2005-04-16 15:20:36 -07:00
/*
* Driver for Digigram VX222 V2 / Mic soundcards
*
* VX222 - specific low - level routines
*
* Copyright ( c ) 2002 by Takashi Iwai < tiwai @ suse . de >
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# include <sound/driver.h>
# include <linux/delay.h>
# include <linux/device.h>
# include <linux/firmware.h>
# include <sound/core.h>
# include <sound/control.h>
# include <asm/io.h>
# include "vx222.h"
static int vx2_reg_offset [ VX_REG_MAX ] = {
[ VX_ICR ] = 0x00 ,
[ VX_CVR ] = 0x04 ,
[ VX_ISR ] = 0x08 ,
[ VX_IVR ] = 0x0c ,
[ VX_RXH ] = 0x14 ,
[ VX_RXM ] = 0x18 ,
[ VX_RXL ] = 0x1c ,
[ VX_DMA ] = 0x10 ,
[ VX_CDSP ] = 0x20 ,
[ VX_CFG ] = 0x24 ,
[ VX_RUER ] = 0x28 ,
[ VX_DATA ] = 0x2c ,
[ VX_STATUS ] = 0x30 ,
[ VX_LOFREQ ] = 0x34 ,
[ VX_HIFREQ ] = 0x38 ,
[ VX_CSUER ] = 0x3c ,
[ VX_SELMIC ] = 0x40 ,
[ VX_COMPOT ] = 0x44 , // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
[ VX_SCOMPR ] = 0x48 , // Read: COMPRESSION THRESHOLD activate
[ VX_GLIMIT ] = 0x4c , // Read: LEVEL LIMITATION activate
[ VX_INTCSR ] = 0x4c , // VX_INTCSR_REGISTER_OFFSET
[ VX_CNTRL ] = 0x50 , // VX_CNTRL_REGISTER_OFFSET
[ VX_GPIOC ] = 0x54 , // VX_GPIOC (new with PLX9030)
} ;
static int vx2_reg_index [ VX_REG_MAX ] = {
[ VX_ICR ] = 1 ,
[ VX_CVR ] = 1 ,
[ VX_ISR ] = 1 ,
[ VX_IVR ] = 1 ,
[ VX_RXH ] = 1 ,
[ VX_RXM ] = 1 ,
[ VX_RXL ] = 1 ,
[ VX_DMA ] = 1 ,
[ VX_CDSP ] = 1 ,
[ VX_CFG ] = 1 ,
[ VX_RUER ] = 1 ,
[ VX_DATA ] = 1 ,
[ VX_STATUS ] = 1 ,
[ VX_LOFREQ ] = 1 ,
[ VX_HIFREQ ] = 1 ,
[ VX_CSUER ] = 1 ,
[ VX_SELMIC ] = 1 ,
[ VX_COMPOT ] = 1 ,
[ VX_SCOMPR ] = 1 ,
[ VX_GLIMIT ] = 1 ,
[ VX_INTCSR ] = 0 , /* on the PLX */
[ VX_CNTRL ] = 0 , /* on the PLX */
[ VX_GPIOC ] = 0 , /* on the PLX */
} ;
2005-07-27 11:46:09 -07:00
static inline unsigned long vx2_reg_addr ( vx_core_t * _chip , int reg )
2005-04-16 15:20:36 -07:00
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
return chip - > port [ vx2_reg_index [ reg ] ] + vx2_reg_offset [ reg ] ;
}
/**
* snd_vx_inb - read a byte from the register
* @ offset : register enum
*/
static unsigned char vx2_inb ( vx_core_t * chip , int offset )
{
return inb ( vx2_reg_addr ( chip , offset ) ) ;
}
/**
* snd_vx_outb - write a byte on the register
* @ offset : the register offset
* @ val : the value to write
*/
static void vx2_outb ( vx_core_t * chip , int offset , unsigned char val )
{
outb ( val , vx2_reg_addr ( chip , offset ) ) ;
//printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
}
/**
* snd_vx_inl - read a 32 bit word from the register
* @ offset : register enum
*/
static unsigned int vx2_inl ( vx_core_t * chip , int offset )
{
return inl ( vx2_reg_addr ( chip , offset ) ) ;
}
/**
* snd_vx_outl - write a 32 bit word on the register
* @ offset : the register enum
* @ val : the value to write
*/
static void vx2_outl ( vx_core_t * chip , int offset , unsigned int val )
{
// printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
outl ( val , vx2_reg_addr ( chip , offset ) ) ;
}
/*
* redefine macros to call directly
*/
# undef vx_inb
# define vx_inb(chip,reg) vx2_inb((vx_core_t*)(chip), VX_##reg)
# undef vx_outb
# define vx_outb(chip,reg,val) vx2_outb((vx_core_t*)(chip), VX_##reg, val)
# undef vx_inl
# define vx_inl(chip,reg) vx2_inl((vx_core_t*)(chip), VX_##reg)
# undef vx_outl
# define vx_outl(chip,reg,val) vx2_outl((vx_core_t*)(chip), VX_##reg, val)
/*
* vx_reset_dsp - reset the DSP
*/
# define XX_DSP_RESET_WAIT_TIME 2 /* ms */
static void vx2_reset_dsp ( vx_core_t * _chip )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
/* set the reset dsp bit to 0 */
vx_outl ( chip , CDSP , chip - > regCDSP & ~ VX_CDSP_DSP_RESET_MASK ) ;
2005-11-17 10:21:19 +01:00
mdelay ( XX_DSP_RESET_WAIT_TIME ) ;
2005-04-16 15:20:36 -07:00
chip - > regCDSP | = VX_CDSP_DSP_RESET_MASK ;
/* set the reset dsp bit to 1 */
vx_outl ( chip , CDSP , chip - > regCDSP ) ;
}
static int vx2_test_xilinx ( vx_core_t * _chip )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
unsigned int data ;
snd_printdd ( " testing xilinx... \n " ) ;
/* This test uses several write/read sequences on TEST0 and TEST1 bits
* to figure out whever or not the xilinx was correctly loaded
*/
/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
vx_outl ( chip , CDSP , chip - > regCDSP | VX_CDSP_TEST0_MASK ) ;
vx_inl ( chip , ISR ) ;
data = vx_inl ( chip , STATUS ) ;
if ( ( data & VX_STATUS_VAL_TEST0_MASK ) = = VX_STATUS_VAL_TEST0_MASK ) {
snd_printdd ( " bad! \n " ) ;
return - ENODEV ;
}
/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
vx_outl ( chip , CDSP , chip - > regCDSP & ~ VX_CDSP_TEST0_MASK ) ;
vx_inl ( chip , ISR ) ;
data = vx_inl ( chip , STATUS ) ;
if ( ! ( data & VX_STATUS_VAL_TEST0_MASK ) ) {
snd_printdd ( " bad! #2 \n " ) ;
return - ENODEV ;
}
if ( _chip - > type = = VX_TYPE_BOARD ) {
/* not implemented on VX_2_BOARDS */
/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
vx_outl ( chip , CDSP , chip - > regCDSP | VX_CDSP_TEST1_MASK ) ;
vx_inl ( chip , ISR ) ;
data = vx_inl ( chip , STATUS ) ;
if ( ( data & VX_STATUS_VAL_TEST1_MASK ) = = VX_STATUS_VAL_TEST1_MASK ) {
snd_printdd ( " bad! #3 \n " ) ;
return - ENODEV ;
}
/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
vx_outl ( chip , CDSP , chip - > regCDSP & ~ VX_CDSP_TEST1_MASK ) ;
vx_inl ( chip , ISR ) ;
data = vx_inl ( chip , STATUS ) ;
if ( ! ( data & VX_STATUS_VAL_TEST1_MASK ) ) {
snd_printdd ( " bad! #4 \n " ) ;
return - ENODEV ;
}
}
snd_printdd ( " ok, xilinx fine. \n " ) ;
return 0 ;
}
/**
* vx_setup_pseudo_dma - set up the pseudo dma read / write mode .
* @ do_write : 0 = read , 1 = set up for DMA write
*/
static void vx2_setup_pseudo_dma ( vx_core_t * chip , int do_write )
{
/* Interrupt mode and HREQ pin enabled for host transmit data transfers
* ( in case of the use of the pseudo - dma facility ) .
*/
vx_outl ( chip , ICR , do_write ? ICR_TREQ : ICR_RREQ ) ;
/* Reset the pseudo-dma register (in case of the use of the
* pseudo - dma facility ) .
*/
vx_outl ( chip , RESET_DMA , 0 ) ;
}
/*
* vx_release_pseudo_dma - disable the pseudo - DMA mode
*/
2005-07-27 11:46:09 -07:00
static inline void vx2_release_pseudo_dma ( vx_core_t * chip )
2005-04-16 15:20:36 -07:00
{
/* HREQ pin disabled. */
vx_outl ( chip , ICR , 0 ) ;
}
/* pseudo-dma write */
static void vx2_dma_write ( vx_core_t * chip , snd_pcm_runtime_t * runtime ,
vx_pipe_t * pipe , int count )
{
unsigned long port = vx2_reg_addr ( chip , VX_DMA ) ;
int offset = pipe - > hw_ptr ;
u32 * addr = ( u32 * ) ( runtime - > dma_area + offset ) ;
snd_assert ( count % 4 = = 0 , return ) ;
vx2_setup_pseudo_dma ( chip , 1 ) ;
/* Transfer using pseudo-dma.
*/
if ( offset + count > pipe - > buffer_bytes ) {
int length = pipe - > buffer_bytes - offset ;
count - = length ;
length > > = 2 ; /* in 32bit words */
/* Transfer using pseudo-dma. */
while ( length - - > 0 ) {
outl ( cpu_to_le32 ( * addr ) , port ) ;
addr + + ;
}
addr = ( u32 * ) runtime - > dma_area ;
pipe - > hw_ptr = 0 ;
}
pipe - > hw_ptr + = count ;
count > > = 2 ; /* in 32bit words */
/* Transfer using pseudo-dma. */
while ( count - - > 0 ) {
outl ( cpu_to_le32 ( * addr ) , port ) ;
addr + + ;
}
vx2_release_pseudo_dma ( chip ) ;
}
/* pseudo dma read */
static void vx2_dma_read ( vx_core_t * chip , snd_pcm_runtime_t * runtime ,
vx_pipe_t * pipe , int count )
{
int offset = pipe - > hw_ptr ;
u32 * addr = ( u32 * ) ( runtime - > dma_area + offset ) ;
unsigned long port = vx2_reg_addr ( chip , VX_DMA ) ;
snd_assert ( count % 4 = = 0 , return ) ;
vx2_setup_pseudo_dma ( chip , 0 ) ;
/* Transfer using pseudo-dma.
*/
if ( offset + count > pipe - > buffer_bytes ) {
int length = pipe - > buffer_bytes - offset ;
count - = length ;
length > > = 2 ; /* in 32bit words */
/* Transfer using pseudo-dma. */
while ( length - - > 0 )
* addr + + = le32_to_cpu ( inl ( port ) ) ;
addr = ( u32 * ) runtime - > dma_area ;
pipe - > hw_ptr = 0 ;
}
pipe - > hw_ptr + = count ;
count > > = 2 ; /* in 32bit words */
/* Transfer using pseudo-dma. */
while ( count - - > 0 )
* addr + + = le32_to_cpu ( inl ( port ) ) ;
vx2_release_pseudo_dma ( chip ) ;
}
# define VX_XILINX_RESET_MASK 0x40000000
# define VX_USERBIT0_MASK 0x00000004
# define VX_USERBIT1_MASK 0x00000020
# define VX_CNTRL_REGISTER_VALUE 0x00172012
/*
* transfer counts bits to PLX
*/
static int put_xilinx_data ( vx_core_t * chip , unsigned int port , unsigned int counts , unsigned char data )
{
unsigned int i ;
for ( i = 0 ; i < counts ; i + + ) {
unsigned int val ;
/* set the clock bit to 0. */
val = VX_CNTRL_REGISTER_VALUE & ~ VX_USERBIT0_MASK ;
vx2_outl ( chip , port , val ) ;
vx2_inl ( chip , port ) ;
udelay ( 1 ) ;
if ( data & ( 1 < < i ) )
val | = VX_USERBIT1_MASK ;
else
val & = ~ VX_USERBIT1_MASK ;
vx2_outl ( chip , port , val ) ;
vx2_inl ( chip , port ) ;
/* set the clock bit to 1. */
val | = VX_USERBIT0_MASK ;
vx2_outl ( chip , port , val ) ;
vx2_inl ( chip , port ) ;
udelay ( 1 ) ;
}
return 0 ;
}
/*
* load the xilinx image
*/
static int vx2_load_xilinx_binary ( vx_core_t * chip , const struct firmware * xilinx )
{
unsigned int i ;
unsigned int port ;
unsigned char * image ;
/* XILINX reset (wait at least 1 milisecond between reset on and off). */
vx_outl ( chip , CNTRL , VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK ) ;
vx_inl ( chip , CNTRL ) ;
2005-11-17 10:21:19 +01:00
msleep ( 10 ) ;
2005-04-16 15:20:36 -07:00
vx_outl ( chip , CNTRL , VX_CNTRL_REGISTER_VALUE ) ;
vx_inl ( chip , CNTRL ) ;
2005-11-17 10:21:19 +01:00
msleep ( 10 ) ;
2005-04-16 15:20:36 -07:00
if ( chip - > type = = VX_TYPE_BOARD )
port = VX_CNTRL ;
else
port = VX_GPIOC ; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
image = xilinx - > data ;
for ( i = 0 ; i < xilinx - > size ; i + + , image + + ) {
if ( put_xilinx_data ( chip , port , 8 , * image ) < 0 )
return - EINVAL ;
/* don't take too much time in this loop... */
cond_resched ( ) ;
}
put_xilinx_data ( chip , port , 4 , 0xff ) ; /* end signature */
2005-11-17 10:21:19 +01:00
msleep ( 200 ) ;
2005-04-16 15:20:36 -07:00
/* test after loading (is buggy with VX222) */
if ( chip - > type ! = VX_TYPE_BOARD ) {
/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
i = vx_inl ( chip , GPIOC ) ;
if ( i & 0x0100 )
return 0 ;
snd_printk ( KERN_ERR " vx222: xilinx test failed after load, GPIOC=0x%x \n " , i ) ;
return - EINVAL ;
}
return 0 ;
}
/*
* load the boot / dsp images
*/
static int vx2_load_dsp ( vx_core_t * vx , int index , const struct firmware * dsp )
{
int err ;
switch ( index ) {
case 1 :
/* xilinx image */
if ( ( err = vx2_load_xilinx_binary ( vx , dsp ) ) < 0 )
return err ;
if ( ( err = vx2_test_xilinx ( vx ) ) < 0 )
return err ;
return 0 ;
case 2 :
/* DSP boot */
return snd_vx_dsp_boot ( vx , dsp ) ;
case 3 :
/* DSP image */
return snd_vx_dsp_load ( vx , dsp ) ;
default :
snd_BUG ( ) ;
return - EINVAL ;
}
}
/*
* vx_test_and_ack - test and acknowledge interrupt
*
* called from irq hander , too
*
* spinlock held !
*/
static int vx2_test_and_ack ( vx_core_t * chip )
{
/* not booted yet? */
if ( ! ( chip - > chip_status & VX_STAT_XILINX_LOADED ) )
return - ENXIO ;
if ( ! ( vx_inl ( chip , STATUS ) & VX_STATUS_MEMIRQ_MASK ) )
return - EIO ;
/* ok, interrupts generated, now ack it */
/* set ACQUIT bit up and down */
vx_outl ( chip , STATUS , 0 ) ;
/* useless read just to spend some time and maintain
* the ACQUIT signal up for a while ( a bus cycle )
*/
vx_inl ( chip , STATUS ) ;
/* ack */
vx_outl ( chip , STATUS , VX_STATUS_MEMIRQ_MASK ) ;
/* useless read just to spend some time and maintain
* the ACQUIT signal up for a while ( a bus cycle ) */
vx_inl ( chip , STATUS ) ;
/* clear */
vx_outl ( chip , STATUS , 0 ) ;
return 0 ;
}
/*
* vx_validate_irq - enable / disable IRQ
*/
static void vx2_validate_irq ( vx_core_t * _chip , int enable )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
/* Set the interrupt enable bit to 1 in CDSP register */
if ( enable ) {
/* Set the PCI interrupt enable bit to 1.*/
vx_outl ( chip , INTCSR , VX_INTCSR_VALUE | VX_PCI_INTERRUPT_MASK ) ;
chip - > regCDSP | = VX_CDSP_VALID_IRQ_MASK ;
} else {
/* Set the PCI interrupt enable bit to 0. */
vx_outl ( chip , INTCSR , VX_INTCSR_VALUE & ~ VX_PCI_INTERRUPT_MASK ) ;
chip - > regCDSP & = ~ VX_CDSP_VALID_IRQ_MASK ;
}
vx_outl ( chip , CDSP , chip - > regCDSP ) ;
}
/*
* write an AKM codec data ( 24 bit )
*/
static void vx2_write_codec_reg ( vx_core_t * chip , unsigned int data )
{
unsigned int i ;
vx_inl ( chip , HIFREQ ) ;
/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
for ( i = 0 ; i < 24 ; i + + , data < < = 1 )
vx_outl ( chip , DATA , ( ( data & 0x800000 ) ? VX_DATA_CODEC_MASK : 0 ) ) ;
/* Terminate access to codec registers */
vx_inl ( chip , RUER ) ;
}
# define AKM_CODEC_POWER_CONTROL_CMD 0xA007
# define AKM_CODEC_RESET_ON_CMD 0xA100
# define AKM_CODEC_RESET_OFF_CMD 0xA103
# define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
# define AKM_CODEC_MUTE_CMD 0xA38D
# define AKM_CODEC_UNMUTE_CMD 0xA30D
# define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
# define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
static const u8 vx2_akm_gains_lut [ VX2_AKM_LEVEL_MAX + 1 ] = {
0x7f , // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
0x7d , // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
0x7c , // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
0x7a , // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
0x79 , // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
0x77 , // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
0x76 , // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
0x75 , // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
0x73 , // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
0x72 , // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
0x71 , // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
0x70 , // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
0x6f , // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
0x6d , // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
0x6c , // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
0x6a , // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
0x69 , // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
0x67 , // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
0x66 , // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
0x65 , // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
0x64 , // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
0x62 , // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
0x61 , // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
0x60 , // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
0x5f , // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
0x5e , // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
0x5c , // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
0x5b , // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
0x59 , // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
0x58 , // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
0x56 , // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
0x55 , // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
0x54 , // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
0x53 , // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
0x52 , // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
0x51 , // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
0x50 , // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
0x4e , // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
0x4d , // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
0x4b , // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
0x4a , // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
0x48 , // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
0x47 , // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
0x46 , // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
0x44 , // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
0x43 , // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
0x42 , // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
0x41 , // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
0x40 , // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
0x3f , // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
0x3e , // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
0x3c , // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
0x3b , // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
0x39 , // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
0x38 , // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
0x37 , // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
0x36 , // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
0x34 , // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
0x33 , // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
0x32 , // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
0x31 , // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
0x31 , // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
0x30 , // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
0x2e , // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
0x2d , // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
0x2b , // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
0x2a , // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
0x29 , // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
0x28 , // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
0x27 , // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
0x25 , // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
0x24 , // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
0x24 , // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
0x23 , // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
0x22 , // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
0x21 , // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
0x20 , // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
0x1f , // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
0x1e , // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
0x1d , // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
0x1c , // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
0x1b , // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
0x1a , // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
0x19 , // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
0x18 , // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
0x17 , // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
0x16 , // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
0x15 , // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
0x14 , // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
0x14 , // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
0x13 , // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
0x12 , // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
0x12 , // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
0x11 , // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
0x11 , // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
0x10 , // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
0x10 , // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
0x0f , // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
0x0e , // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
0x0d , // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
0x0d , // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
0x0c , // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
0x0b , // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
0x0b , // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
0x0a , // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
0x0a , // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
0x09 , // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
0x09 , // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
0x08 , // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
0x08 , // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
0x07 , // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
0x07 , // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
0x06 , // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
0x06 , // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
0x06 , // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
0x05 , // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
0x05 , // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
0x05 , // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
0x05 , // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
0x04 , // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
0x04 , // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
0x04 , // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
0x04 , // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
0x03 , // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
0x03 , // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
0x03 , // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
0x03 , // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
0x03 , // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
0x03 , // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
0x02 , // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
0x02 , // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
0x02 , // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
0x02 , // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
0x02 , // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
0x02 , // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
0x02 , // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
0x02 , // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
0x02 , // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
0x02 , // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
0x01 , // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
0x01 , // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
0x01 , // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
0x01 , // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
0x01 , // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
0x01 , // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
0x01 , // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
0x01 , // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
0x00 } ; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
/*
* pseudo - codec write entry
*/
static void vx2_write_akm ( vx_core_t * chip , int reg , unsigned int data )
{
unsigned int val ;
if ( reg = = XX_CODEC_DAC_CONTROL_REGISTER ) {
vx2_write_codec_reg ( chip , data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD ) ;
return ;
}
/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
a look up table , as there is no linear matching between the driver codec values
and the real dBu value
*/
snd_assert ( data < sizeof ( vx2_akm_gains_lut ) , return ) ;
switch ( reg ) {
case XX_CODEC_LEVEL_LEFT_REGISTER :
val = AKM_CODEC_LEFT_LEVEL_CMD ;
break ;
case XX_CODEC_LEVEL_RIGHT_REGISTER :
val = AKM_CODEC_RIGHT_LEVEL_CMD ;
break ;
default :
snd_BUG ( ) ;
return ;
}
val | = vx2_akm_gains_lut [ data ] ;
vx2_write_codec_reg ( chip , val ) ;
}
/*
* write codec bit for old VX222 board
*/
static void vx2_old_write_codec_bit ( vx_core_t * chip , int codec , unsigned int data )
{
int i ;
/* activate access to codec registers */
vx_inl ( chip , HIFREQ ) ;
for ( i = 0 ; i < 24 ; i + + , data < < = 1 )
vx_outl ( chip , DATA , ( ( data & 0x800000 ) ? VX_DATA_CODEC_MASK : 0 ) ) ;
/* Terminate access to codec registers */
vx_inl ( chip , RUER ) ;
}
/*
* reset codec bit
*/
static void vx2_reset_codec ( vx_core_t * _chip )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
/* Set the reset CODEC bit to 0. */
vx_outl ( chip , CDSP , chip - > regCDSP & ~ VX_CDSP_CODEC_RESET_MASK ) ;
vx_inl ( chip , CDSP ) ;
2005-11-17 10:21:19 +01:00
msleep ( 10 ) ;
2005-04-16 15:20:36 -07:00
/* Set the reset CODEC bit to 1. */
chip - > regCDSP | = VX_CDSP_CODEC_RESET_MASK ;
vx_outl ( chip , CDSP , chip - > regCDSP ) ;
vx_inl ( chip , CDSP ) ;
if ( _chip - > type = = VX_TYPE_BOARD ) {
2005-11-17 10:21:19 +01:00
msleep ( 1 ) ;
2005-04-16 15:20:36 -07:00
return ;
}
2005-11-17 10:21:19 +01:00
msleep ( 5 ) ; /* additionnel wait time for AKM's */
2005-04-16 15:20:36 -07:00
vx2_write_codec_reg ( _chip , AKM_CODEC_POWER_CONTROL_CMD ) ; /* DAC power up, ADC power up, Vref power down */
vx2_write_codec_reg ( _chip , AKM_CODEC_CLOCK_FORMAT_CMD ) ; /* default */
vx2_write_codec_reg ( _chip , AKM_CODEC_MUTE_CMD ) ; /* Mute = ON ,Deemphasis = OFF */
vx2_write_codec_reg ( _chip , AKM_CODEC_RESET_OFF_CMD ) ; /* DAC and ADC normal operation */
if ( _chip - > type = = VX_TYPE_MIC ) {
/* set up the micro input selector */
chip - > regSELMIC = MICRO_SELECT_INPUT_NORM |
MICRO_SELECT_PREAMPLI_G_0 |
MICRO_SELECT_NOISE_T_52DB ;
/* reset phantom power supply */
chip - > regSELMIC & = ~ MICRO_SELECT_PHANTOM_ALIM ;
vx_outl ( _chip , SELMIC , chip - > regSELMIC ) ;
}
}
/*
* change the audio source
*/
static void vx2_change_audio_source ( vx_core_t * _chip , int src )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
switch ( src ) {
case VX_AUDIO_SRC_DIGITAL :
chip - > regCFG | = VX_CFG_DATAIN_SEL_MASK ;
break ;
default :
chip - > regCFG & = ~ VX_CFG_DATAIN_SEL_MASK ;
break ;
}
vx_outl ( chip , CFG , chip - > regCFG ) ;
}
/*
* set the clock source
*/
static void vx2_set_clock_source ( vx_core_t * _chip , int source )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
if ( source = = INTERNAL_QUARTZ )
chip - > regCFG & = ~ VX_CFG_CLOCKIN_SEL_MASK ;
else
chip - > regCFG | = VX_CFG_CLOCKIN_SEL_MASK ;
vx_outl ( chip , CFG , chip - > regCFG ) ;
}
/*
* reset the board
*/
static void vx2_reset_board ( vx_core_t * _chip , int cold_reset )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
/* initialize the register values */
chip - > regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
chip - > regCFG = 0 ;
}
/*
* input level controls for VX222 Mic
*/
/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
* 318 = 210 + 36 + 36 + 36 ( 210 = + 9 dB variable ) ( 3 * 36 = 3 steps of 18 dB pre ampli )
* as we will mute if less than - 110 dB , so let ' s simply use line input coded levels and add constant offset !
*/
# define V2_MICRO_LEVEL_RANGE (318 - 255)
static void vx2_set_input_level ( struct snd_vx222 * chip )
{
int i , miclevel , preamp ;
unsigned int data ;
miclevel = chip - > mic_level ;
miclevel + = V2_MICRO_LEVEL_RANGE ; /* add 318 - 0xff */
preamp = 0 ;
while ( miclevel > 210 ) { /* limitation to +9dB of 3310 real gain */
preamp + + ; /* raise pre ampli + 18dB */
miclevel - = ( 18 * 2 ) ; /* lower level 18 dB (*2 because of 0.5 dB steps !) */
}
snd_assert ( preamp < 4 , return ) ;
/* set pre-amp level */
chip - > regSELMIC & = ~ MICRO_SELECT_PREAMPLI_MASK ;
chip - > regSELMIC | = ( preamp < < MICRO_SELECT_PREAMPLI_OFFSET ) & MICRO_SELECT_PREAMPLI_MASK ;
vx_outl ( chip , SELMIC , chip - > regSELMIC ) ;
data = ( unsigned int ) miclevel < < 16 |
( unsigned int ) chip - > input_level [ 1 ] < < 8 |
( unsigned int ) chip - > input_level [ 0 ] ;
vx_inl ( chip , DATA ) ; /* Activate input level programming */
/* We have to send 32 bits (4 x 8 bits) */
for ( i = 0 ; i < 32 ; i + + , data < < = 1 )
vx_outl ( chip , DATA , ( ( data & 0x80000000 ) ? VX_DATA_CODEC_MASK : 0 ) ) ;
vx_inl ( chip , RUER ) ; /* Terminate input level programming */
}
# define MIC_LEVEL_MAX 0xff
/*
* controls API for input levels
*/
/* input levels */
static int vx_input_level_info ( snd_kcontrol_t * kcontrol , snd_ctl_elem_info_t * uinfo )
{
uinfo - > type = SNDRV_CTL_ELEM_TYPE_INTEGER ;
uinfo - > count = 2 ;
uinfo - > value . integer . min = 0 ;
uinfo - > value . integer . max = MIC_LEVEL_MAX ;
return 0 ;
}
static int vx_input_level_get ( snd_kcontrol_t * kcontrol , snd_ctl_elem_value_t * ucontrol )
{
vx_core_t * _chip = snd_kcontrol_chip ( kcontrol ) ;
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
down ( & _chip - > mixer_mutex ) ;
ucontrol - > value . integer . value [ 0 ] = chip - > input_level [ 0 ] ;
ucontrol - > value . integer . value [ 1 ] = chip - > input_level [ 1 ] ;
up ( & _chip - > mixer_mutex ) ;
return 0 ;
}
static int vx_input_level_put ( snd_kcontrol_t * kcontrol , snd_ctl_elem_value_t * ucontrol )
{
vx_core_t * _chip = snd_kcontrol_chip ( kcontrol ) ;
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
down ( & _chip - > mixer_mutex ) ;
if ( chip - > input_level [ 0 ] ! = ucontrol - > value . integer . value [ 0 ] | |
chip - > input_level [ 1 ] ! = ucontrol - > value . integer . value [ 1 ] ) {
chip - > input_level [ 0 ] = ucontrol - > value . integer . value [ 0 ] ;
chip - > input_level [ 1 ] = ucontrol - > value . integer . value [ 1 ] ;
vx2_set_input_level ( chip ) ;
up ( & _chip - > mixer_mutex ) ;
return 1 ;
}
up ( & _chip - > mixer_mutex ) ;
return 0 ;
}
/* mic level */
static int vx_mic_level_info ( snd_kcontrol_t * kcontrol , snd_ctl_elem_info_t * uinfo )
{
uinfo - > type = SNDRV_CTL_ELEM_TYPE_INTEGER ;
uinfo - > count = 1 ;
uinfo - > value . integer . min = 0 ;
uinfo - > value . integer . max = MIC_LEVEL_MAX ;
return 0 ;
}
static int vx_mic_level_get ( snd_kcontrol_t * kcontrol , snd_ctl_elem_value_t * ucontrol )
{
vx_core_t * _chip = snd_kcontrol_chip ( kcontrol ) ;
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
ucontrol - > value . integer . value [ 0 ] = chip - > mic_level ;
return 0 ;
}
static int vx_mic_level_put ( snd_kcontrol_t * kcontrol , snd_ctl_elem_value_t * ucontrol )
{
vx_core_t * _chip = snd_kcontrol_chip ( kcontrol ) ;
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
down ( & _chip - > mixer_mutex ) ;
if ( chip - > mic_level ! = ucontrol - > value . integer . value [ 0 ] ) {
chip - > mic_level = ucontrol - > value . integer . value [ 0 ] ;
vx2_set_input_level ( chip ) ;
up ( & _chip - > mixer_mutex ) ;
return 1 ;
}
up ( & _chip - > mixer_mutex ) ;
return 0 ;
}
static snd_kcontrol_new_t vx_control_input_level = {
. iface = SNDRV_CTL_ELEM_IFACE_MIXER ,
. name = " Capture Volume " ,
. info = vx_input_level_info ,
. get = vx_input_level_get ,
. put = vx_input_level_put ,
} ;
static snd_kcontrol_new_t vx_control_mic_level = {
. iface = SNDRV_CTL_ELEM_IFACE_MIXER ,
. name = " Mic Capture Volume " ,
. info = vx_mic_level_info ,
. get = vx_mic_level_get ,
. put = vx_mic_level_put ,
} ;
/*
* FIXME : compressor / limiter implementation is missing yet . . .
*/
static int vx2_add_mic_controls ( vx_core_t * _chip )
{
struct snd_vx222 * chip = ( struct snd_vx222 * ) _chip ;
int err ;
if ( _chip - > type ! = VX_TYPE_MIC )
return 0 ;
/* mute input levels */
chip - > input_level [ 0 ] = chip - > input_level [ 1 ] = 0 ;
chip - > mic_level = 0 ;
vx2_set_input_level ( chip ) ;
/* controls */
if ( ( err = snd_ctl_add ( _chip - > card , snd_ctl_new1 ( & vx_control_input_level , chip ) ) ) < 0 )
return err ;
if ( ( err = snd_ctl_add ( _chip - > card , snd_ctl_new1 ( & vx_control_mic_level , chip ) ) ) < 0 )
return err ;
return 0 ;
}
/*
* callbacks
*/
struct snd_vx_ops vx222_ops = {
. in8 = vx2_inb ,
. in32 = vx2_inl ,
. out8 = vx2_outb ,
. out32 = vx2_outl ,
. test_and_ack = vx2_test_and_ack ,
. validate_irq = vx2_validate_irq ,
. akm_write = vx2_write_akm ,
. reset_codec = vx2_reset_codec ,
. change_audio_source = vx2_change_audio_source ,
. set_clock_source = vx2_set_clock_source ,
. load_dsp = vx2_load_dsp ,
. reset_dsp = vx2_reset_dsp ,
. reset_board = vx2_reset_board ,
. dma_write = vx2_dma_write ,
. dma_read = vx2_dma_read ,
. add_controls = vx2_add_mic_controls ,
} ;
/* for old VX222 board */
struct snd_vx_ops vx222_old_ops = {
. in8 = vx2_inb ,
. in32 = vx2_inl ,
. out8 = vx2_outb ,
. out32 = vx2_outl ,
. test_and_ack = vx2_test_and_ack ,
. validate_irq = vx2_validate_irq ,
. write_codec = vx2_old_write_codec_bit ,
. reset_codec = vx2_reset_codec ,
. change_audio_source = vx2_change_audio_source ,
. set_clock_source = vx2_set_clock_source ,
. load_dsp = vx2_load_dsp ,
. reset_dsp = vx2_reset_dsp ,
. reset_board = vx2_reset_board ,
. dma_write = vx2_dma_write ,
. dma_read = vx2_dma_read ,
} ;