2013-08-19 22:23:07 +04:00
# ifndef __NET_VXLAN_H
# define __NET_VXLAN_H 1
2014-12-24 09:37:26 +03:00
# include <linux/ip.h>
# include <linux/ipv6.h>
# include <linux/if_vlan.h>
2013-08-19 22:23:07 +04:00
# include <linux/skbuff.h>
# include <linux/netdevice.h>
# include <linux/udp.h>
2015-07-21 11:43:58 +03:00
# include <net/dst_metadata.h>
2013-08-19 22:23:07 +04:00
2016-02-02 20:09:13 +03:00
/* VXLAN protocol (RFC 7348) header:
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | R | R | R | R | I | R | R | R | Reserved |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | VXLAN Network Identifier ( VNI ) | Reserved |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
*
* I = VXLAN Network Identifier ( VNI ) present .
*/
struct vxlanhdr {
__be32 vx_flags ;
__be32 vx_vni ;
} ;
/* VXLAN header flags. */
2016-02-16 23:58:58 +03:00
# define VXLAN_HF_VNI cpu_to_be32(BIT(27))
2016-02-02 20:09:13 +03:00
# define VXLAN_N_VID (1u << 24)
# define VXLAN_VID_MASK (VXLAN_N_VID - 1)
2016-02-16 23:58:58 +03:00
# define VXLAN_VNI_MASK cpu_to_be32(VXLAN_VID_MASK << 8)
2016-02-02 20:09:13 +03:00
# define VXLAN_HLEN (sizeof(struct udphdr) + sizeof(struct vxlanhdr))
# define VNI_HASH_BITS 10
# define VNI_HASH_SIZE (1<<VNI_HASH_BITS)
# define FDB_HASH_BITS 8
# define FDB_HASH_SIZE (1<<FDB_HASH_BITS)
/* Remote checksum offload for VXLAN (VXLAN_F_REMCSUM_[RT]X):
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | R | R | R | R | I | R | R | R | R | R | C | Reserved |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | VXLAN Network Identifier ( VNI ) | O | Csum start |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
*
* C = Remote checksum offload bit . When set indicates that the
* remote checksum offload data is present .
*
* O = Offset bit . Indicates the checksum offset relative to
* checksum start .
*
* Csum start = Checksum start divided by two .
*
* http : //tools.ietf.org/html/draft-herbert-vxlan-rco
*/
/* VXLAN-RCO header flags. */
2016-02-16 23:58:58 +03:00
# define VXLAN_HF_RCO cpu_to_be32(BIT(21))
2016-02-02 20:09:13 +03:00
/* Remote checksum offload header option */
2016-02-16 23:58:58 +03:00
# define VXLAN_RCO_MASK cpu_to_be32(0x7f) /* Last byte of vni field */
# define VXLAN_RCO_UDP cpu_to_be32(0x80) /* Indicate UDP RCO (TCP when not set *) */
# define VXLAN_RCO_SHIFT 1 /* Left shift of start */
2016-02-02 20:09:13 +03:00
# define VXLAN_RCO_SHIFT_MASK ((1 << VXLAN_RCO_SHIFT) - 1)
2016-02-16 23:58:58 +03:00
# define VXLAN_MAX_REMCSUM_START (0x7f << VXLAN_RCO_SHIFT)
2016-02-02 20:09:13 +03:00
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
/*
2016-02-02 20:09:13 +03:00
* VXLAN Group Based Policy Extension ( VXLAN_F_GBP ) :
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
2016-02-02 20:09:13 +03:00
* | G | R | R | R | I | R | R | R | R | D | R | R | A | R | R | R | Group Policy ID |
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | VXLAN Network Identifier ( VNI ) | Reserved |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
*
2016-02-02 20:09:13 +03:00
* G = Group Policy ID present .
*
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
* D = Don ' t Learn bit . When set , this bit indicates that the egress
* VTEP MUST NOT learn the source address of the encapsulated frame .
*
* A = Indicates that the group policy has already been applied to
* this packet . Policies MUST NOT be applied by devices when the
* A bit is set .
*
2016-02-02 20:09:13 +03:00
* https : //tools.ietf.org/html/draft-smith-vxlan-group-policy
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
*/
struct vxlanhdr_gbp {
2016-02-02 20:09:11 +03:00
u8 vx_flags ;
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
# ifdef __LITTLE_ENDIAN_BITFIELD
2016-02-02 20:09:11 +03:00
u8 reserved_flags1 : 3 ,
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
policy_applied : 1 ,
reserved_flags2 : 2 ,
dont_learn : 1 ,
reserved_flags3 : 1 ;
# elif defined(__BIG_ENDIAN_BITFIELD)
2016-02-02 20:09:11 +03:00
u8 reserved_flags1 : 1 ,
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
dont_learn : 1 ,
reserved_flags2 : 2 ,
policy_applied : 1 ,
reserved_flags3 : 3 ;
# else
# error "Please fix <asm / byteorder.h>"
# endif
__be16 policy_id ;
__be32 vx_vni ;
} ;
2016-02-02 20:09:13 +03:00
/* VXLAN-GBP header flags. */
2016-02-16 23:58:58 +03:00
# define VXLAN_HF_GBP cpu_to_be32(BIT(31))
2016-02-02 20:09:13 +03:00
2016-02-16 23:58:58 +03:00
# define VXLAN_GBP_USED_BITS (VXLAN_HF_GBP | cpu_to_be32(0xFFFFFF))
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
/* skb->mark mapping
*
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | R | R | R | R | R | R | R | R | R | D | R | R | A | R | R | R | Group Policy ID |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
*/
# define VXLAN_GBP_DONT_LEARN (BIT(6) << 16)
# define VXLAN_GBP_POLICY_APPLIED (BIT(3) << 16)
# define VXLAN_GBP_ID_MASK (0xFFFF)
vxlan: implement GPE
Implement VXLAN-GPE. Only COLLECT_METADATA is supported for now (it is
possible to support static configuration, too, if there is demand for it).
The GPE header parsing has to be moved before iptunnel_pull_header, as we
need to know the protocol.
v2: Removed what was called "L2 mode" in v1 of the patchset. Only "L3 mode"
(now called "raw mode") is added by this patch. This mode does not allow
Ethernet header to be encapsulated in VXLAN-GPE when using ip route to
specify the encapsulation, IP header is encapsulated instead. The patch
does support Ethernet to be encapsulated, though, using ETH_P_TEB in
skb->protocol. This will be utilized by other COLLECT_METADATA users
(openvswitch in particular).
If there is ever demand for Ethernet encapsulation with VXLAN-GPE using
ip route, it's easy to add a new flag switching the interface to
"Ethernet mode" (called "L2 mode" in v1 of this patchset). For now,
leave this out, it seems we don't need it.
Disallowed more flag combinations, especially RCO with GPE.
Added comment explaining that GBP and GPE cannot be set together.
Signed-off-by: Jiri Benc <jbenc@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 15:47:13 +03:00
/*
* VXLAN Generic Protocol Extension ( VXLAN_F_GPE ) :
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | R | R | Ver | I | P | R | O | Reserved | Next Protocol |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
* | VXLAN Network Identifier ( VNI ) | Reserved |
* + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
*
* Ver = Version . Indicates VXLAN GPE protocol version .
*
* P = Next Protocol Bit . The P bit is set to indicate that the
* Next Protocol field is present .
*
* O = OAM Flag Bit . The O bit is set to indicate that the packet
* is an OAM packet .
*
* Next Protocol = This 8 bit field indicates the protocol header
* immediately following the VXLAN GPE header .
*
* https : //tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-01
*/
struct vxlanhdr_gpe {
# if defined(__LITTLE_ENDIAN_BITFIELD)
u8 oam_flag : 1 ,
reserved_flags1 : 1 ,
np_applied : 1 ,
instance_applied : 1 ,
version : 2 ,
reserved_flags2 : 2 ;
# elif defined(__BIG_ENDIAN_BITFIELD)
u8 reserved_flags2 : 2 ,
version : 2 ,
instance_applied : 1 ,
np_applied : 1 ,
reserved_flags1 : 1 ,
oam_flag : 1 ;
# endif
u8 reserved_flags3 ;
u8 reserved_flags4 ;
u8 next_protocol ;
__be32 vx_vni ;
} ;
/* VXLAN-GPE header flags. */
# define VXLAN_HF_VER cpu_to_be32(BIT(29) | BIT(28))
# define VXLAN_HF_NP cpu_to_be32(BIT(26))
# define VXLAN_HF_OAM cpu_to_be32(BIT(24))
# define VXLAN_GPE_USED_BITS (VXLAN_HF_VER | VXLAN_HF_NP | VXLAN_HF_OAM | \
cpu_to_be32 ( 0xff ) )
/* VXLAN-GPE header Next Protocol. */
# define VXLAN_GPE_NP_IPV4 0x01
# define VXLAN_GPE_NP_IPV6 0x02
# define VXLAN_GPE_NP_ETHERNET 0x03
# define VXLAN_GPE_NP_NSH 0x04
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
struct vxlan_metadata {
u32 gbp ;
} ;
2013-08-19 22:23:07 +04:00
/* per UDP socket information */
struct vxlan_sock {
struct hlist_node hlist ;
struct socket * sock ;
struct hlist_head vni_list [ VNI_HASH_SIZE ] ;
atomic_t refcnt ;
2015-01-13 04:00:38 +03:00
u32 flags ;
2013-08-19 22:23:07 +04:00
} ;
2015-07-21 11:44:02 +03:00
union vxlan_addr {
struct sockaddr_in sin ;
struct sockaddr_in6 sin6 ;
struct sockaddr sa ;
} ;
struct vxlan_rdst {
union vxlan_addr remote_ip ;
__be16 remote_port ;
2016-02-16 23:58:58 +03:00
__be32 remote_vni ;
2015-07-21 11:44:02 +03:00
u32 remote_ifindex ;
struct list_head list ;
struct rcu_head rcu ;
2016-02-12 17:43:56 +03:00
struct dst_cache dst_cache ;
2015-07-21 11:44:02 +03:00
} ;
struct vxlan_config {
union vxlan_addr remote_ip ;
union vxlan_addr saddr ;
2016-02-16 23:58:58 +03:00
__be32 vni ;
2015-07-21 11:44:02 +03:00
int remote_ifindex ;
int mtu ;
__be16 dst_port ;
2016-02-02 20:09:11 +03:00
u16 port_min ;
u16 port_max ;
u8 tos ;
u8 ttl ;
2016-03-09 05:00:03 +03:00
__be32 label ;
2015-07-21 11:44:02 +03:00
u32 flags ;
unsigned long age_interval ;
unsigned int addrmax ;
bool no_share ;
} ;
/* Pseudo network device */
struct vxlan_dev {
struct hlist_node hlist ; /* vni hash table */
struct list_head next ; /* vxlan's per namespace list */
2015-09-24 14:50:02 +03:00
struct vxlan_sock * vn4_sock ; /* listening socket for IPv4 */
# if IS_ENABLED(CONFIG_IPV6)
struct vxlan_sock * vn6_sock ; /* listening socket for IPv6 */
# endif
2015-07-21 11:44:02 +03:00
struct net_device * dev ;
struct net * net ; /* netns for packet i/o */
struct vxlan_rdst default_dst ; /* default destination */
u32 flags ; /* VXLAN_F_* in vxlan.h */
struct timer_list age_timer ;
spinlock_t hash_lock ;
unsigned int addrcnt ;
2015-08-20 03:07:33 +03:00
struct gro_cells gro_cells ;
2015-07-21 11:44:02 +03:00
struct vxlan_config cfg ;
struct hlist_head fdb_head [ FDB_HASH_SIZE ] ;
} ;
2014-06-05 04:20:29 +04:00
# define VXLAN_F_LEARN 0x01
# define VXLAN_F_PROXY 0x02
# define VXLAN_F_RSC 0x04
# define VXLAN_F_L2MISS 0x08
# define VXLAN_F_L3MISS 0x10
# define VXLAN_F_IPV6 0x20
2016-02-19 22:26:31 +03:00
# define VXLAN_F_UDP_ZERO_CSUM_TX 0x40
2014-06-05 04:20:29 +04:00
# define VXLAN_F_UDP_ZERO_CSUM6_TX 0x80
# define VXLAN_F_UDP_ZERO_CSUM6_RX 0x100
2015-01-13 04:00:38 +03:00
# define VXLAN_F_REMCSUM_TX 0x200
# define VXLAN_F_REMCSUM_RX 0x400
vxlan: Group Policy extension
Implements supports for the Group Policy VXLAN extension [0] to provide
a lightweight and simple security label mechanism across network peers
based on VXLAN. The security context and associated metadata is mapped
to/from skb->mark. This allows further mapping to a SELinux context
using SECMARK, to implement ACLs directly with nftables, iptables, OVS,
tc, etc.
The group membership is defined by the lower 16 bits of skb->mark, the
upper 16 bits are used for flags.
SELinux allows to manage label to secure local resources. However,
distributed applications require ACLs to implemented across hosts. This
is typically achieved by matching on L2-L4 fields to identify the
original sending host and process on the receiver. On top of that,
netlabel and specifically CIPSO [1] allow to map security contexts to
universal labels. However, netlabel and CIPSO are relatively complex.
This patch provides a lightweight alternative for overlay network
environments with a trusted underlay. No additional control protocol
is required.
Host 1: Host 2:
Group A Group B Group B Group A
+-----+ +-------------+ +-------+ +-----+
| lxc | | SELinux CTX | | httpd | | VM |
+--+--+ +--+----------+ +---+---+ +--+--+
\---+---/ \----+---/
| |
+---+---+ +---+---+
| vxlan | | vxlan |
+---+---+ +---+---+
+------------------------------+
Backwards compatibility:
A VXLAN-GBP socket can receive standard VXLAN frames and will assign
the default group 0x0000 to such frames. A Linux VXLAN socket will
drop VXLAN-GBP frames. The extension is therefore disabled by default
and needs to be specifically enabled:
ip link add [...] type vxlan [...] gbp
In a mixed environment with VXLAN and VXLAN-GBP sockets, the GBP socket
must run on a separate port number.
Examples:
iptables:
host1# iptables -I OUTPUT -m owner --uid-owner 101 -j MARK --set-mark 0x200
host2# iptables -I INPUT -m mark --mark 0x200 -j DROP
OVS:
# ovs-ofctl add-flow br0 'in_port=1,actions=load:0x200->NXM_NX_TUN_GBP_ID[],NORMAL'
# ovs-ofctl add-flow br0 'in_port=2,tun_gbp_id=0x200,actions=drop'
[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy
[1] http://lwn.net/Articles/204905/
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-15 05:53:55 +03:00
# define VXLAN_F_GBP 0x800
2015-02-11 03:30:32 +03:00
# define VXLAN_F_REMCSUM_NOPARTIAL 0x1000
2015-07-21 11:43:58 +03:00
# define VXLAN_F_COLLECT_METADATA 0x2000
vxlan: implement GPE
Implement VXLAN-GPE. Only COLLECT_METADATA is supported for now (it is
possible to support static configuration, too, if there is demand for it).
The GPE header parsing has to be moved before iptunnel_pull_header, as we
need to know the protocol.
v2: Removed what was called "L2 mode" in v1 of the patchset. Only "L3 mode"
(now called "raw mode") is added by this patch. This mode does not allow
Ethernet header to be encapsulated in VXLAN-GPE when using ip route to
specify the encapsulation, IP header is encapsulated instead. The patch
does support Ethernet to be encapsulated, though, using ETH_P_TEB in
skb->protocol. This will be utilized by other COLLECT_METADATA users
(openvswitch in particular).
If there is ever demand for Ethernet encapsulation with VXLAN-GPE using
ip route, it's easy to add a new flag switching the interface to
"Ethernet mode" (called "L2 mode" in v1 of this patchset). For now,
leave this out, it seems we don't need it.
Disallowed more flag combinations, especially RCO with GPE.
Added comment explaining that GBP and GPE cannot be set together.
Signed-off-by: Jiri Benc <jbenc@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 15:47:13 +03:00
# define VXLAN_F_GPE 0x4000
2014-06-05 04:20:29 +04:00
2015-03-12 05:00:10 +03:00
/* Flags that are used in the receive path. These flags must match in
2015-01-20 22:23:05 +03:00
* order for a socket to be shareable
*/
# define VXLAN_F_RCV_FLAGS (VXLAN_F_GBP | \
vxlan: implement GPE
Implement VXLAN-GPE. Only COLLECT_METADATA is supported for now (it is
possible to support static configuration, too, if there is demand for it).
The GPE header parsing has to be moved before iptunnel_pull_header, as we
need to know the protocol.
v2: Removed what was called "L2 mode" in v1 of the patchset. Only "L3 mode"
(now called "raw mode") is added by this patch. This mode does not allow
Ethernet header to be encapsulated in VXLAN-GPE when using ip route to
specify the encapsulation, IP header is encapsulated instead. The patch
does support Ethernet to be encapsulated, though, using ETH_P_TEB in
skb->protocol. This will be utilized by other COLLECT_METADATA users
(openvswitch in particular).
If there is ever demand for Ethernet encapsulation with VXLAN-GPE using
ip route, it's easy to add a new flag switching the interface to
"Ethernet mode" (called "L2 mode" in v1 of this patchset). For now,
leave this out, it seems we don't need it.
Disallowed more flag combinations, especially RCO with GPE.
Added comment explaining that GBP and GPE cannot be set together.
Signed-off-by: Jiri Benc <jbenc@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 15:47:13 +03:00
VXLAN_F_GPE | \
2015-01-20 22:23:05 +03:00
VXLAN_F_UDP_ZERO_CSUM6_RX | \
2015-02-11 03:30:32 +03:00
VXLAN_F_REMCSUM_RX | \
2015-07-21 11:43:58 +03:00
VXLAN_F_REMCSUM_NOPARTIAL | \
2015-08-05 08:51:07 +03:00
VXLAN_F_COLLECT_METADATA )
2015-01-15 05:53:56 +03:00
vxlan: implement GPE
Implement VXLAN-GPE. Only COLLECT_METADATA is supported for now (it is
possible to support static configuration, too, if there is demand for it).
The GPE header parsing has to be moved before iptunnel_pull_header, as we
need to know the protocol.
v2: Removed what was called "L2 mode" in v1 of the patchset. Only "L3 mode"
(now called "raw mode") is added by this patch. This mode does not allow
Ethernet header to be encapsulated in VXLAN-GPE when using ip route to
specify the encapsulation, IP header is encapsulated instead. The patch
does support Ethernet to be encapsulated, though, using ETH_P_TEB in
skb->protocol. This will be utilized by other COLLECT_METADATA users
(openvswitch in particular).
If there is ever demand for Ethernet encapsulation with VXLAN-GPE using
ip route, it's easy to add a new flag switching the interface to
"Ethernet mode" (called "L2 mode" in v1 of this patchset). For now,
leave this out, it seems we don't need it.
Disallowed more flag combinations, especially RCO with GPE.
Added comment explaining that GBP and GPE cannot be set together.
Signed-off-by: Jiri Benc <jbenc@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-05 15:47:13 +03:00
/* Flags that can be set together with VXLAN_F_GPE. */
# define VXLAN_F_ALLOWED_GPE (VXLAN_F_GPE | \
VXLAN_F_IPV6 | \
VXLAN_F_UDP_ZERO_CSUM_TX | \
VXLAN_F_UDP_ZERO_CSUM6_TX | \
VXLAN_F_UDP_ZERO_CSUM6_RX | \
VXLAN_F_COLLECT_METADATA )
2015-07-21 11:44:02 +03:00
struct net_device * vxlan_dev_create ( struct net * net , const char * name ,
u8 name_assign_type , struct vxlan_config * conf ) ;
2015-09-24 14:50:02 +03:00
static inline __be16 vxlan_dev_dst_port ( struct vxlan_dev * vxlan ,
unsigned short family )
2015-07-21 11:44:06 +03:00
{
2015-09-24 14:50:02 +03:00
# if IS_ENABLED(CONFIG_IPV6)
if ( family = = AF_INET6 )
return inet_sk ( vxlan - > vn6_sock - > sock - > sk ) - > inet_sport ;
# endif
return inet_sk ( vxlan - > vn4_sock - > sock - > sk ) - > inet_sport ;
2015-07-21 11:44:06 +03:00
}
2013-08-19 22:23:17 +04:00
2014-12-24 09:37:26 +03:00
static inline netdev_features_t vxlan_features_check ( struct sk_buff * skb ,
netdev_features_t features )
2014-11-18 03:24:54 +03:00
{
2014-12-24 09:37:26 +03:00
u8 l4_hdr = 0 ;
if ( ! skb - > encapsulation )
return features ;
switch ( vlan_get_protocol ( skb ) ) {
case htons ( ETH_P_IP ) :
l4_hdr = ip_hdr ( skb ) - > protocol ;
break ;
case htons ( ETH_P_IPV6 ) :
l4_hdr = ipv6_hdr ( skb ) - > nexthdr ;
break ;
default :
return features ; ;
}
if ( ( l4_hdr = = IPPROTO_UDP ) & &
2014-11-18 03:24:54 +03:00
( skb - > inner_protocol_type ! = ENCAP_TYPE_ETHER | |
skb - > inner_protocol ! = htons ( ETH_P_TEB ) | |
( skb_inner_mac_header ( skb ) - skb_transport_header ( skb ) ! =
2016-05-02 19:25:16 +03:00
sizeof ( struct udphdr ) + sizeof ( struct vxlanhdr ) ) | |
( skb - > ip_summed ! = CHECKSUM_NONE & &
! can_checksum_protocol ( features , inner_eth_hdr ( skb ) - > h_proto ) ) ) )
2015-12-14 22:19:43 +03:00
return features & ~ ( NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK ) ;
2014-11-18 03:24:54 +03:00
2014-12-24 09:37:26 +03:00
return features ;
2014-11-18 03:24:54 +03:00
}
2014-11-14 03:38:12 +03:00
2013-10-24 10:27:10 +04:00
/* IP header + UDP + VXLAN + Ethernet header */
# define VXLAN_HEADROOM (20 + 8 + 8 + 14)
/* IPv6 header + UDP + VXLAN + Ethernet header */
# define VXLAN6_HEADROOM (40 + 8 + 8 + 14)
2016-02-16 23:58:57 +03:00
static inline struct vxlanhdr * vxlan_hdr ( struct sk_buff * skb )
{
return ( struct vxlanhdr * ) ( udp_hdr ( skb ) + 1 ) ;
}
2016-02-16 23:58:58 +03:00
static inline __be32 vxlan_vni ( __be32 vni_field )
{
# if defined(__BIG_ENDIAN)
2016-03-21 19:39:18 +03:00
return ( __force __be32 ) ( ( __force u32 ) vni_field > > 8 ) ;
2016-02-16 23:58:58 +03:00
# else
2016-03-21 19:39:18 +03:00
return ( __force __be32 ) ( ( __force u32 ) ( vni_field & VXLAN_VNI_MASK ) < < 8 ) ;
2016-02-16 23:58:58 +03:00
# endif
}
static inline __be32 vxlan_vni_field ( __be32 vni )
{
# if defined(__BIG_ENDIAN)
2016-03-21 19:39:18 +03:00
return ( __force __be32 ) ( ( __force u32 ) vni < < 8 ) ;
2016-02-16 23:58:58 +03:00
# else
2016-03-21 19:39:18 +03:00
return ( __force __be32 ) ( ( __force u32 ) vni > > 8 ) ;
2016-02-16 23:58:58 +03:00
# endif
}
static inline __be32 vxlan_tun_id_to_vni ( __be64 tun_id )
{
# if defined(__BIG_ENDIAN)
2016-03-21 19:39:18 +03:00
return ( __force __be32 ) tun_id ;
2016-02-16 23:58:58 +03:00
# else
2016-03-21 19:39:18 +03:00
return ( __force __be32 ) ( ( __force u64 ) tun_id > > 32 ) ;
2016-02-16 23:58:58 +03:00
# endif
}
2016-02-18 21:19:29 +03:00
static inline __be64 vxlan_vni_to_tun_id ( __be32 vni )
{
# if defined(__BIG_ENDIAN)
2016-03-21 19:39:18 +03:00
return ( __force __be64 ) vni ;
2016-02-18 21:19:29 +03:00
# else
2016-03-21 19:39:18 +03:00
return ( __force __be64 ) ( ( u64 ) ( __force u32 ) vni < < 32 ) ;
2016-02-18 21:19:29 +03:00
# endif
}
2016-02-16 23:58:58 +03:00
static inline size_t vxlan_rco_start ( __be32 vni_field )
{
return be32_to_cpu ( vni_field & VXLAN_RCO_MASK ) < < VXLAN_RCO_SHIFT ;
}
static inline size_t vxlan_rco_offset ( __be32 vni_field )
{
return ( vni_field & VXLAN_RCO_UDP ) ?
offsetof ( struct udphdr , check ) :
offsetof ( struct tcphdr , check ) ;
}
static inline __be32 vxlan_compute_rco ( unsigned int start , unsigned int offset )
{
__be32 vni_field = cpu_to_be32 ( start > > VXLAN_RCO_SHIFT ) ;
if ( offset = = offsetof ( struct udphdr , check ) )
vni_field | = VXLAN_RCO_UDP ;
return vni_field ;
}
2013-10-24 10:27:10 +04:00
static inline void vxlan_get_rx_port ( struct net_device * netdev )
{
2016-04-18 22:19:47 +03:00
ASSERT_RTNL ( ) ;
call_netdevice_notifiers ( NETDEV_OFFLOAD_PUSH_VXLAN , netdev ) ;
2013-10-24 10:27:10 +04:00
}
2015-08-20 14:56:28 +03:00
static inline unsigned short vxlan_get_sk_family ( struct vxlan_sock * vs )
{
return vs - > sock - > sk - > sk_family ;
}
2015-08-25 19:36:50 +03:00
# endif