linux/arch/mips/kernel/cevt-r4k.c

299 lines
7.5 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2007 MIPS Technologies, Inc.
* Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
*/
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/smp.h>
#include <linux/irq.h>
#include <asm/time.h>
#include <asm/cevt-r4k.h>
static int mips_next_event(unsigned long delta,
struct clock_event_device *evt)
{
unsigned int cnt;
int res;
cnt = read_c0_count();
cnt += delta;
write_c0_compare(cnt);
res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
return res;
}
/**
* calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
*
* Running under virtualisation can introduce overhead into mips_next_event() in
* the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
* potentially with an unnatural frequency, which makes a fixed min_delta_ns
* value inappropriate as it may be too small.
*
* It can also introduce occasional latency from the guest being descheduled.
*
* This function calculates a good minimum delta based roughly on the 75th
* percentile of the time taken to do the mips_next_event() sequence, in order
* to handle potentially higher overhead while also eliminating outliers due to
* unpredictable hypervisor latency (which can be handled by retries).
*
* Return: An appropriate minimum delta for the clock event device.
*/
static unsigned int calculate_min_delta(void)
{
unsigned int cnt, i, j, k, l;
unsigned int buf1[4], buf2[3];
unsigned int min_delta;
/*
* Calculate the median of 5 75th percentiles of 5 samples of how long
* it takes to set CP0_Compare = CP0_Count + delta.
*/
for (i = 0; i < 5; ++i) {
for (j = 0; j < 5; ++j) {
/*
* This is like the code in mips_next_event(), and
* directly measures the borderline "safe" delta.
*/
cnt = read_c0_count();
write_c0_compare(cnt);
cnt = read_c0_count() - cnt;
/* Sorted insert into buf1 */
for (k = 0; k < j; ++k) {
if (cnt < buf1[k]) {
l = min_t(unsigned int,
j, ARRAY_SIZE(buf1) - 1);
for (; l > k; --l)
buf1[l] = buf1[l - 1];
break;
}
}
if (k < ARRAY_SIZE(buf1))
buf1[k] = cnt;
}
/* Sorted insert of 75th percentile into buf2 */
MIPS: cevt-r4k: Fix out-of-bounds array access calculate_min_delta() may incorrectly access a 4th element of buf2[] which only has 3 elements. This may trigger undefined behaviour and has been reported to cause strange crashes in start_kernel() sometime after timer initialization when built with GCC 5.3, possibly due to register/stack corruption: sched_clock: 32 bits at 200MHz, resolution 5ns, wraps every 10737418237ns CPU 0 Unable to handle kernel paging request at virtual address ffffb0aa, epc == 8067daa8, ra == 8067da84 Oops[#1]: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.9.18 #51 task: 8065e3e0 task.stack: 80644000 $ 0 : 00000000 00000001 00000000 00000000 $ 4 : 8065b4d0 00000000 805d0000 00000010 $ 8 : 00000010 80321400 fffff000 812de408 $12 : 00000000 00000000 00000000 ffffffff $16 : 00000002 ffffffff 80660000 806a666c $20 : 806c0000 00000000 00000000 00000000 $24 : 00000000 00000010 $28 : 80644000 80645ed0 00000000 8067da84 Hi : 00000000 Lo : 00000000 epc : 8067daa8 start_kernel+0x33c/0x500 ra : 8067da84 start_kernel+0x318/0x500 Status: 11000402 KERNEL EXL Cause : 4080040c (ExcCode 03) BadVA : ffffb0aa PrId : 0501992c (MIPS 1004Kc) Modules linked in: Process swapper/0 (pid: 0, threadinfo=80644000, task=8065e3e0, tls=00000000) Call Trace: [<8067daa8>] start_kernel+0x33c/0x500 Code: 24050240 0c0131f9 24849c64 <a200b0a8> 41606020 000000c0 0c1a45e6 00000000 0c1a5f44 UBSAN also detects the same issue: ================================================================ UBSAN: Undefined behaviour in arch/mips/kernel/cevt-r4k.c:85:41 load of address 80647e4c with insufficient space for an object of type 'unsigned int' CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.9.18 #47 Call Trace: [<80028f70>] show_stack+0x88/0xa4 [<80312654>] dump_stack+0x84/0xc0 [<8034163c>] ubsan_epilogue+0x14/0x50 [<803417d8>] __ubsan_handle_type_mismatch+0x160/0x168 [<8002dab0>] r4k_clockevent_init+0x544/0x764 [<80684d34>] time_init+0x18/0x90 [<8067fa5c>] start_kernel+0x2f0/0x500 ================================================================= buf2[] is intentionally only 3 elements so that the last element is the median once 5 samples have been inserted, so explicitly prevent the possibility of comparing against the 4th element rather than extending the array. Fixes: 1fa405552e33f2 ("MIPS: cevt-r4k: Dynamically calculate min_delta_ns") Reported-by: Rabin Vincent <rabinv@axis.com> Signed-off-by: James Hogan <james.hogan@imgtec.com> Tested-by: Rabin Vincent <rabinv@axis.com> Cc: linux-mips@linux-mips.org Cc: <stable@vger.kernel.org> # 4.7.x- Patchwork: https://patchwork.linux-mips.org/patch/15892/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-04-05 18:32:45 +03:00
for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
l = min_t(unsigned int,
i, ARRAY_SIZE(buf2) - 1);
for (; l > k; --l)
buf2[l] = buf2[l - 1];
break;
}
}
if (k < ARRAY_SIZE(buf2))
buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
}
/* Use 2 * median of 75th percentiles */
min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
/* Don't go too low */
if (min_delta < 0x300)
min_delta = 0x300;
pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
__func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
return min_delta;
}
DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
int cp0_timer_irq_installed;
/*
* Possibly handle a performance counter interrupt.
* Return true if the timer interrupt should not be checked
*/
static inline int handle_perf_irq(int r2)
{
/*
* The performance counter overflow interrupt may be shared with the
* timer interrupt (cp0_perfcount_irq < 0). If it is and a
* performance counter has overflowed (perf_irq() == IRQ_HANDLED)
* and we can't reliably determine if a counter interrupt has also
* happened (!r2) then don't check for a timer interrupt.
*/
return (cp0_perfcount_irq < 0) &&
perf_irq() == IRQ_HANDLED &&
!r2;
}
irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
{
const int r2 = cpu_has_mips_r2_r6;
struct clock_event_device *cd;
int cpu = smp_processor_id();
/*
* Suckage alert:
* Before R2 of the architecture there was no way to see if a
* performance counter interrupt was pending, so we have to run
* the performance counter interrupt handler anyway.
*/
if (handle_perf_irq(r2))
return IRQ_HANDLED;
/*
* The same applies to performance counter interrupts. But with the
* above we now know that the reason we got here must be a timer
* interrupt. Being the paranoiacs we are we check anyway.
*/
if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
/* Clear Count/Compare Interrupt */
write_c0_compare(read_c0_compare());
cd = &per_cpu(mips_clockevent_device, cpu);
cd->event_handler(cd);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
struct irqaction c0_compare_irqaction = {
.handler = c0_compare_interrupt,
/*
* IRQF_SHARED: The timer interrupt may be shared with other interrupts
* such as perf counter and FDC interrupts.
*/
.flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
.name = "timer",
};
void mips_event_handler(struct clock_event_device *dev)
{
}
/*
* FIXME: This doesn't hold for the relocated E9000 compare interrupt.
*/
static int c0_compare_int_pending(void)
{
MIPS: cevt-r4k: Drop GIC special case The cevt-r4k driver used to call into the GIC driver to find whether the timer was pending, but only with External Interrupt Controller (EIC) mode, where the Cause.IP bits can't be used as they encode the interrupt priority level (Cause.RIPL) instead. However commit e9de688dac65 ("irqchip: mips-gic: Support local interrupts") changed the condition from cpu_has_veic to gic_present. This fails on cores such as P5600 which have a GIC but the local interrupts aren't routable by the GIC, causing c0_compare_int_usable() to consider the interrupt unusable so r4k_clockevent_init() fails. The previous behaviour, added in commit 98b67c37db33 ("MIPS: Add EIC support for GIC."), wasn't really correct either as far as I can tell, since P5600 apparently supports EIC mode too, and in any case the use of Cause.TI with r2 should have been sufficient anyway since commit 010c108d7af7 ("MIPS: PowerTV: Fix support for timer interrupts with > 64 external IRQs"). Therefore drop the call into the gic driver altogether, and add a comment in c0_compare_int_pending() to clarify that Cause.TI does get checked since MIPS r2. Signed-off-by: James Hogan <james.hogan@imgtec.com> Fixes: e9de688dac65 ("irqchip: mips-gic: Support local interrupts") Reviewed-by: Andrew Bresticker <abrestic@chromium.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Steven J. Hill <steven.hill@imgtec.com> Cc: Qais Yousef <qais.yousef@imgtec.com> Cc: Jason Cooper <jason@lakedaemon.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/9077/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-01-19 15:00:55 +03:00
/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
}
/*
* Compare interrupt can be routed and latched outside the core,
* so wait up to worst case number of cycle counter ticks for timer interrupt
* changes to propagate to the cause register.
*/
#define COMPARE_INT_SEEN_TICKS 50
int c0_compare_int_usable(void)
{
unsigned int delta;
unsigned int cnt;
#ifdef CONFIG_KVM_GUEST
return 1;
#endif
/*
* IP7 already pending? Try to clear it by acking the timer.
*/
if (c0_compare_int_pending()) {
cnt = read_c0_count();
write_c0_compare(cnt);
back_to_back_c0_hazard();
while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
if (!c0_compare_int_pending())
break;
if (c0_compare_int_pending())
return 0;
}
for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
cnt = read_c0_count();
cnt += delta;
write_c0_compare(cnt);
back_to_back_c0_hazard();
if ((int)(read_c0_count() - cnt) < 0)
break;
/* increase delta if the timer was already expired */
}
while ((int)(read_c0_count() - cnt) <= 0)
; /* Wait for expiry */
while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
if (c0_compare_int_pending())
break;
if (!c0_compare_int_pending())
return 0;
cnt = read_c0_count();
write_c0_compare(cnt);
back_to_back_c0_hazard();
while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
if (!c0_compare_int_pending())
break;
if (c0_compare_int_pending())
return 0;
/*
* Feels like a real count / compare timer.
*/
return 1;
}
unsigned int __weak get_c0_compare_int(void)
{
return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
}
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 17:38:59 +04:00
int r4k_clockevent_init(void)
{
unsigned int cpu = smp_processor_id();
struct clock_event_device *cd;
unsigned int irq, min_delta;
if (!cpu_has_counter || !mips_hpt_frequency)
return -ENXIO;
if (!c0_compare_int_usable())
return -ENXIO;
/*
* With vectored interrupts things are getting platform specific.
* get_c0_compare_int is a hook to allow a platform to return the
* interrupt number of its liking.
*/
irq = get_c0_compare_int();
cd = &per_cpu(mips_clockevent_device, cpu);
cd->name = "MIPS";
cd->features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_C3STOP |
CLOCK_EVT_FEAT_PERCPU;
min_delta = calculate_min_delta();
cd->rating = 300;
cd->irq = irq;
cd->cpumask = cpumask_of(cpu);
cd->set_next_event = mips_next_event;
cd->event_handler = mips_event_handler;
clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
if (cp0_timer_irq_installed)
return 0;
cp0_timer_irq_installed = 1;
setup_irq(irq, &c0_compare_irqaction);
return 0;
}