_ver << 16) + ((bios_ver >> 8) & 0xff00) + (bios_ver >> 24);
}
static void qlcnic_rom_lock_recovery(struct qlcnic_adapter *adapter)
{
if (qlcnic_pcie_sem_lock(adapter, 2, QLCNIC_ROM_LOCK_ID))
dev_info(&adapter->pdev->dev, "Resetting rom_lock\n");
qlcnic_pcie_sem_unlock(adapter, 2);
}
static int
qlcnic_check_fw_hearbeat(struct qlcnic_adapter *adapter)
{
u32 heartbeat, ret = -EIO;
int retries = QLCNIC_HEARTBEAT_CHECK_RETRY_COUNT;
adapter->heartbeat = QLCRD32(adapter, QLCNIC_PEG_ALIVE_COUNTER);
do {
msleep(QLCNIC_HEARTBEAT_PERIOD_MSECS);
heartbeat = QLCRD32(adapter, QLCNIC_PEG_ALIVE_COUNTER);
if (heartbeat != adapter->heartbeat) {
ret = QLCNIC_RCODE_SUCCESS;
break;
}
} while (--retries);
return ret;
}
int
qlcnic_need_fw_reset(struct qlcnic_adapter *adapter)
{
if (qlcnic_check_fw_hearbeat(adapter)) {
qlcnic_rom_lock_recovery(adapter);
return 1;
}
if (adapter->need_fw_reset)
return 1;
if (adapter->fw)
return 1;
return 0;
}
static const char *fw_name[] = {
QLCNIC_UNIFIED_ROMIMAGE_NAME,
QLCNIC_FLASH_ROMIMAGE_NAME,
};
int
qlcnic_load_firmware(struct qlcnic_adapter *adapter)
{
u64 *ptr64;
u32 i, flashaddr, size;
const struct firmware *fw = adapter->fw;
struct pci_dev *pdev = adapter->pdev;
dev_info(&pdev->dev, "loading firmware from %s\n",
fw_name[adapter->fw_type]);
if (fw) {
__le64 data;
size = (QLCNIC_IMAGE_START - QLCNIC_BOOTLD_START) / 8;
ptr64 = (u64 *)qlcnic_get_bootld_offs(adapter);
flashaddr = QLCNIC_BOOTLD_START;
for (i = 0; i < size; i++) {
data = cpu_to_le64(ptr64[i]);
if (qlcnic_pci_mem_write_2M(adapter, flashaddr, data))
return -EIO;
flashaddr += 8;
}
size = (__force u32)qlcnic_get_fw_size(adapter) / 8;
ptr64 = (u64 *)qlcnic_get_fw_offs(adapter);
flashaddr = QLCNIC_IMAGE_START;
for (i = 0; i < size; i++) {
data = cpu_to_le64(ptr64[i]);
if (qlcnic_pci_mem_write_2M(adapter,
flashaddr, data))
return -EIO;
flashaddr += 8;
}
size = (__force u32)qlcnic_get_fw_size(adapter) % 8;
if (size) {
data = cpu_to_le64(ptr64[i]);
if (qlcnic_pci_mem_write_2M(adapter,
flashaddr, data))
return -EIO;
}
} else {
u64 data;
u32 hi, lo;
int ret;
struct qlcnic_flt_entry bootld_entry;
ret = qlcnic_get_flt_entry(adapter, QLCNIC_BOOTLD_REGION,
&bootld_entry);
if (!ret) {
size = bootld_entry.size / 8;
flashaddr = bootld_entry.start_addr;
} else {
size = (QLCNIC_IMAGE_START - QLCNIC_BOOTLD_START) / 8;
flashaddr = QLCNIC_BOOTLD_START;
dev_info(&pdev->dev,
"using legacy method to get flash fw region");
}
for (i = 0; i < size; i++) {
if (qlcnic_rom_fast_read(adapter,
flashaddr, (int *)&lo) != 0)
return -EIO;
if (qlcnic_rom_fast_read(adapter,
flashaddr + 4, (int *)&hi) != 0)
return -EIO;
data = (((u64)hi << 32) | lo);
if (qlcnic_pci_mem_write_2M(adapter,
flashaddr, data))
return -EIO;
flashaddr += 8;
}
}
msleep(1);
QLCWR32(adapter, QLCNIC_CRB_PEG_NET_0 + 0x18, 0x1020);
QLCWR32(adapter, QLCNIC_ROMUSB_GLB_SW_RESET, 0x80001e);
return 0;
}
static int
qlcnic_validate_firmware(struct qlcnic_adapter *adapter)
{
__le32 val;
u32 ver, bios, min_size;
struct pci_dev *pdev = adapter->pdev;
const struct firmware *fw = adapter->fw;
u8 fw_type = adapter->fw_type;
if (fw_type == QLCNIC_UNIFIED_ROMIMAGE) {
if (qlcnic_validate_unified_romimage(adapter))
return -EINVAL;
min_size = QLCNIC_UNI_FW_MIN_SIZE;
} else {
val = cpu_to_le32(*(u32 *)&fw->data[QLCNIC_FW_MAGIC_OFFSET]);
if ((__force u32)val != QLCNIC_BDINFO_MAGIC)
return -EINVAL;
min_size = QLCNIC_FW_MIN_SIZE;
}
if (fw->size < min_size)
return -EINVAL;
val = qlcnic_get_fw_version(adapter);
ver = QLCNIC_DECODE_VERSION(val);
if (ver < QLCNIC_MIN_FW_VERSION) {
dev_err(&pdev->dev,
"%s: firmware version %d.%d.%d unsupported\n",
fw_name[fw_type], _major(ver), _minor(ver), _build(ver));
return -EINVAL;
}
val = qlcnic_get_bios_version(adapter);
qlcnic_rom_fast_read(adapter, QLCNIC_BIOS_VERSION_OFFSET, (int *)&bios);
if ((__force u32)val != bios) {
dev_err(&pdev->dev, "%s: firmware bios is incompatible\n",
fw_name[fw_type]);
return -EINVAL;
}
QLCWR32(adapter, QLCNIC_CAM_RAM(0x1fc), QLCNIC_BDINFO_MAGIC);
return 0;
}
static void
qlcnic_get_next_fwtype(struct qlcnic_adapter *adapter)
{
u8 fw_type;
switch (adapter->fw_type) {
case QLCNIC_UNKNOWN_ROMIMAGE:
fw_type = QLCNIC_UNIFIED_ROMIMAGE;
break;
case QLCNIC_UNIFIED_ROMIMAGE:
default:
fw_type = QLCNIC_FLASH_ROMIMAGE;
break;
}
adapter->fw_type = fw_type;
}
void qlcnic_request_firmware(struct qlcnic_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int rc;
adapter->fw_type = QLCNIC_UNKNOWN_ROMIMAGE;
next:
qlcnic_get_next_fwtype(adapter);
if (adapter->fw_type == QLCNIC_FLASH_ROMIMAGE) {
adapter->fw = NULL;
} else {
rc = request_firmware(&adapter->fw,
fw_name[adapter->fw_type], &pdev->dev);
if (rc != 0)
goto next;
rc = qlcnic_validate_firmware(adapter);
if (rc != 0) {
release_firmware(adapter->fw);
msleep(1);
goto next;
}
}
}
void
qlcnic_release_firmware(struct qlcnic_adapter *adapter)
{
if (adapter->fw)
release_firmware(adapter->fw);
adapter->fw = NULL;
}
static void
qlcnic_handle_linkevent(struct qlcnic_adapter *adapter,
struct qlcnic_fw_msg *msg)
{
u32 cable_OUI;
u16 cable_len;
u16 link_speed;
u8 link_status, module, duplex, autoneg;
struct net_device *netdev = adapter->netdev;
adapter->has_link_events = 1;
cable_OUI = msg->body[1] & 0xffffffff;
cable_len = (msg->body[1] >> 32) & 0xffff;
link_speed = (msg->body[1] >> 48) & 0xffff;
link_status = msg->body[2] & 0xff;
duplex = (msg->body[2] >> 16) & 0xff;
autoneg = (msg->body[2] >> 24) & 0xff;
module = (msg->body[2] >> 8) & 0xff;
if (module == LINKEVENT_MODULE_TWINAX_UNSUPPORTED_CABLE)
dev_info(&netdev->dev, "unsupported cable: OUI 0x%x, "
"length %d\n", cable_OUI, cable_len);
else if (module == LINKEVENT_MODULE_TWINAX_UNSUPPORTED_CABLELEN)
dev_info(&netdev->dev, "unsupported cable length %d\n",
cable_len);
qlcnic_advert_link_change(adapter, link_status);
if (duplex == LINKEVENT_FULL_DUPLEX)
adapter->link_duplex = DUPLEX_FULL;
else
adapter->link_duplex = DUPLEX_HALF;
adapter->module_type = module;
adapter->link_autoneg = autoneg;
adapter->link_speed = link_speed;
}
static void
qlcnic_handle_fw_message(int desc_cnt, int index,
struct qlcnic_host_sds_ring *sds_ring)
{
struct qlcnic_fw_msg msg;
struct status_desc *desc;
int i = 0, opcode;
while (desc_cnt > 0 && i < 8) {
desc = &sds_ring->desc_head[index];
msg.words[i++] = le64_to_cpu(desc->status_desc_data[0]);
msg.words[i++] = le64_to_cpu(desc->status_desc_data[1]);
index = get_next_index(index, sds_ring->num_desc);
desc_cnt--;
}
opcode = qlcnic_get_nic_msg_opcode(msg.body[0]);
switch (opcode) {
case QLCNIC_C2H_OPCODE_GET_LINKEVENT_RESPONSE:
qlcnic_handle_linkevent(sds_ring->adapter, &msg);
break;
default:
break;
}
}
static int
qlcnic_alloc_rx_skb(struct qlcnic_adapter *adapter,
struct qlcnic_host_rds_ring *rds_ring,
struct qlcnic_rx_buffer *buffer)
{
struct sk_buff *skb;
dma_addr_t dma;
struct pci_dev *pdev = adapter->pdev;
skb = dev_alloc_skb(rds_ring->skb_size);
if (!skb) {
adapter->stats.skb_alloc_failure++;
return -ENOMEM;
}
skb_reserve(skb, NET_IP_ALIGN);
dma = pci_map_single(pdev, skb->data,
rds_ring->dma_size, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(pdev, dma)) {
adapter->stats.rx_dma_map_error++;
dev_kfree_skb_any(skb);
return -ENOMEM;
}
buffer->skb = skb;
buffer->dma = dma;
return 0;
}
static struct sk_buff *qlcnic_process_rxbuf(struct qlcnic_adapter *adapter,
struct qlcnic_host_rds_ring *rds_ring, u16 index, u16 cksum)
{
struct qlcnic_rx_buffer *buffer;
struct sk_buff *skb;
buffer = &rds_ring->rx_buf_arr[index];
if (unlikely(buffer->skb == NULL)) {
WARN_ON(1);
return NULL;
}
pci_unmap_single(adapter->pdev, buffer->dma, rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
skb = buffer->skb;
if (likely((adapter->netdev->features & NETIF_F_RXCSUM) &&
(cksum == STATUS_CKSUM_OK || cksum == STATUS_CKSUM_LOOP))) {
adapter->stats.csummed++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb_checksum_none_assert(skb);
}
skb->dev = adapter->netdev;
buffer->skb = NULL;
return skb;
}
static inline int
qlcnic_check_rx_tagging(struct qlcnic_adapter *adapter, struct sk_buff *skb,
u16 *vlan_tag)
{
struct ethhdr *eth_hdr;
if (!__vlan_get_tag(skb, vlan_tag)) {
eth_hdr = (struct ethhdr *) skb->data;
memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
skb_pull(skb, VLAN_HLEN);
}
if (!adapter->pvid)
return 0;
if (*vlan_tag == adapter->pvid) {
/* Outer vlan tag. Packet should follow non-vlan path */
*vlan_tag = 0xffff;
return 0;
}
if (adapter->flags & QLCNIC_TAGGING_ENABLED)
return 0;
return -EINVAL;
}
static struct qlcnic_rx_buffer *
qlcnic_process_rcv(struct qlcnic_adapter *adapter,
struct qlcnic_host_sds_ring *sds_ring,
int ring, u64 sts_data0)
{
struct net_device *netdev = adapter->netdev;
struct qlcnic_recv_context *recv_ctx = adapter->recv_ctx;
struct qlcnic_rx_buffer *buffer;
struct sk_buff *skb;
struct qlcnic_host_rds_ring *rds_ring;
int index, length, cksum, pkt_offset;
u16 vid = 0xffff;
if (unlikely(ring >= adapter->max_rds_rings))
return NULL;
rds_ring = &recv_ctx->rds_rings[ring];
index = qlcnic_get_sts_refhandle(sts_data0);
if (unlikely(index >= rds_ring->num_desc))
return NULL;
buffer = &rds_ring->rx_buf_arr[index];
length = qlcnic_get_sts_totallength(sts_data0);
cksum = qlcnic_get_sts_status(sts_data0);
pkt_offset = qlcnic_get_sts_pkt_offset(sts_data0);
skb = qlcnic_process_rxbuf(adapter, rds_ring, index, cksum);
if (!skb)
return buffer;
if (length > rds_ring->skb_size)
skb_put(skb, rds_ring->skb_size);
else
skb_put(skb, length);
if (pkt_offset)
skb_pull(skb, pkt_offset);
if (unlikely(qlcnic_check_rx_tagging(adapter, skb, &vid))) {
adapter->stats.rxdropped++;
dev_kfree_skb(skb);
return buffer;
}
skb->protocol = eth_type_trans(skb, netdev);
if (vid != 0xffff)
__vlan_hwaccel_put_tag(skb, vid);
napi_gro_receive(&sds_ring->napi, skb);
adapter->stats.rx_pkts++;
adapter->stats.rxbytes += length;
return buffer;
}
#define QLC_TCP_HDR_SIZE 20
#define QLC_TCP_TS_OPTION_SIZE 12
#define QLC_TCP_TS_HDR_SIZE (QLC_TCP_HDR_SIZE + QLC_TCP_TS_OPTION_SIZE)
static struct qlcnic_rx_buffer *
qlcnic_process_lro(struct qlcnic_adapter *adapter,
struct qlcnic_host_sds_ring *sds_ring,
int ring, u64 sts_data0, u64 sts_data1)
{
struct net_device *netdev = adapter->netdev;
struct qlcnic_recv_context *recv_ctx = adapter->recv_ctx;
struct qlcnic_rx_buffer *buffer;
struct sk_buff *skb;
struct qlcnic_host_rds_ring *rds_ring;
struct iphdr *iph;
struct tcphdr *th;
bool push, timestamp;
int l2_hdr_offset, l4_hdr_offset;
int index;
u16 lro_length, length, data_offset;
u32 seq_number;
u16 vid = 0xffff;
if (unlikely(ring > adapter->max_rds_rings))
return NULL;
rds_ring = &recv_ctx->rds_rings[ring];
index = qlcnic_get_lro_sts_refhandle(sts_data0);
if (unlikely(index > rds_ring->num_desc))
return NULL;
buffer = &rds_ring->rx_buf_arr[index];
timestamp = qlcnic_get_lro_sts_timestamp(sts_data0);
lro_length = qlcnic_get_lro_sts_length(sts_data0);
l2_hdr_offset = qlcnic_get_lro_sts_l2_hdr_offset(sts_data0);
l4_hdr_offset = qlcnic_get_lro_sts_l4_hdr_offset(sts_data0);
push = qlcnic_get_lro_sts_push_flag(sts_data0);
seq_number = qlcnic_get_lro_sts_seq_number(sts_data1);
skb = qlcnic_process_rxbuf(adapter, rds_ring, index, STATUS_CKSUM_OK);
if (!skb)
return buffer;
if (timestamp)
data_offset = l4_hdr_offset + QLC_TCP_TS_HDR_SIZE;
else
data_offset = l4_hdr_offset + QLC_TCP_HDR_SIZE;
skb_put(skb, lro_length + data_offset);
skb_pull(skb, l2_hdr_offset);
if (unlikely(qlcnic_check_rx_tagging(adapter, skb, &vid))) {
adapter->stats.rxdropped++;
dev_kfree_skb(skb);
return buffer;
}
skb->protocol = eth_type_trans(skb, netdev);
iph = (struct iphdr *)skb->data;
th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
length = (iph->ihl << 2) + (th->doff << 2) + lro_length;
iph->tot_len = htons(length);
iph->check = 0;
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
th->psh = push;
th->seq = htonl(seq_number);
length = skb->len;
if (vid != 0xffff)
__vlan_hwaccel_put_tag(skb, vid);
netif_receive_skb(skb);
adapter->stats.lro_pkts++;
adapter->stats.lrobytes += length;
return buffer;
}
int
qlcnic_process_rcv_ring(struct qlcnic_host_sds_ring *sds_ring, int max)
{
struct qlcnic_adapter *adapter = sds_ring->adapter;
struct list_head *cur;
struct status_desc *desc;
struct qlcnic_rx_buffer *rxbuf;
u64 sts_data0, sts_data1;
int count = 0;
int opcode, ring, desc_cnt;
u32 consumer = sds_ring->consumer;
while (count < max) {
desc = &sds_ring->desc_head[consumer];
sts_data0 = le64_to_cpu(desc->status_desc_data[0]);
if (!(sts_data0 & STATUS_OWNER_HOST))
break;
desc_cnt = qlcnic_get_sts_desc_cnt(sts_data0);
opcode = qlcnic_get_sts_opcode(sts_data0);
switch (opcode) {
case QLCNIC_RXPKT_DESC:
case QLCNIC_OLD_RXPKT_DESC:
case QLCNIC_SYN_OFFLOAD:
ring = qlcnic_get_sts_type(sts_data0);
rxbuf = qlcnic_process_rcv(adapter, sds_ring,
ring, sts_data0);
break;
case QLCNIC_LRO_DESC:
ring = qlcnic_get_lro_sts_type(sts_data0);
sts_data1 = le64_to_cpu(desc->status_desc_data[1]);
rxbuf = qlcnic_process_lro(adapter, sds_ring,
ring, sts_data0, sts_data1);
break;
case QLCNIC_RESPONSE_DESC:
qlcnic_handle_fw_message(desc_cnt, consumer, sds_ring);
default:
goto skip;
}
WARN_ON(desc_cnt > 1);
if (likely(rxbuf))
list_add_tail(&rxbuf->list, &sds_ring->free_list[ring]);
else
adapter->stats.null_rxbuf++;
skip:
for (; desc_cnt > 0; desc_cnt--) {
desc = &sds_ring->desc_head[consumer];
desc->status_desc_data[0] =
cpu_to_le64(STATUS_OWNER_PHANTOM);
consumer = get_next_index(consumer, sds_ring->num_desc);
}
count++;
}
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
struct qlcnic_host_rds_ring *rds_ring =
&adapter->recv_ctx->rds_rings[ring];
if (!list_empty(&sds_ring->free_list[ring])) {
list_for_each(cur, &sds_ring->free_list[ring]) {
rxbuf = list_entry(cur,
struct qlcnic_rx_buffer, list);
qlcnic_alloc_rx_skb(adapter, rds_ring, rxbuf);
}
spin_lock(&rds_ring->lock);
list_splice_tail_init(&sds_ring->free_list[ring],
&rds_ring->free_list);
spin_unlock(&rds_ring->lock);
}
qlcnic_post_rx_buffers_nodb(adapter, rds_ring);
}
if (count) {
sds_ring->consumer = consumer;
writel(consumer, sds_ring->crb_sts_consumer);
}
return count;
}
void
qlcnic_post_rx_buffers(struct qlcnic_adapter *adapter,
struct qlcnic_host_rds_ring *rds_ring)
{
struct rcv_desc *pdesc;
struct qlcnic_rx_buffer *buffer;
int count = 0;
u32 producer;
struct list_head *head;
producer = rds_ring->producer;
head = &rds_ring->free_list;
while (!list_empty(head)) {
buffer = list_entry(head->next, struct qlcnic_rx_buffer, list);
if (!buffer->skb) {
if (qlcnic_alloc_rx_skb(adapter, rds_ring, buffer))
break;
}
count++;
list_del(&buffer->list);
/* make a rcv descriptor */
pdesc = &rds_ring->desc_head[producer];
pdesc->addr_buffer = cpu_to_le64(buffer->dma);
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
producer = get_next_index(producer, rds_ring->num_desc);
}
if (count) {
rds_ring->producer = producer;
writel((producer-1) & (rds_ring->num_desc-1),
rds_ring->crb_rcv_producer);
}
}
static void
qlcnic_post_rx_buffers_nodb(struct qlcnic_adapter *adapter,
struct qlcnic_host_rds_ring *rds_ring)
{
struct rcv_desc *pdesc;
struct qlcnic_rx_buffer *buffer;
int count = 0;
uint32_t producer;
struct list_head *head;
if (!spin_trylock(&rds_ring->lock))
return;
producer = rds_ring->producer;
head = &rds_ring->free_list;
while (!list_empty(head)) {
buffer = list_entry(head->next, struct qlcnic_rx_buffer, list);
if (!buffer->skb) {
if (qlcnic_alloc_rx_skb(adapter, rds_ring, buffer))
break;
}
count++;
list_del(&buffer->list);
/* make a rcv descriptor */
pdesc = &rds_ring->desc_head[producer];
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
pdesc->addr_buffer = cpu_to_le64(buffer->dma);
producer = get_next_index(producer, rds_ring->num_desc);
}
if (count) {
rds_ring->producer = producer;
writel((producer - 1) & (rds_ring->num_desc - 1),
rds_ring->crb_rcv_producer);
}
spin_unlock(&rds_ring->lock);
}
void
qlcnic_fetch_mac(struct qlcnic_adapter *adapter, u32 off1, u32 off2,
u8 alt_mac, u8 *mac)
{
u32 mac_low, mac_high;
int i;
mac_low = QLCRD32(adapter, off1);
mac_high = QLCRD32(adapter, off2);
if (alt_mac) {
mac_low |= (mac_low >> 16) | (mac_high << 16);
mac_high >>= 16;
}
for (i = 0; i < 2; i++)
mac[i] = (u8)(mac_high >> ((1 - i) * 8));
for (i = 2; i < 6; i++)
mac[i] = (u8)(mac_low >> ((5 - i) * 8));
}