linux/drivers/block/xsysace.c

1280 lines
34 KiB
C
Raw Normal View History

/*
* Xilinx SystemACE device driver
*
* Copyright 2007 Secret Lab Technologies Ltd.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
/*
* The SystemACE chip is designed to configure FPGAs by loading an FPGA
* bitstream from a file on a CF card and squirting it into FPGAs connected
* to the SystemACE JTAG chain. It also has the advantage of providing an
* MPU interface which can be used to control the FPGA configuration process
* and to use the attached CF card for general purpose storage.
*
* This driver is a block device driver for the SystemACE.
*
* Initialization:
* The driver registers itself as a platform_device driver at module
* load time. The platform bus will take care of calling the
* ace_probe() method for all SystemACE instances in the system. Any
* number of SystemACE instances are supported. ace_probe() calls
* ace_setup() which initialized all data structures, reads the CF
* id structure and registers the device.
*
* Processing:
* Just about all of the heavy lifting in this driver is performed by
* a Finite State Machine (FSM). The driver needs to wait on a number
* of events; some raised by interrupts, some which need to be polled
* for. Describing all of the behaviour in a FSM seems to be the
* easiest way to keep the complexity low and make it easy to
* understand what the driver is doing. If the block ops or the
* request function need to interact with the hardware, then they
* simply need to flag the request and kick of FSM processing.
*
* The FSM itself is atomic-safe code which can be run from any
* context. The general process flow is:
* 1. obtain the ace->lock spinlock.
* 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
* cleared.
* 3. release the lock.
*
* Individual states do not sleep in any way. If a condition needs to
* be waited for then the state much clear the fsm_continue flag and
* either schedule the FSM to be run again at a later time, or expect
* an interrupt to call the FSM when the desired condition is met.
*
* In normal operation, the FSM is processed at interrupt context
* either when the driver's tasklet is scheduled, or when an irq is
* raised by the hardware. The tasklet can be scheduled at any time.
* The request method in particular schedules the tasklet when a new
* request has been indicated by the block layer. Once started, the
* FSM proceeds as far as it can processing the request until it
* needs on a hardware event. At this point, it must yield execution.
*
* A state has two options when yielding execution:
* 1. ace_fsm_yield()
* - Call if need to poll for event.
* - clears the fsm_continue flag to exit the processing loop
* - reschedules the tasklet to run again as soon as possible
* 2. ace_fsm_yieldirq()
* - Call if an irq is expected from the HW
* - clears the fsm_continue flag to exit the processing loop
* - does not reschedule the tasklet so the FSM will not be processed
* again until an irq is received.
* After calling a yield function, the state must return control back
* to the FSM main loop.
*
* Additionally, the driver maintains a kernel timer which can process
* the FSM. If the FSM gets stalled, typically due to a missed
* interrupt, then the kernel timer will expire and the driver can
* continue where it left off.
*
* To Do:
* - Add FPGA configuration control interface.
* - Request major number from lanana
*/
#undef DEBUG
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/blk-mq.h>
#include <linux/mutex.h>
#include <linux/ata.h>
#include <linux/hdreg.h>
#include <linux/platform_device.h>
#if defined(CONFIG_OF)
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#endif
MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
MODULE_DESCRIPTION("Xilinx SystemACE device driver");
MODULE_LICENSE("GPL");
/* SystemACE register definitions */
#define ACE_BUSMODE (0x00)
#define ACE_STATUS (0x04)
#define ACE_STATUS_CFGLOCK (0x00000001)
#define ACE_STATUS_MPULOCK (0x00000002)
#define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
#define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
#define ACE_STATUS_CFDETECT (0x00000010)
#define ACE_STATUS_DATABUFRDY (0x00000020)
#define ACE_STATUS_DATABUFMODE (0x00000040)
#define ACE_STATUS_CFGDONE (0x00000080)
#define ACE_STATUS_RDYFORCFCMD (0x00000100)
#define ACE_STATUS_CFGMODEPIN (0x00000200)
#define ACE_STATUS_CFGADDR_MASK (0x0000e000)
#define ACE_STATUS_CFBSY (0x00020000)
#define ACE_STATUS_CFRDY (0x00040000)
#define ACE_STATUS_CFDWF (0x00080000)
#define ACE_STATUS_CFDSC (0x00100000)
#define ACE_STATUS_CFDRQ (0x00200000)
#define ACE_STATUS_CFCORR (0x00400000)
#define ACE_STATUS_CFERR (0x00800000)
#define ACE_ERROR (0x08)
#define ACE_CFGLBA (0x0c)
#define ACE_MPULBA (0x10)
#define ACE_SECCNTCMD (0x14)
#define ACE_SECCNTCMD_RESET (0x0100)
#define ACE_SECCNTCMD_IDENTIFY (0x0200)
#define ACE_SECCNTCMD_READ_DATA (0x0300)
#define ACE_SECCNTCMD_WRITE_DATA (0x0400)
#define ACE_SECCNTCMD_ABORT (0x0600)
#define ACE_VERSION (0x16)
#define ACE_VERSION_REVISION_MASK (0x00FF)
#define ACE_VERSION_MINOR_MASK (0x0F00)
#define ACE_VERSION_MAJOR_MASK (0xF000)
#define ACE_CTRL (0x18)
#define ACE_CTRL_FORCELOCKREQ (0x0001)
#define ACE_CTRL_LOCKREQ (0x0002)
#define ACE_CTRL_FORCECFGADDR (0x0004)
#define ACE_CTRL_FORCECFGMODE (0x0008)
#define ACE_CTRL_CFGMODE (0x0010)
#define ACE_CTRL_CFGSTART (0x0020)
#define ACE_CTRL_CFGSEL (0x0040)
#define ACE_CTRL_CFGRESET (0x0080)
#define ACE_CTRL_DATABUFRDYIRQ (0x0100)
#define ACE_CTRL_ERRORIRQ (0x0200)
#define ACE_CTRL_CFGDONEIRQ (0x0400)
#define ACE_CTRL_RESETIRQ (0x0800)
#define ACE_CTRL_CFGPROG (0x1000)
#define ACE_CTRL_CFGADDR_MASK (0xe000)
#define ACE_FATSTAT (0x1c)
#define ACE_NUM_MINORS 16
#define ACE_SECTOR_SIZE (512)
#define ACE_FIFO_SIZE (32)
#define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
#define ACE_BUS_WIDTH_8 0
#define ACE_BUS_WIDTH_16 1
struct ace_reg_ops;
struct ace_device {
/* driver state data */
int id;
int media_change;
int users;
struct list_head list;
/* finite state machine data */
struct tasklet_struct fsm_tasklet;
uint fsm_task; /* Current activity (ACE_TASK_*) */
uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
uint fsm_continue_flag; /* cleared to exit FSM mainloop */
uint fsm_iter_num;
struct timer_list stall_timer;
/* Transfer state/result, use for both id and block request */
struct request *req; /* request being processed */
void *data_ptr; /* pointer to I/O buffer */
int data_count; /* number of buffers remaining */
int data_result; /* Result of transfer; 0 := success */
int id_req_count; /* count of id requests */
int id_result;
struct completion id_completion; /* used when id req finishes */
int in_irq;
/* Details of hardware device */
resource_size_t physaddr;
void __iomem *baseaddr;
int irq;
int bus_width; /* 0 := 8 bit; 1 := 16 bit */
struct ace_reg_ops *reg_ops;
int lock_count;
/* Block device data structures */
spinlock_t lock;
struct device *dev;
struct request_queue *queue;
struct gendisk *gd;
struct blk_mq_tag_set tag_set;
struct list_head rq_list;
/* Inserted CF card parameters */
u16 cf_id[ATA_ID_WORDS];
};
static DEFINE_MUTEX(xsysace_mutex);
static int ace_major;
/* ---------------------------------------------------------------------
* Low level register access
*/
struct ace_reg_ops {
u16(*in) (struct ace_device * ace, int reg);
void (*out) (struct ace_device * ace, int reg, u16 val);
void (*datain) (struct ace_device * ace);
void (*dataout) (struct ace_device * ace);
};
/* 8 Bit bus width */
static u16 ace_in_8(struct ace_device *ace, int reg)
{
void __iomem *r = ace->baseaddr + reg;
return in_8(r) | (in_8(r + 1) << 8);
}
static void ace_out_8(struct ace_device *ace, int reg, u16 val)
{
void __iomem *r = ace->baseaddr + reg;
out_8(r, val);
out_8(r + 1, val >> 8);
}
static void ace_datain_8(struct ace_device *ace)
{
void __iomem *r = ace->baseaddr + 0x40;
u8 *dst = ace->data_ptr;
int i = ACE_FIFO_SIZE;
while (i--)
*dst++ = in_8(r++);
ace->data_ptr = dst;
}
static void ace_dataout_8(struct ace_device *ace)
{
void __iomem *r = ace->baseaddr + 0x40;
u8 *src = ace->data_ptr;
int i = ACE_FIFO_SIZE;
while (i--)
out_8(r++, *src++);
ace->data_ptr = src;
}
static struct ace_reg_ops ace_reg_8_ops = {
.in = ace_in_8,
.out = ace_out_8,
.datain = ace_datain_8,
.dataout = ace_dataout_8,
};
/* 16 bit big endian bus attachment */
static u16 ace_in_be16(struct ace_device *ace, int reg)
{
return in_be16(ace->baseaddr + reg);
}
static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
{
out_be16(ace->baseaddr + reg, val);
}
static void ace_datain_be16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *dst = ace->data_ptr;
while (i--)
*dst++ = in_le16(ace->baseaddr + 0x40);
ace->data_ptr = dst;
}
static void ace_dataout_be16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *src = ace->data_ptr;
while (i--)
out_le16(ace->baseaddr + 0x40, *src++);
ace->data_ptr = src;
}
/* 16 bit little endian bus attachment */
static u16 ace_in_le16(struct ace_device *ace, int reg)
{
return in_le16(ace->baseaddr + reg);
}
static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
{
out_le16(ace->baseaddr + reg, val);
}
static void ace_datain_le16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *dst = ace->data_ptr;
while (i--)
*dst++ = in_be16(ace->baseaddr + 0x40);
ace->data_ptr = dst;
}
static void ace_dataout_le16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *src = ace->data_ptr;
while (i--)
out_be16(ace->baseaddr + 0x40, *src++);
ace->data_ptr = src;
}
static struct ace_reg_ops ace_reg_be16_ops = {
.in = ace_in_be16,
.out = ace_out_be16,
.datain = ace_datain_be16,
.dataout = ace_dataout_be16,
};
static struct ace_reg_ops ace_reg_le16_ops = {
.in = ace_in_le16,
.out = ace_out_le16,
.datain = ace_datain_le16,
.dataout = ace_dataout_le16,
};
static inline u16 ace_in(struct ace_device *ace, int reg)
{
return ace->reg_ops->in(ace, reg);
}
static inline u32 ace_in32(struct ace_device *ace, int reg)
{
return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
}
static inline void ace_out(struct ace_device *ace, int reg, u16 val)
{
ace->reg_ops->out(ace, reg, val);
}
static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
{
ace_out(ace, reg, val);
ace_out(ace, reg + 2, val >> 16);
}
/* ---------------------------------------------------------------------
* Debug support functions
*/
#if defined(DEBUG)
static void ace_dump_mem(void *base, int len)
{
const char *ptr = base;
int i, j;
for (i = 0; i < len; i += 16) {
printk(KERN_INFO "%.8x:", i);
for (j = 0; j < 16; j++) {
if (!(j % 4))
printk(" ");
printk("%.2x", ptr[i + j]);
}
printk(" ");
for (j = 0; j < 16; j++)
printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
printk("\n");
}
}
#else
static inline void ace_dump_mem(void *base, int len)
{
}
#endif
static void ace_dump_regs(struct ace_device *ace)
{
dev_info(ace->dev,
" ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
" status:%.8x mpu_lba:%.8x busmode:%4x\n"
" error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
ace_in32(ace, ACE_CTRL),
ace_in(ace, ACE_SECCNTCMD),
ace_in(ace, ACE_VERSION),
ace_in32(ace, ACE_STATUS),
ace_in32(ace, ACE_MPULBA),
ace_in(ace, ACE_BUSMODE),
ace_in32(ace, ACE_ERROR),
ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
}
static void ace_fix_driveid(u16 *id)
{
#if defined(__BIG_ENDIAN)
int i;
/* All half words have wrong byte order; swap the bytes */
for (i = 0; i < ATA_ID_WORDS; i++, id++)
*id = le16_to_cpu(*id);
#endif
}
/* ---------------------------------------------------------------------
* Finite State Machine (FSM) implementation
*/
/* FSM tasks; used to direct state transitions */
#define ACE_TASK_IDLE 0
#define ACE_TASK_IDENTIFY 1
#define ACE_TASK_READ 2
#define ACE_TASK_WRITE 3
#define ACE_FSM_NUM_TASKS 4
/* FSM state definitions */
#define ACE_FSM_STATE_IDLE 0
#define ACE_FSM_STATE_REQ_LOCK 1
#define ACE_FSM_STATE_WAIT_LOCK 2
#define ACE_FSM_STATE_WAIT_CFREADY 3
#define ACE_FSM_STATE_IDENTIFY_PREPARE 4
#define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
#define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
#define ACE_FSM_STATE_REQ_PREPARE 7
#define ACE_FSM_STATE_REQ_TRANSFER 8
#define ACE_FSM_STATE_REQ_COMPLETE 9
#define ACE_FSM_STATE_ERROR 10
#define ACE_FSM_NUM_STATES 11
/* Set flag to exit FSM loop and reschedule tasklet */
static inline void ace_fsm_yield(struct ace_device *ace)
{
dev_dbg(ace->dev, "ace_fsm_yield()\n");
tasklet_schedule(&ace->fsm_tasklet);
ace->fsm_continue_flag = 0;
}
/* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
static inline void ace_fsm_yieldirq(struct ace_device *ace)
{
dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
if (!ace->irq)
/* No IRQ assigned, so need to poll */
tasklet_schedule(&ace->fsm_tasklet);
ace->fsm_continue_flag = 0;
}
static bool ace_has_next_request(struct request_queue *q)
{
struct ace_device *ace = q->queuedata;
return !list_empty(&ace->rq_list);
}
/* Get the next read/write request; ending requests that we don't handle */
static struct request *ace_get_next_request(struct request_queue *q)
{
struct ace_device *ace = q->queuedata;
struct request *rq;
rq = list_first_entry_or_null(&ace->rq_list, struct request, queuelist);
if (rq) {
list_del_init(&rq->queuelist);
blk_mq_start_request(rq);
}
return NULL;
}
static void ace_fsm_dostate(struct ace_device *ace)
{
struct request *req;
u32 status;
u16 val;
int count;
#if defined(DEBUG)
dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
ace->fsm_state, ace->id_req_count);
#endif
/* Verify that there is actually a CF in the slot. If not, then
* bail out back to the idle state and wake up all the waiters */
status = ace_in32(ace, ACE_STATUS);
if ((status & ACE_STATUS_CFDETECT) == 0) {
ace->fsm_state = ACE_FSM_STATE_IDLE;
ace->media_change = 1;
set_capacity(ace->gd, 0);
dev_info(ace->dev, "No CF in slot\n");
/* Drop all in-flight and pending requests */
if (ace->req) {
blk_mq_end_request(ace->req, BLK_STS_IOERR);
ace->req = NULL;
}
while ((req = ace_get_next_request(ace->queue)) != NULL)
blk_mq_end_request(req, BLK_STS_IOERR);
/* Drop back to IDLE state and notify waiters */
ace->fsm_state = ACE_FSM_STATE_IDLE;
ace->id_result = -EIO;
while (ace->id_req_count) {
complete(&ace->id_completion);
ace->id_req_count--;
}
}
switch (ace->fsm_state) {
case ACE_FSM_STATE_IDLE:
/* See if there is anything to do */
if (ace->id_req_count || ace_has_next_request(ace->queue)) {
ace->fsm_iter_num++;
ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
mod_timer(&ace->stall_timer, jiffies + HZ);
if (!timer_pending(&ace->stall_timer))
add_timer(&ace->stall_timer);
break;
}
del_timer(&ace->stall_timer);
ace->fsm_continue_flag = 0;
break;
case ACE_FSM_STATE_REQ_LOCK:
if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
/* Already have the lock, jump to next state */
ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
break;
}
/* Request the lock */
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
break;
case ACE_FSM_STATE_WAIT_LOCK:
if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
/* got the lock; move to next state */
ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
break;
}
/* wait a bit for the lock */
ace_fsm_yield(ace);
break;
case ACE_FSM_STATE_WAIT_CFREADY:
status = ace_in32(ace, ACE_STATUS);
if (!(status & ACE_STATUS_RDYFORCFCMD) ||
(status & ACE_STATUS_CFBSY)) {
/* CF card isn't ready; it needs to be polled */
ace_fsm_yield(ace);
break;
}
/* Device is ready for command; determine what to do next */
if (ace->id_req_count)
ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
else
ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
break;
case ACE_FSM_STATE_IDENTIFY_PREPARE:
/* Send identify command */
ace->fsm_task = ACE_TASK_IDENTIFY;
ace->data_ptr = ace->cf_id;
ace->data_count = ACE_BUF_PER_SECTOR;
ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
/* As per datasheet, put config controller in reset */
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
/* irq handler takes over from this point; wait for the
* transfer to complete */
ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
ace_fsm_yieldirq(ace);
break;
case ACE_FSM_STATE_IDENTIFY_TRANSFER:
/* Check that the sysace is ready to receive data */
status = ace_in32(ace, ACE_STATUS);
if (status & ACE_STATUS_CFBSY) {
dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
ace->fsm_task, ace->fsm_iter_num,
ace->data_count);
ace_fsm_yield(ace);
break;
}
if (!(status & ACE_STATUS_DATABUFRDY)) {
ace_fsm_yield(ace);
break;
}
/* Transfer the next buffer */
ace->reg_ops->datain(ace);
ace->data_count--;
/* If there are still buffers to be transfers; jump out here */
if (ace->data_count != 0) {
ace_fsm_yieldirq(ace);
break;
}
/* transfer finished; kick state machine */
dev_dbg(ace->dev, "identify finished\n");
ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
break;
case ACE_FSM_STATE_IDENTIFY_COMPLETE:
ace_fix_driveid(ace->cf_id);
ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */
if (ace->data_result) {
/* Error occurred, disable the disk */
ace->media_change = 1;
set_capacity(ace->gd, 0);
dev_err(ace->dev, "error fetching CF id (%i)\n",
ace->data_result);
} else {
ace->media_change = 0;
/* Record disk parameters */
set_capacity(ace->gd,
ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
dev_info(ace->dev, "capacity: %i sectors\n",
ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
}
/* We're done, drop to IDLE state and notify waiters */
ace->fsm_state = ACE_FSM_STATE_IDLE;
ace->id_result = ace->data_result;
while (ace->id_req_count) {
complete(&ace->id_completion);
ace->id_req_count--;
}
break;
case ACE_FSM_STATE_REQ_PREPARE:
req = ace_get_next_request(ace->queue);
if (!req) {
ace->fsm_state = ACE_FSM_STATE_IDLE;
break;
}
/* Okay, it's a data request, set it up for transfer */
dev_dbg(ace->dev,
"request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 17:24:39 +04:00
(unsigned long long)blk_rq_pos(req),
blk_rq_sectors(req), blk_rq_cur_sectors(req),
rq_data_dir(req));
ace->req = req;
ace->data_ptr = bio_data(req->bio);
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 17:24:39 +04:00
ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
count = blk_rq_sectors(req);
if (rq_data_dir(req)) {
/* Kick off write request */
dev_dbg(ace->dev, "write data\n");
ace->fsm_task = ACE_TASK_WRITE;
ace_out(ace, ACE_SECCNTCMD,
count | ACE_SECCNTCMD_WRITE_DATA);
} else {
/* Kick off read request */
dev_dbg(ace->dev, "read data\n");
ace->fsm_task = ACE_TASK_READ;
ace_out(ace, ACE_SECCNTCMD,
count | ACE_SECCNTCMD_READ_DATA);
}
/* As per datasheet, put config controller in reset */
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
/* Move to the transfer state. The systemace will raise
* an interrupt once there is something to do
*/
ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
if (ace->fsm_task == ACE_TASK_READ)
ace_fsm_yieldirq(ace); /* wait for data ready */
break;
case ACE_FSM_STATE_REQ_TRANSFER:
/* Check that the sysace is ready to receive data */
status = ace_in32(ace, ACE_STATUS);
if (status & ACE_STATUS_CFBSY) {
dev_dbg(ace->dev,
"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
ace->fsm_task, ace->fsm_iter_num,
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 17:24:39 +04:00
blk_rq_cur_sectors(ace->req) * 16,
ace->data_count, ace->in_irq);
ace_fsm_yield(ace); /* need to poll CFBSY bit */
break;
}
if (!(status & ACE_STATUS_DATABUFRDY)) {
dev_dbg(ace->dev,
"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
ace->fsm_task, ace->fsm_iter_num,
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 17:24:39 +04:00
blk_rq_cur_sectors(ace->req) * 16,
ace->data_count, ace->in_irq);
ace_fsm_yieldirq(ace);
break;
}
/* Transfer the next buffer */
if (ace->fsm_task == ACE_TASK_WRITE)
ace->reg_ops->dataout(ace);
else
ace->reg_ops->datain(ace);
ace->data_count--;
/* If there are still buffers to be transfers; jump out here */
if (ace->data_count != 0) {
ace_fsm_yieldirq(ace);
break;
}
/* bio finished; is there another one? */
if (blk_update_request(ace->req, BLK_STS_OK,
blk_rq_cur_bytes(ace->req))) {
/* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
* blk_rq_sectors(ace->req),
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 17:24:39 +04:00
* blk_rq_cur_sectors(ace->req));
*/
ace->data_ptr = bio_data(ace->req->bio);
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-05-07 17:24:39 +04:00
ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
ace_fsm_yieldirq(ace);
break;
}
ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
break;
case ACE_FSM_STATE_REQ_COMPLETE:
ace->req = NULL;
/* Finished request; go to idle state */
ace->fsm_state = ACE_FSM_STATE_IDLE;
break;
default:
ace->fsm_state = ACE_FSM_STATE_IDLE;
break;
}
}
static void ace_fsm_tasklet(unsigned long data)
{
struct ace_device *ace = (void *)data;
unsigned long flags;
spin_lock_irqsave(&ace->lock, flags);
/* Loop over state machine until told to stop */
ace->fsm_continue_flag = 1;
while (ace->fsm_continue_flag)
ace_fsm_dostate(ace);
spin_unlock_irqrestore(&ace->lock, flags);
}
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 00:43:17 +03:00
static void ace_stall_timer(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 00:43:17 +03:00
struct ace_device *ace = from_timer(ace, t, stall_timer);
unsigned long flags;
dev_warn(ace->dev,
"kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
ace->data_count);
spin_lock_irqsave(&ace->lock, flags);
/* Rearm the stall timer *before* entering FSM (which may then
* delete the timer) */
mod_timer(&ace->stall_timer, jiffies + HZ);
/* Loop over state machine until told to stop */
ace->fsm_continue_flag = 1;
while (ace->fsm_continue_flag)
ace_fsm_dostate(ace);
spin_unlock_irqrestore(&ace->lock, flags);
}
/* ---------------------------------------------------------------------
* Interrupt handling routines
*/
static int ace_interrupt_checkstate(struct ace_device *ace)
{
u32 sreg = ace_in32(ace, ACE_STATUS);
u16 creg = ace_in(ace, ACE_CTRL);
/* Check for error occurrence */
if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
(creg & ACE_CTRL_ERRORIRQ)) {
dev_err(ace->dev, "transfer failure\n");
ace_dump_regs(ace);
return -EIO;
}
return 0;
}
static irqreturn_t ace_interrupt(int irq, void *dev_id)
{
u16 creg;
struct ace_device *ace = dev_id;
/* be safe and get the lock */
spin_lock(&ace->lock);
ace->in_irq = 1;
/* clear the interrupt */
creg = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
ace_out(ace, ACE_CTRL, creg);
/* check for IO failures */
if (ace_interrupt_checkstate(ace))
ace->data_result = -EIO;
if (ace->fsm_task == 0) {
dev_err(ace->dev,
"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
ace_in(ace, ACE_SECCNTCMD));
dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
ace->fsm_task, ace->fsm_state, ace->data_count);
}
/* Loop over state machine until told to stop */
ace->fsm_continue_flag = 1;
while (ace->fsm_continue_flag)
ace_fsm_dostate(ace);
/* done with interrupt; drop the lock */
ace->in_irq = 0;
spin_unlock(&ace->lock);
return IRQ_HANDLED;
}
/* ---------------------------------------------------------------------
* Block ops
*/
static blk_status_t ace_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct ace_device *ace = hctx->queue->queuedata;
struct request *req = bd->rq;
if (blk_rq_is_passthrough(req)) {
blk_mq_start_request(req);
return BLK_STS_IOERR;
}
spin_lock_irq(&ace->lock);
list_add_tail(&req->queuelist, &ace->rq_list);
spin_unlock_irq(&ace->lock);
tasklet_schedule(&ace->fsm_tasklet);
return BLK_STS_OK;
}
static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
{
struct ace_device *ace = gd->private_data;
dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
}
static int ace_revalidate_disk(struct gendisk *gd)
{
struct ace_device *ace = gd->private_data;
unsigned long flags;
dev_dbg(ace->dev, "ace_revalidate_disk()\n");
if (ace->media_change) {
dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
spin_lock_irqsave(&ace->lock, flags);
ace->id_req_count++;
spin_unlock_irqrestore(&ace->lock, flags);
tasklet_schedule(&ace->fsm_tasklet);
wait_for_completion(&ace->id_completion);
}
dev_dbg(ace->dev, "revalidate complete\n");
return ace->id_result;
}
static int ace_open(struct block_device *bdev, fmode_t mode)
{
struct ace_device *ace = bdev->bd_disk->private_data;
unsigned long flags;
dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
mutex_lock(&xsysace_mutex);
spin_lock_irqsave(&ace->lock, flags);
ace->users++;
spin_unlock_irqrestore(&ace->lock, flags);
check_disk_change(bdev);
mutex_unlock(&xsysace_mutex);
return 0;
}
static void ace_release(struct gendisk *disk, fmode_t mode)
{
struct ace_device *ace = disk->private_data;
unsigned long flags;
u16 val;
dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
mutex_lock(&xsysace_mutex);
spin_lock_irqsave(&ace->lock, flags);
ace->users--;
if (ace->users == 0) {
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
}
spin_unlock_irqrestore(&ace->lock, flags);
mutex_unlock(&xsysace_mutex);
}
static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct ace_device *ace = bdev->bd_disk->private_data;
u16 *cf_id = ace->cf_id;
dev_dbg(ace->dev, "ace_getgeo()\n");
geo->heads = cf_id[ATA_ID_HEADS];
geo->sectors = cf_id[ATA_ID_SECTORS];
geo->cylinders = cf_id[ATA_ID_CYLS];
return 0;
}
static const struct block_device_operations ace_fops = {
.owner = THIS_MODULE,
.open = ace_open,
.release = ace_release,
.check_events = ace_check_events,
.revalidate_disk = ace_revalidate_disk,
.getgeo = ace_getgeo,
};
static const struct blk_mq_ops ace_mq_ops = {
.queue_rq = ace_queue_rq,
};
/* --------------------------------------------------------------------
* SystemACE device setup/teardown code
*/
static int ace_setup(struct ace_device *ace)
{
u16 version;
u16 val;
int rc;
dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
(unsigned long long)ace->physaddr, ace->irq);
spin_lock_init(&ace->lock);
init_completion(&ace->id_completion);
INIT_LIST_HEAD(&ace->rq_list);
/*
* Map the device
*/
ace->baseaddr = ioremap(ace->physaddr, 0x80);
if (!ace->baseaddr)
goto err_ioremap;
/*
* Initialize the state machine tasklet and stall timer
*/
tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 00:43:17 +03:00
timer_setup(&ace->stall_timer, ace_stall_timer, 0);
/*
* Initialize the request queue
*/
ace->queue = blk_mq_init_sq_queue(&ace->tag_set, &ace_mq_ops, 2,
BLK_MQ_F_SHOULD_MERGE);
if (IS_ERR(ace->queue)) {
rc = PTR_ERR(ace->queue);
ace->queue = NULL;
goto err_blk_initq;
}
ace->queue->queuedata = ace;
blk_queue_logical_block_size(ace->queue, 512);
blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
/*
* Allocate and initialize GD structure
*/
ace->gd = alloc_disk(ACE_NUM_MINORS);
if (!ace->gd)
goto err_alloc_disk;
ace->gd->major = ace_major;
ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
ace->gd->fops = &ace_fops;
ace->gd->events = DISK_EVENT_MEDIA_CHANGE;
ace->gd->queue = ace->queue;
ace->gd->private_data = ace;
snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
/* set bus width */
if (ace->bus_width == ACE_BUS_WIDTH_16) {
/* 0x0101 should work regardless of endianess */
ace_out_le16(ace, ACE_BUSMODE, 0x0101);
/* read it back to determine endianess */
if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
ace->reg_ops = &ace_reg_le16_ops;
else
ace->reg_ops = &ace_reg_be16_ops;
} else {
ace_out_8(ace, ACE_BUSMODE, 0x00);
ace->reg_ops = &ace_reg_8_ops;
}
/* Make sure version register is sane */
version = ace_in(ace, ACE_VERSION);
if ((version == 0) || (version == 0xFFFF))
goto err_read;
/* Put sysace in a sane state by clearing most control reg bits */
ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
/* Now we can hook up the irq handler */
if (ace->irq) {
rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
if (rc) {
/* Failure - fall back to polled mode */
dev_err(ace->dev, "request_irq failed\n");
ace->irq = 0;
}
}
/* Enable interrupts */
val = ace_in(ace, ACE_CTRL);
val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
ace_out(ace, ACE_CTRL, val);
/* Print the identification */
dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
(version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
ace->media_change = 1;
ace_revalidate_disk(ace->gd);
/* Make the sysace device 'live' */
add_disk(ace->gd);
return 0;
err_read:
xsysace: Fix error handling in ace_setup If xace hardware reports a bad version number, the error handling code in ace_setup() calls put_disk(), followed by queue cleanup. However, since the disk data structure has the queue pointer set, put_disk() also cleans and releases the queue. This results in blk_cleanup_queue() accessing an already released data structure, which in turn may result in a crash such as the following. [ 10.681671] BUG: Kernel NULL pointer dereference at 0x00000040 [ 10.681826] Faulting instruction address: 0xc0431480 [ 10.682072] Oops: Kernel access of bad area, sig: 11 [#1] [ 10.682251] BE PAGE_SIZE=4K PREEMPT Xilinx Virtex440 [ 10.682387] Modules linked in: [ 10.682528] CPU: 0 PID: 1 Comm: swapper Tainted: G W 5.0.0-rc6-next-20190218+ #2 [ 10.682733] NIP: c0431480 LR: c043147c CTR: c0422ad8 [ 10.682863] REGS: cf82fbe0 TRAP: 0300 Tainted: G W (5.0.0-rc6-next-20190218+) [ 10.683065] MSR: 00029000 <CE,EE,ME> CR: 22000222 XER: 00000000 [ 10.683236] DEAR: 00000040 ESR: 00000000 [ 10.683236] GPR00: c043147c cf82fc90 cf82ccc0 00000000 00000000 00000000 00000002 00000000 [ 10.683236] GPR08: 00000000 00000000 c04310bc 00000000 22000222 00000000 c0002c54 00000000 [ 10.683236] GPR16: 00000000 00000001 c09aa39c c09021b0 c09021dc 00000007 c0a68c08 00000000 [ 10.683236] GPR24: 00000001 ced6d400 ced6dcf0 c0815d9c 00000000 00000000 00000000 cedf0800 [ 10.684331] NIP [c0431480] blk_mq_run_hw_queue+0x28/0x114 [ 10.684473] LR [c043147c] blk_mq_run_hw_queue+0x24/0x114 [ 10.684602] Call Trace: [ 10.684671] [cf82fc90] [c043147c] blk_mq_run_hw_queue+0x24/0x114 (unreliable) [ 10.684854] [cf82fcc0] [c04315bc] blk_mq_run_hw_queues+0x50/0x7c [ 10.685002] [cf82fce0] [c0422b24] blk_set_queue_dying+0x30/0x68 [ 10.685154] [cf82fcf0] [c0423ec0] blk_cleanup_queue+0x34/0x14c [ 10.685306] [cf82fd10] [c054d73c] ace_probe+0x3dc/0x508 [ 10.685445] [cf82fd50] [c052d740] platform_drv_probe+0x4c/0xb8 [ 10.685592] [cf82fd70] [c052abb0] really_probe+0x20c/0x32c [ 10.685728] [cf82fda0] [c052ae58] driver_probe_device+0x68/0x464 [ 10.685877] [cf82fdc0] [c052b500] device_driver_attach+0xb4/0xe4 [ 10.686024] [cf82fde0] [c052b5dc] __driver_attach+0xac/0xfc [ 10.686161] [cf82fe00] [c0528428] bus_for_each_dev+0x80/0xc0 [ 10.686314] [cf82fe30] [c0529b3c] bus_add_driver+0x144/0x234 [ 10.686457] [cf82fe50] [c052c46c] driver_register+0x88/0x15c [ 10.686610] [cf82fe60] [c09de288] ace_init+0x4c/0xac [ 10.686742] [cf82fe80] [c0002730] do_one_initcall+0xac/0x330 [ 10.686888] [cf82fee0] [c09aafd0] kernel_init_freeable+0x34c/0x478 [ 10.687043] [cf82ff30] [c0002c6c] kernel_init+0x18/0x114 [ 10.687188] [cf82ff40] [c000f2f0] ret_from_kernel_thread+0x14/0x1c [ 10.687349] Instruction dump: [ 10.687435] 3863ffd4 4bfffd70 9421ffd0 7c0802a6 93c10028 7c9e2378 93e1002c 38810008 [ 10.687637] 7c7f1b78 90010034 4bfffc25 813f008c <81290040> 75290100 4182002c 80810008 [ 10.688056] ---[ end trace 13c9ff51d41b9d40 ]--- Fix the problem by setting the disk queue pointer to NULL before calling put_disk(). A more comprehensive fix might be to rearrange the code to check the hardware version before initializing data structures, but I don't know if this would have undesirable side effects, and it would increase the complexity of backporting the fix to older kernels. Fixes: 74489a91dd43a ("Add support for Xilinx SystemACE CompactFlash interface") Acked-by: Michal Simek <michal.simek@xilinx.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-19 19:49:56 +03:00
/* prevent double queue cleanup */
ace->gd->queue = NULL;
put_disk(ace->gd);
err_alloc_disk:
blk_cleanup_queue(ace->queue);
blk_mq_free_tag_set(&ace->tag_set);
err_blk_initq:
iounmap(ace->baseaddr);
err_ioremap:
dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
(unsigned long long) ace->physaddr);
return -ENOMEM;
}
static void ace_teardown(struct ace_device *ace)
{
if (ace->gd) {
del_gendisk(ace->gd);
put_disk(ace->gd);
}
if (ace->queue) {
blk_cleanup_queue(ace->queue);
blk_mq_free_tag_set(&ace->tag_set);
}
tasklet_kill(&ace->fsm_tasklet);
if (ace->irq)
free_irq(ace->irq, ace);
iounmap(ace->baseaddr);
}
static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
int irq, int bus_width)
{
struct ace_device *ace;
int rc;
dev_dbg(dev, "ace_alloc(%p)\n", dev);
if (!physaddr) {
rc = -ENODEV;
goto err_noreg;
}
/* Allocate and initialize the ace device structure */
ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
if (!ace) {
rc = -ENOMEM;
goto err_alloc;
}
ace->dev = dev;
ace->id = id;
ace->physaddr = physaddr;
ace->irq = irq;
ace->bus_width = bus_width;
/* Call the setup code */
rc = ace_setup(ace);
if (rc)
goto err_setup;
dev_set_drvdata(dev, ace);
return 0;
err_setup:
dev_set_drvdata(dev, NULL);
kfree(ace);
err_alloc:
err_noreg:
dev_err(dev, "could not initialize device, err=%i\n", rc);
return rc;
}
static void ace_free(struct device *dev)
{
struct ace_device *ace = dev_get_drvdata(dev);
dev_dbg(dev, "ace_free(%p)\n", dev);
if (ace) {
ace_teardown(ace);
dev_set_drvdata(dev, NULL);
kfree(ace);
}
}
/* ---------------------------------------------------------------------
* Platform Bus Support
*/
static int ace_probe(struct platform_device *dev)
{
resource_size_t physaddr = 0;
int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
u32 id = dev->id;
int irq = 0;
int i;
dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
/* device id and bus width */
if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
id = 0;
if (of_find_property(dev->dev.of_node, "8-bit", NULL))
bus_width = ACE_BUS_WIDTH_8;
for (i = 0; i < dev->num_resources; i++) {
if (dev->resource[i].flags & IORESOURCE_MEM)
physaddr = dev->resource[i].start;
if (dev->resource[i].flags & IORESOURCE_IRQ)
irq = dev->resource[i].start;
}
/* Call the bus-independent setup code */
return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
}
/*
* Platform bus remove() method
*/
static int ace_remove(struct platform_device *dev)
{
ace_free(&dev->dev);
return 0;
}
#if defined(CONFIG_OF)
/* Match table for of_platform binding */
static const struct of_device_id ace_of_match[] = {
{ .compatible = "xlnx,opb-sysace-1.00.b", },
{ .compatible = "xlnx,opb-sysace-1.00.c", },
{ .compatible = "xlnx,xps-sysace-1.00.a", },
{ .compatible = "xlnx,sysace", },
{},
};
MODULE_DEVICE_TABLE(of, ace_of_match);
#else /* CONFIG_OF */
#define ace_of_match NULL
#endif /* CONFIG_OF */
static struct platform_driver ace_platform_driver = {
.probe = ace_probe,
.remove = ace_remove,
.driver = {
.name = "xsysace",
.of_match_table = ace_of_match,
},
};
/* ---------------------------------------------------------------------
* Module init/exit routines
*/
static int __init ace_init(void)
{
int rc;
ace_major = register_blkdev(ace_major, "xsysace");
if (ace_major <= 0) {
rc = -ENOMEM;
goto err_blk;
}
rc = platform_driver_register(&ace_platform_driver);
if (rc)
goto err_plat;
pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
return 0;
err_plat:
unregister_blkdev(ace_major, "xsysace");
err_blk:
printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
return rc;
}
module_init(ace_init);
static void __exit ace_exit(void)
{
pr_debug("Unregistering Xilinx SystemACE driver\n");
platform_driver_unregister(&ace_platform_driver);
unregister_blkdev(ace_major, "xsysace");
}
module_exit(ace_exit);