2021-07-03 17:02:21 +02:00
// SPDX-License-Identifier: Apache-2.0 OR MIT
2022-05-06 17:52:44 +02:00
//! A pointer type for heap allocation.
//!
//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope. Boxes also ensure that they
//! never allocate more than `isize::MAX` bytes.
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
//!
//! ```
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::new(val);
//! ```
//!
//! Move a value from a [`Box`] back to the stack by [dereferencing]:
//!
//! ```
//! let boxed: Box<u8> = Box::new(5);
//! let val: u8 = *boxed;
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! #[derive(Debug)]
//! enum List<T> {
//! Cons(T, Box<List<T>>),
//! Nil,
//! }
//!
//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//! println!("{list:?}");
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
//! big `Cons` needs to be.
//!
//! # Memory layout
//!
//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
//! its allocation. It is valid to convert both ways between a [`Box`] and a
//! raw pointer allocated with the [`Global`] allocator, given that the
//! [`Layout`] used with the allocator is correct for the type. More precisely,
//! a `value: *mut T` that has been allocated with the [`Global`] allocator
//! with `Layout::for_value(&*value)` may be converted into a box using
//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
//! [`Global`] allocator with [`Layout::for_value(&*value)`].
//!
//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
//! and writes and sufficiently aligned. In particular, casting any aligned
//! non-zero integer literal to a raw pointer produces a valid pointer, but a
//! pointer pointing into previously allocated memory that since got freed is
//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
//! be used is to use [`ptr::NonNull::dangling`].
//!
//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
//! as a single pointer and is also ABI-compatible with C pointers
//! (i.e. the C type `T*`). This means that if you have extern "C"
//! Rust functions that will be called from C, you can define those
//! Rust functions using `Box<T>` types, and use `T*` as corresponding
//! type on the C side. As an example, consider this C header which
//! declares functions that create and destroy some kind of `Foo`
//! value:
//!
//! ```c
//! /* C header */
//!
//! /* Returns ownership to the caller */
//! struct Foo* foo_new(void);
//!
//! /* Takes ownership from the caller; no-op when invoked with null */
//! void foo_delete(struct Foo*);
//! ```
//!
//! These two functions might be implemented in Rust as follows. Here, the
//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
//! the ownership constraints. Note also that the nullable argument to
//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
//! cannot be null.
//!
//! ```
//! #[repr(C)]
//! pub struct Foo;
//!
//! #[no_mangle]
//! pub extern "C" fn foo_new() -> Box<Foo> {
//! Box::new(Foo)
//! }
//!
//! #[no_mangle]
//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
//! ```
//!
//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
//! and expect things to work. `Box<T>` values will always be fully aligned,
//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
//! free the value with the global allocator. In general, the best practice
//! is to only use `Box<T>` for pointers that originated from the global
//! allocator.
//!
//! **Important.** At least at present, you should avoid using
//! `Box<T>` types for functions that are defined in C but invoked
//! from Rust. In those cases, you should directly mirror the C types
//! as closely as possible. Using types like `Box<T>` where the C
//! definition is just using `T*` can lead to undefined behavior, as
//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
//!
//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
//! [dereferencing]: core::ops::Deref
//! [`Box::<T>::from_raw(value)`]: Box::from_raw
//! [`Global`]: crate::alloc::Global
//! [`Layout`]: crate::alloc::Layout
//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
//! [valid]: ptr#safety
#![ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
use core ::any ::Any ;
use core ::async_iter ::AsyncIterator ;
use core ::borrow ;
use core ::cmp ::Ordering ;
use core ::convert ::{ From , TryFrom } ;
use core ::fmt ;
use core ::future ::Future ;
use core ::hash ::{ Hash , Hasher } ;
#[ cfg(not(no_global_oom_handling)) ]
use core ::iter ::FromIterator ;
use core ::iter ::{ FusedIterator , Iterator } ;
use core ::marker ::{ Destruct , Unpin , Unsize } ;
use core ::mem ;
use core ::ops ::{
CoerceUnsized , Deref , DerefMut , DispatchFromDyn , Generator , GeneratorState , Receiver ,
} ;
use core ::pin ::Pin ;
use core ::ptr ::{ self , Unique } ;
use core ::task ::{ Context , Poll } ;
#[ cfg(not(no_global_oom_handling)) ]
use crate ::alloc ::{ handle_alloc_error , WriteCloneIntoRaw } ;
use crate ::alloc ::{ AllocError , Allocator , Global , Layout } ;
#[ cfg(not(no_global_oom_handling)) ]
use crate ::borrow ::Cow ;
use crate ::raw_vec ::RawVec ;
#[ cfg(not(no_global_oom_handling)) ]
use crate ::str ::from_boxed_utf8_unchecked ;
#[ cfg(not(no_global_oom_handling)) ]
use crate ::vec ::Vec ;
2021-07-03 17:02:21 +02:00
#[ cfg(not(no_thin)) ]
2022-05-06 17:52:44 +02:00
#[ unstable(feature = " thin_box " , issue = " 92791 " ) ]
pub use thin ::ThinBox ;
2021-07-03 17:02:21 +02:00
#[ cfg(not(no_thin)) ]
2022-05-06 17:52:44 +02:00
mod thin ;
/// A pointer type for heap allocation.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[ lang = " owned_box " ]
#[ fundamental ]
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
// The declaration of the `Box` struct must be kept in sync with the
// `alloc::alloc::box_free` function or ICEs will happen. See the comment
// on `box_free` for more details.
pub struct Box <
T : ? Sized ,
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ] A : Allocator = Global ,
> ( Unique < T > , A ) ;
impl < T > Box < T > {
/// Allocates memory on the heap and then places `x` into it.
///
/// This doesn't actually allocate if `T` is zero-sized.
///
/// # Examples
///
/// ```
/// let five = Box::new(5);
/// ```
#[ cfg(not(no_global_oom_handling)) ]
#[ inline(always) ]
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
#[ must_use ]
pub fn new ( x : T ) -> Self {
box x
}
/// Constructs a new box with uninitialized contents.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// let mut five = Box::<u32>::new_uninit();
///
/// let five = unsafe {
/// // Deferred initialization:
/// five.as_mut_ptr().write(5);
///
/// five.assume_init()
/// };
///
/// assert_eq!(*five, 5)
/// ```
#[ cfg(not(no_global_oom_handling)) ]
#[ unstable(feature = " new_uninit " , issue = " 63291 " ) ]
#[ must_use ]
#[ inline ]
pub fn new_uninit ( ) -> Box < mem ::MaybeUninit < T > > {
Self ::new_uninit_in ( Global )
}
/// Constructs a new `Box` with uninitialized contents, with the memory
/// being filled with `0` bytes.
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// let zero = Box::<u32>::new_zeroed();
/// let zero = unsafe { zero.assume_init() };
///
/// assert_eq!(*zero, 0)
/// ```
///
/// [zeroed]: mem::MaybeUninit::zeroed
#[ cfg(not(no_global_oom_handling)) ]
#[ inline ]
#[ unstable(feature = " new_uninit " , issue = " 63291 " ) ]
#[ must_use ]
pub fn new_zeroed ( ) -> Box < mem ::MaybeUninit < T > > {
Self ::new_zeroed_in ( Global )
}
/// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
/// `x` will be pinned in memory and unable to be moved.
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " pin " , since = " 1.33.0 " ) ]
#[ must_use ]
#[ inline(always) ]
pub fn pin ( x : T ) -> Pin < Box < T > > {
( box x ) . into ( )
}
/// Allocates memory on the heap then places `x` into it,
/// returning an error if the allocation fails
///
/// This doesn't actually allocate if `T` is zero-sized.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// let five = Box::try_new(5)?;
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ inline ]
pub fn try_new ( x : T ) -> Result < Self , AllocError > {
Self ::try_new_in ( x , Global )
}
/// Constructs a new box with uninitialized contents on the heap,
/// returning an error if the allocation fails
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// let mut five = Box::<u32>::try_new_uninit()?;
///
/// let five = unsafe {
/// // Deferred initialization:
/// five.as_mut_ptr().write(5);
///
/// five.assume_init()
/// };
///
/// assert_eq!(*five, 5);
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
// #[unstable(feature = "new_uninit", issue = "63291")]
#[ inline ]
pub fn try_new_uninit ( ) -> Result < Box < mem ::MaybeUninit < T > > , AllocError > {
Box ::try_new_uninit_in ( Global )
}
/// Constructs a new `Box` with uninitialized contents, with the memory
/// being filled with `0` bytes on the heap
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// let zero = Box::<u32>::try_new_zeroed()?;
/// let zero = unsafe { zero.assume_init() };
///
/// assert_eq!(*zero, 0);
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [zeroed]: mem::MaybeUninit::zeroed
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
// #[unstable(feature = "new_uninit", issue = "63291")]
#[ inline ]
pub fn try_new_zeroed ( ) -> Result < Box < mem ::MaybeUninit < T > > , AllocError > {
Box ::try_new_zeroed_in ( Global )
}
}
impl < T , A : Allocator > Box < T , A > {
/// Allocates memory in the given allocator then places `x` into it.
///
/// This doesn't actually allocate if `T` is zero-sized.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let five = Box::new_in(5, System);
/// ```
#[ cfg(not(no_global_oom_handling)) ]
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ must_use ]
#[ inline ]
pub const fn new_in ( x : T , alloc : A ) -> Self
where
A : ~ const Allocator + ~ const Destruct ,
{
let mut boxed = Self ::new_uninit_in ( alloc ) ;
unsafe {
boxed . as_mut_ptr ( ) . write ( x ) ;
boxed . assume_init ( )
}
}
/// Allocates memory in the given allocator then places `x` into it,
/// returning an error if the allocation fails
///
/// This doesn't actually allocate if `T` is zero-sized.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let five = Box::try_new_in(5, System)?;
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const fn try_new_in ( x : T , alloc : A ) -> Result < Self , AllocError >
where
T : ~ const Destruct ,
A : ~ const Allocator + ~ const Destruct ,
{
let mut boxed = Self ::try_new_uninit_in ( alloc ) ? ;
unsafe {
boxed . as_mut_ptr ( ) . write ( x ) ;
Ok ( boxed . assume_init ( ) )
}
}
/// Constructs a new box with uninitialized contents in the provided allocator.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// use std::alloc::System;
///
/// let mut five = Box::<u32, _>::new_uninit_in(System);
///
/// let five = unsafe {
/// // Deferred initialization:
/// five.as_mut_ptr().write(5);
///
/// five.assume_init()
/// };
///
/// assert_eq!(*five, 5)
/// ```
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ cfg(not(no_global_oom_handling)) ]
#[ must_use ]
// #[unstable(feature = "new_uninit", issue = "63291")]
pub const fn new_uninit_in ( alloc : A ) -> Box < mem ::MaybeUninit < T > , A >
where
A : ~ const Allocator + ~ const Destruct ,
{
let layout = Layout ::new ::< mem ::MaybeUninit < T > > ( ) ;
// NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
// That would make code size bigger.
match Box ::try_new_uninit_in ( alloc ) {
Ok ( m ) = > m ,
Err ( _ ) = > handle_alloc_error ( layout ) ,
}
}
/// Constructs a new box with uninitialized contents in the provided allocator,
/// returning an error if the allocation fails
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// use std::alloc::System;
///
/// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
///
/// let five = unsafe {
/// // Deferred initialization:
/// five.as_mut_ptr().write(5);
///
/// five.assume_init()
/// };
///
/// assert_eq!(*five, 5);
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
// #[unstable(feature = "new_uninit", issue = "63291")]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
pub const fn try_new_uninit_in ( alloc : A ) -> Result < Box < mem ::MaybeUninit < T > , A > , AllocError >
where
A : ~ const Allocator + ~ const Destruct ,
{
let layout = Layout ::new ::< mem ::MaybeUninit < T > > ( ) ;
let ptr = alloc . allocate ( layout ) ? . cast ( ) ;
unsafe { Ok ( Box ::from_raw_in ( ptr . as_ptr ( ) , alloc ) ) }
}
/// Constructs a new `Box` with uninitialized contents, with the memory
/// being filled with `0` bytes in the provided allocator.
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// use std::alloc::System;
///
/// let zero = Box::<u32, _>::new_zeroed_in(System);
/// let zero = unsafe { zero.assume_init() };
///
/// assert_eq!(*zero, 0)
/// ```
///
/// [zeroed]: mem::MaybeUninit::zeroed
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ cfg(not(no_global_oom_handling)) ]
// #[unstable(feature = "new_uninit", issue = "63291")]
#[ must_use ]
pub const fn new_zeroed_in ( alloc : A ) -> Box < mem ::MaybeUninit < T > , A >
where
A : ~ const Allocator + ~ const Destruct ,
{
let layout = Layout ::new ::< mem ::MaybeUninit < T > > ( ) ;
// NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
// That would make code size bigger.
match Box ::try_new_zeroed_in ( alloc ) {
Ok ( m ) = > m ,
Err ( _ ) = > handle_alloc_error ( layout ) ,
}
}
/// Constructs a new `Box` with uninitialized contents, with the memory
/// being filled with `0` bytes in the provided allocator,
/// returning an error if the allocation fails,
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// use std::alloc::System;
///
/// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
/// let zero = unsafe { zero.assume_init() };
///
/// assert_eq!(*zero, 0);
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [zeroed]: mem::MaybeUninit::zeroed
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
// #[unstable(feature = "new_uninit", issue = "63291")]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
pub const fn try_new_zeroed_in ( alloc : A ) -> Result < Box < mem ::MaybeUninit < T > , A > , AllocError >
where
A : ~ const Allocator + ~ const Destruct ,
{
let layout = Layout ::new ::< mem ::MaybeUninit < T > > ( ) ;
let ptr = alloc . allocate_zeroed ( layout ) ? . cast ( ) ;
unsafe { Ok ( Box ::from_raw_in ( ptr . as_ptr ( ) , alloc ) ) }
}
/// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement `Unpin`, then
/// `x` will be pinned in memory and unable to be moved.
#[ cfg(not(no_global_oom_handling)) ]
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ must_use ]
#[ inline(always) ]
pub const fn pin_in ( x : T , alloc : A ) -> Pin < Self >
where
A : 'static + ~ const Allocator + ~ const Destruct ,
{
Self ::into_pin ( Self ::new_in ( x , alloc ) )
}
/// Converts a `Box<T>` into a `Box<[T]>`
///
/// This conversion does not allocate on the heap and happens in place.
#[ unstable(feature = " box_into_boxed_slice " , issue = " 71582 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
pub const fn into_boxed_slice ( boxed : Self ) -> Box < [ T ] , A > {
let ( raw , alloc ) = Box ::into_raw_with_allocator ( boxed ) ;
unsafe { Box ::from_raw_in ( raw as * mut [ T ; 1 ] , alloc ) }
}
/// Consumes the `Box`, returning the wrapped value.
///
/// # Examples
///
/// ```
/// #![feature(box_into_inner)]
///
/// let c = Box::new(5);
///
/// assert_eq!(Box::into_inner(c), 5);
/// ```
#[ unstable(feature = " box_into_inner " , issue = " 80437 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const fn into_inner ( boxed : Self ) -> T
where
Self : ~ const Destruct ,
{
* boxed
}
}
impl < T > Box < [ T ] > {
/// Constructs a new boxed slice with uninitialized contents.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// let mut values = Box::<[u32]>::new_uninit_slice(3);
///
/// let values = unsafe {
/// // Deferred initialization:
/// values[0].as_mut_ptr().write(1);
/// values[1].as_mut_ptr().write(2);
/// values[2].as_mut_ptr().write(3);
///
/// values.assume_init()
/// };
///
/// assert_eq!(*values, [1, 2, 3])
/// ```
#[ cfg(not(no_global_oom_handling)) ]
#[ unstable(feature = " new_uninit " , issue = " 63291 " ) ]
#[ must_use ]
pub fn new_uninit_slice ( len : usize ) -> Box < [ mem ::MaybeUninit < T > ] > {
unsafe { RawVec ::with_capacity ( len ) . into_box ( len ) }
}
/// Constructs a new boxed slice with uninitialized contents, with the memory
/// being filled with `0` bytes.
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// let values = Box::<[u32]>::new_zeroed_slice(3);
/// let values = unsafe { values.assume_init() };
///
/// assert_eq!(*values, [0, 0, 0])
/// ```
///
/// [zeroed]: mem::MaybeUninit::zeroed
#[ cfg(not(no_global_oom_handling)) ]
#[ unstable(feature = " new_uninit " , issue = " 63291 " ) ]
#[ must_use ]
pub fn new_zeroed_slice ( len : usize ) -> Box < [ mem ::MaybeUninit < T > ] > {
unsafe { RawVec ::with_capacity_zeroed ( len ) . into_box ( len ) }
}
/// Constructs a new boxed slice with uninitialized contents. Returns an error if
/// the allocation fails
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
/// let values = unsafe {
/// // Deferred initialization:
/// values[0].as_mut_ptr().write(1);
/// values[1].as_mut_ptr().write(2);
/// values[2].as_mut_ptr().write(3);
/// values.assume_init()
/// };
///
/// assert_eq!(*values, [1, 2, 3]);
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ inline ]
pub fn try_new_uninit_slice ( len : usize ) -> Result < Box < [ mem ::MaybeUninit < T > ] > , AllocError > {
unsafe {
let layout = match Layout ::array ::< mem ::MaybeUninit < T > > ( len ) {
Ok ( l ) = > l ,
Err ( _ ) = > return Err ( AllocError ) ,
} ;
let ptr = Global . allocate ( layout ) ? ;
Ok ( RawVec ::from_raw_parts_in ( ptr . as_mut_ptr ( ) as * mut _ , len , Global ) . into_box ( len ) )
}
}
/// Constructs a new boxed slice with uninitialized contents, with the memory
/// being filled with `0` bytes. Returns an error if the allocation fails
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
/// let values = unsafe { values.assume_init() };
///
/// assert_eq!(*values, [0, 0, 0]);
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [zeroed]: mem::MaybeUninit::zeroed
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ inline ]
pub fn try_new_zeroed_slice ( len : usize ) -> Result < Box < [ mem ::MaybeUninit < T > ] > , AllocError > {
unsafe {
let layout = match Layout ::array ::< mem ::MaybeUninit < T > > ( len ) {
Ok ( l ) = > l ,
Err ( _ ) = > return Err ( AllocError ) ,
} ;
let ptr = Global . allocate_zeroed ( layout ) ? ;
Ok ( RawVec ::from_raw_parts_in ( ptr . as_mut_ptr ( ) as * mut _ , len , Global ) . into_box ( len ) )
}
}
}
impl < T , A : Allocator > Box < [ T ] , A > {
/// Constructs a new boxed slice with uninitialized contents in the provided allocator.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// use std::alloc::System;
///
/// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
///
/// let values = unsafe {
/// // Deferred initialization:
/// values[0].as_mut_ptr().write(1);
/// values[1].as_mut_ptr().write(2);
/// values[2].as_mut_ptr().write(3);
///
/// values.assume_init()
/// };
///
/// assert_eq!(*values, [1, 2, 3])
/// ```
#[ cfg(not(no_global_oom_handling)) ]
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
// #[unstable(feature = "new_uninit", issue = "63291")]
#[ must_use ]
pub fn new_uninit_slice_in ( len : usize , alloc : A ) -> Box < [ mem ::MaybeUninit < T > ] , A > {
unsafe { RawVec ::with_capacity_in ( len , alloc ) . into_box ( len ) }
}
/// Constructs a new boxed slice with uninitialized contents in the provided allocator,
/// with the memory being filled with `0` bytes.
///
/// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, new_uninit)]
///
/// use std::alloc::System;
///
/// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
/// let values = unsafe { values.assume_init() };
///
/// assert_eq!(*values, [0, 0, 0])
/// ```
///
/// [zeroed]: mem::MaybeUninit::zeroed
#[ cfg(not(no_global_oom_handling)) ]
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
// #[unstable(feature = "new_uninit", issue = "63291")]
#[ must_use ]
pub fn new_zeroed_slice_in ( len : usize , alloc : A ) -> Box < [ mem ::MaybeUninit < T > ] , A > {
unsafe { RawVec ::with_capacity_zeroed_in ( len , alloc ) . into_box ( len ) }
}
}
impl < T , A : Allocator > Box < mem ::MaybeUninit < T > , A > {
/// Converts to `Box<T, A>`.
///
/// # Safety
///
/// As with [`MaybeUninit::assume_init`],
/// it is up to the caller to guarantee that the value
/// really is in an initialized state.
/// Calling this when the content is not yet fully initialized
/// causes immediate undefined behavior.
///
/// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// let mut five = Box::<u32>::new_uninit();
///
/// let five: Box<u32> = unsafe {
/// // Deferred initialization:
/// five.as_mut_ptr().write(5);
///
/// five.assume_init()
/// };
///
/// assert_eq!(*five, 5)
/// ```
#[ unstable(feature = " new_uninit " , issue = " 63291 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const unsafe fn assume_init ( self ) -> Box < T , A > {
let ( raw , alloc ) = Box ::into_raw_with_allocator ( self ) ;
unsafe { Box ::from_raw_in ( raw as * mut T , alloc ) }
}
/// Writes the value and converts to `Box<T, A>`.
///
/// This method converts the box similarly to [`Box::assume_init`] but
/// writes `value` into it before conversion thus guaranteeing safety.
/// In some scenarios use of this method may improve performance because
/// the compiler may be able to optimize copying from stack.
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// let big_box = Box::<[usize; 1024]>::new_uninit();
///
/// let mut array = [0; 1024];
/// for (i, place) in array.iter_mut().enumerate() {
/// *place = i;
/// }
///
/// // The optimizer may be able to elide this copy, so previous code writes
/// // to heap directly.
/// let big_box = Box::write(big_box, array);
///
/// for (i, x) in big_box.iter().enumerate() {
/// assert_eq!(*x, i);
/// }
/// ```
#[ unstable(feature = " new_uninit " , issue = " 63291 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const fn write ( mut boxed : Self , value : T ) -> Box < T , A > {
unsafe {
( * boxed ) . write ( value ) ;
boxed . assume_init ( )
}
}
}
impl < T , A : Allocator > Box < [ mem ::MaybeUninit < T > ] , A > {
/// Converts to `Box<[T], A>`.
///
/// # Safety
///
/// As with [`MaybeUninit::assume_init`],
/// it is up to the caller to guarantee that the values
/// really are in an initialized state.
/// Calling this when the content is not yet fully initialized
/// causes immediate undefined behavior.
///
/// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
///
/// # Examples
///
/// ```
/// #![feature(new_uninit)]
///
/// let mut values = Box::<[u32]>::new_uninit_slice(3);
///
/// let values = unsafe {
/// // Deferred initialization:
/// values[0].as_mut_ptr().write(1);
/// values[1].as_mut_ptr().write(2);
/// values[2].as_mut_ptr().write(3);
///
/// values.assume_init()
/// };
///
/// assert_eq!(*values, [1, 2, 3])
/// ```
#[ unstable(feature = " new_uninit " , issue = " 63291 " ) ]
#[ inline ]
pub unsafe fn assume_init ( self ) -> Box < [ T ] , A > {
let ( raw , alloc ) = Box ::into_raw_with_allocator ( self ) ;
unsafe { Box ::from_raw_in ( raw as * mut [ T ] , alloc ) }
}
}
impl < T : ? Sized > Box < T > {
/// Constructs a box from a raw pointer.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. For this
/// to be safe, the memory must have been allocated in accordance
/// with the [memory layout] used by `Box` .
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// The safety conditions are described in the [memory layout] section.
///
/// # Examples
///
/// Recreate a `Box` which was previously converted to a raw pointer
/// using [`Box::into_raw`]:
/// ```
/// let x = Box::new(5);
/// let ptr = Box::into_raw(x);
/// let x = unsafe { Box::from_raw(ptr) };
/// ```
/// Manually create a `Box` from scratch by using the global allocator:
/// ```
/// use std::alloc::{alloc, Layout};
///
/// unsafe {
/// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
/// // In general .write is required to avoid attempting to destruct
/// // the (uninitialized) previous contents of `ptr`, though for this
/// // simple example `*ptr = 5` would have worked as well.
/// ptr.write(5);
/// let x = Box::from_raw(ptr);
/// }
/// ```
///
/// [memory layout]: self#memory-layout
/// [`Layout`]: crate::Layout
#[ stable(feature = " box_raw " , since = " 1.4.0 " ) ]
#[ inline ]
pub unsafe fn from_raw ( raw : * mut T ) -> Self {
unsafe { Self ::from_raw_in ( raw , Global ) }
}
}
impl < T : ? Sized , A : Allocator > Box < T , A > {
/// Constructs a box from a raw pointer in the given allocator.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. For this
/// to be safe, the memory must have been allocated in accordance
/// with the [memory layout] used by `Box` .
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
///
/// # Examples
///
/// Recreate a `Box` which was previously converted to a raw pointer
/// using [`Box::into_raw_with_allocator`]:
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let x = Box::new_in(5, System);
/// let (ptr, alloc) = Box::into_raw_with_allocator(x);
/// let x = unsafe { Box::from_raw_in(ptr, alloc) };
/// ```
/// Manually create a `Box` from scratch by using the system allocator:
/// ```
/// #![feature(allocator_api, slice_ptr_get)]
///
/// use std::alloc::{Allocator, Layout, System};
///
/// unsafe {
/// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
/// // In general .write is required to avoid attempting to destruct
/// // the (uninitialized) previous contents of `ptr`, though for this
/// // simple example `*ptr = 5` would have worked as well.
/// ptr.write(5);
/// let x = Box::from_raw_in(ptr, System);
/// }
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [memory layout]: self#memory-layout
/// [`Layout`]: crate::Layout
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const unsafe fn from_raw_in ( raw : * mut T , alloc : A ) -> Self {
Box ( unsafe { Unique ::new_unchecked ( raw ) } , alloc )
}
/// Consumes the `Box`, returning a wrapped raw pointer.
///
/// The pointer will be properly aligned and non-null.
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Box`. In particular, the
/// caller should properly destroy `T` and release the memory, taking
/// into account the [memory layout] used by `Box`. The easiest way to
/// do this is to convert the raw pointer back into a `Box` with the
/// [`Box::from_raw`] function, allowing the `Box` destructor to perform
/// the cleanup.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// # Examples
/// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
/// for automatic cleanup:
/// ```
/// let x = Box::new(String::from("Hello"));
/// let ptr = Box::into_raw(x);
/// let x = unsafe { Box::from_raw(ptr) };
/// ```
/// Manual cleanup by explicitly running the destructor and deallocating
/// the memory:
/// ```
/// use std::alloc::{dealloc, Layout};
/// use std::ptr;
///
/// let x = Box::new(String::from("Hello"));
/// let p = Box::into_raw(x);
/// unsafe {
/// ptr::drop_in_place(p);
/// dealloc(p as *mut u8, Layout::new::<String>());
/// }
/// ```
///
/// [memory layout]: self#memory-layout
#[ stable(feature = " box_raw " , since = " 1.4.0 " ) ]
#[ inline ]
pub fn into_raw ( b : Self ) -> * mut T {
Self ::into_raw_with_allocator ( b ) . 0
}
/// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
///
/// The pointer will be properly aligned and non-null.
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Box`. In particular, the
/// caller should properly destroy `T` and release the memory, taking
/// into account the [memory layout] used by `Box`. The easiest way to
/// do this is to convert the raw pointer back into a `Box` with the
/// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
/// the cleanup.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// # Examples
/// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
/// for automatic cleanup:
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let x = Box::new_in(String::from("Hello"), System);
/// let (ptr, alloc) = Box::into_raw_with_allocator(x);
/// let x = unsafe { Box::from_raw_in(ptr, alloc) };
/// ```
/// Manual cleanup by explicitly running the destructor and deallocating
/// the memory:
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::{Allocator, Layout, System};
/// use std::ptr::{self, NonNull};
///
/// let x = Box::new_in(String::from("Hello"), System);
/// let (ptr, alloc) = Box::into_raw_with_allocator(x);
/// unsafe {
/// ptr::drop_in_place(ptr);
/// let non_null = NonNull::new_unchecked(ptr);
/// alloc.deallocate(non_null.cast(), Layout::new::<String>());
/// }
/// ```
///
/// [memory layout]: self#memory-layout
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const fn into_raw_with_allocator ( b : Self ) -> ( * mut T , A ) {
let ( leaked , alloc ) = Box ::into_unique ( b ) ;
( leaked . as_ptr ( ) , alloc )
}
#[ unstable(
feature = " ptr_internals " ,
issue = " none " ,
reason = " use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead "
) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
#[ doc(hidden) ]
pub const fn into_unique ( b : Self ) -> ( Unique < T > , A ) {
// Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
// raw pointer for the type system. Turning it directly into a raw pointer would not be
// recognized as "releasing" the unique pointer to permit aliased raw accesses,
// so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
// behaves correctly.
let alloc = unsafe { ptr ::read ( & b . 1 ) } ;
( Unique ::from ( Box ::leak ( b ) ) , alloc )
}
/// Returns a reference to the underlying allocator.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
/// is so that there is no conflict with a method on the inner type.
#[ unstable(feature = " allocator_api " , issue = " 32838 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const fn allocator ( b : & Self ) -> & A {
& b . 1
}
/// Consumes and leaks the `Box`, returning a mutable reference,
/// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
/// `'a`. If the type has only static references, or none at all, then this
/// may be chosen to be `'static`.
///
/// This function is mainly useful for data that lives for the remainder of
/// the program's life. Dropping the returned reference will cause a memory
/// leak. If this is not acceptable, the reference should first be wrapped
/// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
/// then be dropped which will properly destroy `T` and release the
/// allocated memory.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::leak(b)` instead of `b.leak()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// # Examples
///
/// Simple usage:
///
/// ```
/// let x = Box::new(41);
/// let static_ref: &'static mut usize = Box::leak(x);
/// *static_ref += 1;
/// assert_eq!(*static_ref, 42);
/// ```
///
/// Unsized data:
///
/// ```
/// let x = vec![1, 2, 3].into_boxed_slice();
/// let static_ref = Box::leak(x);
/// static_ref[0] = 4;
/// assert_eq!(*static_ref, [4, 2, 3]);
/// ```
#[ stable(feature = " box_leak " , since = " 1.26.0 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
#[ inline ]
pub const fn leak < ' a > ( b : Self ) -> & ' a mut T
where
A : ' a ,
{
unsafe { & mut * mem ::ManuallyDrop ::new ( b ) . 0. as_ptr ( ) }
}
/// Converts a `Box<T>` into a `Pin<Box<T>>`
///
/// This conversion does not allocate on the heap and happens in place.
///
/// This is also available via [`From`].
#[ unstable(feature = " box_into_pin " , issue = " 62370 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
pub const fn into_pin ( boxed : Self ) -> Pin < Self >
where
A : 'static ,
{
// It's not possible to move or replace the insides of a `Pin<Box<T>>`
// when `T: !Unpin`, so it's safe to pin it directly without any
// additional requirements.
unsafe { Pin ::new_unchecked ( boxed ) }
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
unsafe impl < #[ may_dangle ] T : ? Sized , A : Allocator > Drop for Box < T , A > {
fn drop ( & mut self ) {
// FIXME: Do nothing, drop is currently performed by compiler.
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : Default > Default for Box < T > {
/// Creates a `Box<T>`, with the `Default` value for T.
fn default ( ) -> Self {
box T ::default ( )
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
#[ rustc_const_unstable(feature = " const_default_impls " , issue = " 87864 " ) ]
impl < T > const Default for Box < [ T ] > {
fn default ( ) -> Self {
let ptr : Unique < [ T ] > = Unique ::< [ T ; 0 ] > ::dangling ( ) ;
Box ( ptr , Global )
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " default_box_extra " , since = " 1.17.0 " ) ]
#[ rustc_const_unstable(feature = " const_default_impls " , issue = " 87864 " ) ]
impl const Default for Box < str > {
fn default ( ) -> Self {
// SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
let ptr : Unique < str > = unsafe {
let bytes : Unique < [ u8 ] > = Unique ::< [ u8 ; 0 ] > ::dangling ( ) ;
Unique ::new_unchecked ( bytes . as_ptr ( ) as * mut str )
} ;
Box ( ptr , Global )
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : Clone , A : Allocator + Clone > Clone for Box < T , A > {
/// Returns a new box with a `clone()` of this box's contents.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let y = x.clone();
///
/// // The value is the same
/// assert_eq!(x, y);
///
/// // But they are unique objects
/// assert_ne!(&*x as *const i32, &*y as *const i32);
/// ```
#[ inline ]
fn clone ( & self ) -> Self {
// Pre-allocate memory to allow writing the cloned value directly.
let mut boxed = Self ::new_uninit_in ( self . 1. clone ( ) ) ;
unsafe {
( * * self ) . write_clone_into_raw ( boxed . as_mut_ptr ( ) ) ;
boxed . assume_init ( )
}
}
/// Copies `source`'s contents into `self` without creating a new allocation.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let mut y = Box::new(10);
/// let yp: *const i32 = &*y;
///
/// y.clone_from(&x);
///
/// // The value is the same
/// assert_eq!(x, y);
///
/// // And no allocation occurred
/// assert_eq!(yp, &*y);
/// ```
#[ inline ]
fn clone_from ( & mut self , source : & Self ) {
( * * self ) . clone_from ( & ( * * source ) ) ;
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " box_slice_clone " , since = " 1.3.0 " ) ]
impl Clone for Box < str > {
fn clone ( & self ) -> Self {
// this makes a copy of the data
let buf : Box < [ u8 ] > = self . as_bytes ( ) . into ( ) ;
unsafe { from_boxed_utf8_unchecked ( buf ) }
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : ? Sized + PartialEq , A : Allocator > PartialEq for Box < T , A > {
#[ inline ]
fn eq ( & self , other : & Self ) -> bool {
PartialEq ::eq ( & * * self , & * * other )
}
#[ inline ]
fn ne ( & self , other : & Self ) -> bool {
PartialEq ::ne ( & * * self , & * * other )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : ? Sized + PartialOrd , A : Allocator > PartialOrd for Box < T , A > {
#[ inline ]
fn partial_cmp ( & self , other : & Self ) -> Option < Ordering > {
PartialOrd ::partial_cmp ( & * * self , & * * other )
}
#[ inline ]
fn lt ( & self , other : & Self ) -> bool {
PartialOrd ::lt ( & * * self , & * * other )
}
#[ inline ]
fn le ( & self , other : & Self ) -> bool {
PartialOrd ::le ( & * * self , & * * other )
}
#[ inline ]
fn ge ( & self , other : & Self ) -> bool {
PartialOrd ::ge ( & * * self , & * * other )
}
#[ inline ]
fn gt ( & self , other : & Self ) -> bool {
PartialOrd ::gt ( & * * self , & * * other )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : ? Sized + Ord , A : Allocator > Ord for Box < T , A > {
#[ inline ]
fn cmp ( & self , other : & Self ) -> Ordering {
Ord ::cmp ( & * * self , & * * other )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : ? Sized + Eq , A : Allocator > Eq for Box < T , A > { }
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : ? Sized + Hash , A : Allocator > Hash for Box < T , A > {
fn hash < H : Hasher > ( & self , state : & mut H ) {
( * * self ) . hash ( state ) ;
}
}
#[ stable(feature = " indirect_hasher_impl " , since = " 1.22.0 " ) ]
impl < T : ? Sized + Hasher , A : Allocator > Hasher for Box < T , A > {
fn finish ( & self ) -> u64 {
( * * self ) . finish ( )
}
fn write ( & mut self , bytes : & [ u8 ] ) {
( * * self ) . write ( bytes )
}
fn write_u8 ( & mut self , i : u8 ) {
( * * self ) . write_u8 ( i )
}
fn write_u16 ( & mut self , i : u16 ) {
( * * self ) . write_u16 ( i )
}
fn write_u32 ( & mut self , i : u32 ) {
( * * self ) . write_u32 ( i )
}
fn write_u64 ( & mut self , i : u64 ) {
( * * self ) . write_u64 ( i )
}
fn write_u128 ( & mut self , i : u128 ) {
( * * self ) . write_u128 ( i )
}
fn write_usize ( & mut self , i : usize ) {
( * * self ) . write_usize ( i )
}
fn write_i8 ( & mut self , i : i8 ) {
( * * self ) . write_i8 ( i )
}
fn write_i16 ( & mut self , i : i16 ) {
( * * self ) . write_i16 ( i )
}
fn write_i32 ( & mut self , i : i32 ) {
( * * self ) . write_i32 ( i )
}
fn write_i64 ( & mut self , i : i64 ) {
( * * self ) . write_i64 ( i )
}
fn write_i128 ( & mut self , i : i128 ) {
( * * self ) . write_i128 ( i )
}
fn write_isize ( & mut self , i : isize ) {
( * * self ) . write_isize ( i )
}
fn write_length_prefix ( & mut self , len : usize ) {
( * * self ) . write_length_prefix ( len )
}
fn write_str ( & mut self , s : & str ) {
( * * self ) . write_str ( s )
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " from_for_ptrs " , since = " 1.6.0 " ) ]
impl < T > From < T > for Box < T > {
/// Converts a `T` into a `Box<T>`
///
/// The conversion allocates on the heap and moves `t`
/// from the stack into it.
///
/// # Examples
///
/// ```rust
/// let x = 5;
/// let boxed = Box::new(5);
///
/// assert_eq!(Box::from(x), boxed);
/// ```
fn from ( t : T ) -> Self {
Box ::new ( t )
}
}
#[ stable(feature = " pin " , since = " 1.33.0 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
impl < T : ? Sized , A : Allocator > const From < Box < T , A > > for Pin < Box < T , A > >
where
A : 'static ,
{
/// Converts a `Box<T>` into a `Pin<Box<T>>`
///
/// This conversion does not allocate on the heap and happens in place.
fn from ( boxed : Box < T , A > ) -> Self {
Box ::into_pin ( boxed )
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " box_from_slice " , since = " 1.17.0 " ) ]
impl < T : Copy > From < & [ T ] > for Box < [ T ] > {
/// Converts a `&[T]` into a `Box<[T]>`
///
/// This conversion allocates on the heap
/// and performs a copy of `slice`.
///
/// # Examples
/// ```rust
/// // create a &[u8] which will be used to create a Box<[u8]>
/// let slice: &[u8] = &[104, 101, 108, 108, 111];
/// let boxed_slice: Box<[u8]> = Box::from(slice);
///
/// println!("{boxed_slice:?}");
/// ```
fn from ( slice : & [ T ] ) -> Box < [ T ] > {
let len = slice . len ( ) ;
let buf = RawVec ::with_capacity ( len ) ;
unsafe {
ptr ::copy_nonoverlapping ( slice . as_ptr ( ) , buf . ptr ( ) , len ) ;
buf . into_box ( slice . len ( ) ) . assume_init ( )
}
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " box_from_cow " , since = " 1.45.0 " ) ]
impl < T : Copy > From < Cow < '_ , [ T ] > > for Box < [ T ] > {
/// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
///
/// When `cow` is the `Cow::Borrowed` variant, this
/// conversion allocates on the heap and copies the
/// underlying slice. Otherwise, it will try to reuse the owned
/// `Vec`'s allocation.
#[ inline ]
fn from ( cow : Cow < '_ , [ T ] > ) -> Box < [ T ] > {
match cow {
Cow ::Borrowed ( slice ) = > Box ::from ( slice ) ,
Cow ::Owned ( slice ) = > Box ::from ( slice ) ,
}
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " box_from_slice " , since = " 1.17.0 " ) ]
impl From < & str > for Box < str > {
/// Converts a `&str` into a `Box<str>`
///
/// This conversion allocates on the heap
/// and performs a copy of `s`.
///
/// # Examples
///
/// ```rust
/// let boxed: Box<str> = Box::from("hello");
/// println!("{boxed}");
/// ```
#[ inline ]
fn from ( s : & str ) -> Box < str > {
unsafe { from_boxed_utf8_unchecked ( Box ::from ( s . as_bytes ( ) ) ) }
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " box_from_cow " , since = " 1.45.0 " ) ]
impl From < Cow < '_ , str > > for Box < str > {
/// Converts a `Cow<'_, str>` into a `Box<str>`
///
/// When `cow` is the `Cow::Borrowed` variant, this
/// conversion allocates on the heap and copies the
/// underlying `str`. Otherwise, it will try to reuse the owned
/// `String`'s allocation.
///
/// # Examples
///
/// ```rust
/// use std::borrow::Cow;
///
/// let unboxed = Cow::Borrowed("hello");
/// let boxed: Box<str> = Box::from(unboxed);
/// println!("{boxed}");
/// ```
///
/// ```rust
/// # use std::borrow::Cow;
/// let unboxed = Cow::Owned("hello".to_string());
/// let boxed: Box<str> = Box::from(unboxed);
/// println!("{boxed}");
/// ```
#[ inline ]
fn from ( cow : Cow < '_ , str > ) -> Box < str > {
match cow {
Cow ::Borrowed ( s ) = > Box ::from ( s ) ,
Cow ::Owned ( s ) = > Box ::from ( s ) ,
}
}
}
#[ stable(feature = " boxed_str_conv " , since = " 1.19.0 " ) ]
impl < A : Allocator > From < Box < str , A > > for Box < [ u8 ] , A > {
/// Converts a `Box<str>` into a `Box<[u8]>`
///
/// This conversion does not allocate on the heap and happens in place.
///
/// # Examples
/// ```rust
/// // create a Box<str> which will be used to create a Box<[u8]>
/// let boxed: Box<str> = Box::from("hello");
/// let boxed_str: Box<[u8]> = Box::from(boxed);
///
/// // create a &[u8] which will be used to create a Box<[u8]>
/// let slice: &[u8] = &[104, 101, 108, 108, 111];
/// let boxed_slice = Box::from(slice);
///
/// assert_eq!(boxed_slice, boxed_str);
/// ```
#[ inline ]
fn from ( s : Box < str , A > ) -> Self {
let ( raw , alloc ) = Box ::into_raw_with_allocator ( s ) ;
unsafe { Box ::from_raw_in ( raw as * mut [ u8 ] , alloc ) }
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " box_from_array " , since = " 1.45.0 " ) ]
impl < T , const N : usize > From < [ T ; N ] > for Box < [ T ] > {
/// Converts a `[T; N]` into a `Box<[T]>`
///
/// This conversion moves the array to newly heap-allocated memory.
///
/// # Examples
///
/// ```rust
/// let boxed: Box<[u8]> = Box::from([4, 2]);
/// println!("{boxed:?}");
/// ```
fn from ( array : [ T ; N ] ) -> Box < [ T ] > {
box array
}
}
#[ stable(feature = " boxed_slice_try_from " , since = " 1.43.0 " ) ]
impl < T , const N : usize > TryFrom < Box < [ T ] > > for Box < [ T ; N ] > {
type Error = Box < [ T ] > ;
/// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
///
/// The conversion occurs in-place and does not require a
/// new memory allocation.
///
/// # Errors
///
/// Returns the old `Box<[T]>` in the `Err` variant if
/// `boxed_slice.len()` does not equal `N`.
fn try_from ( boxed_slice : Box < [ T ] > ) -> Result < Self , Self ::Error > {
if boxed_slice . len ( ) = = N {
Ok ( unsafe { Box ::from_raw ( Box ::into_raw ( boxed_slice ) as * mut [ T ; N ] ) } )
} else {
Err ( boxed_slice )
}
}
}
impl < A : Allocator > Box < dyn Any , A > {
/// Attempt to downcast the box to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<dyn Any>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// ```
#[ inline ]
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
pub fn downcast < T : Any > ( self ) -> Result < Box < T , A > , Self > {
if self . is ::< T > ( ) { unsafe { Ok ( self . downcast_unchecked ::< T > ( ) ) } } else { Err ( self ) }
}
/// Downcasts the box to a concrete type.
///
/// For a safe alternative see [`downcast`].
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let x: Box<dyn Any> = Box::new(1_usize);
///
/// unsafe {
/// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
/// }
/// ```
///
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
///
/// [`downcast`]: Self::downcast
#[ inline ]
#[ unstable(feature = " downcast_unchecked " , issue = " 90850 " ) ]
pub unsafe fn downcast_unchecked < T : Any > ( self ) -> Box < T , A > {
debug_assert! ( self . is ::< T > ( ) ) ;
unsafe {
let ( raw , alloc ) : ( * mut dyn Any , _ ) = Box ::into_raw_with_allocator ( self ) ;
Box ::from_raw_in ( raw as * mut T , alloc )
}
}
}
impl < A : Allocator > Box < dyn Any + Send , A > {
/// Attempt to downcast the box to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<dyn Any + Send>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// ```
#[ inline ]
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
pub fn downcast < T : Any > ( self ) -> Result < Box < T , A > , Self > {
if self . is ::< T > ( ) { unsafe { Ok ( self . downcast_unchecked ::< T > ( ) ) } } else { Err ( self ) }
}
/// Downcasts the box to a concrete type.
///
/// For a safe alternative see [`downcast`].
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let x: Box<dyn Any + Send> = Box::new(1_usize);
///
/// unsafe {
/// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
/// }
/// ```
///
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
///
/// [`downcast`]: Self::downcast
#[ inline ]
#[ unstable(feature = " downcast_unchecked " , issue = " 90850 " ) ]
pub unsafe fn downcast_unchecked < T : Any > ( self ) -> Box < T , A > {
debug_assert! ( self . is ::< T > ( ) ) ;
unsafe {
let ( raw , alloc ) : ( * mut ( dyn Any + Send ) , _ ) = Box ::into_raw_with_allocator ( self ) ;
Box ::from_raw_in ( raw as * mut T , alloc )
}
}
}
impl < A : Allocator > Box < dyn Any + Send + Sync , A > {
/// Attempt to downcast the box to a concrete type.
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// ```
#[ inline ]
#[ stable(feature = " box_send_sync_any_downcast " , since = " 1.51.0 " ) ]
pub fn downcast < T : Any > ( self ) -> Result < Box < T , A > , Self > {
if self . is ::< T > ( ) { unsafe { Ok ( self . downcast_unchecked ::< T > ( ) ) } } else { Err ( self ) }
}
/// Downcasts the box to a concrete type.
///
/// For a safe alternative see [`downcast`].
///
/// # Examples
///
/// ```
/// #![feature(downcast_unchecked)]
///
/// use std::any::Any;
///
/// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
///
/// unsafe {
/// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
/// }
/// ```
///
/// # Safety
///
/// The contained value must be of type `T`. Calling this method
/// with the incorrect type is *undefined behavior*.
///
/// [`downcast`]: Self::downcast
#[ inline ]
#[ unstable(feature = " downcast_unchecked " , issue = " 90850 " ) ]
pub unsafe fn downcast_unchecked < T : Any > ( self ) -> Box < T , A > {
debug_assert! ( self . is ::< T > ( ) ) ;
unsafe {
let ( raw , alloc ) : ( * mut ( dyn Any + Send + Sync ) , _ ) =
Box ::into_raw_with_allocator ( self ) ;
Box ::from_raw_in ( raw as * mut T , alloc )
}
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : fmt ::Display + ? Sized , A : Allocator > fmt ::Display for Box < T , A > {
fn fmt ( & self , f : & mut fmt ::Formatter < '_ > ) -> fmt ::Result {
fmt ::Display ::fmt ( & * * self , f )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : fmt ::Debug + ? Sized , A : Allocator > fmt ::Debug for Box < T , A > {
fn fmt ( & self , f : & mut fmt ::Formatter < '_ > ) -> fmt ::Result {
fmt ::Debug ::fmt ( & * * self , f )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < T : ? Sized , A : Allocator > fmt ::Pointer for Box < T , A > {
fn fmt ( & self , f : & mut fmt ::Formatter < '_ > ) -> fmt ::Result {
// It's not possible to extract the inner Uniq directly from the Box,
// instead we cast it to a *const which aliases the Unique
let ptr : * const T = & * * self ;
fmt ::Pointer ::fmt ( & ptr , f )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
impl < T : ? Sized , A : Allocator > const Deref for Box < T , A > {
type Target = T ;
fn deref ( & self ) -> & T {
& * * self
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
impl < T : ? Sized , A : Allocator > const DerefMut for Box < T , A > {
fn deref_mut ( & mut self ) -> & mut T {
& mut * * self
}
}
#[ unstable(feature = " receiver_trait " , issue = " none " ) ]
impl < T : ? Sized , A : Allocator > Receiver for Box < T , A > { }
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < I : Iterator + ? Sized , A : Allocator > Iterator for Box < I , A > {
type Item = I ::Item ;
fn next ( & mut self ) -> Option < I ::Item > {
( * * self ) . next ( )
}
fn size_hint ( & self ) -> ( usize , Option < usize > ) {
( * * self ) . size_hint ( )
}
fn nth ( & mut self , n : usize ) -> Option < I ::Item > {
( * * self ) . nth ( n )
}
fn last ( self ) -> Option < I ::Item > {
BoxIter ::last ( self )
}
}
trait BoxIter {
type Item ;
fn last ( self ) -> Option < Self ::Item > ;
}
impl < I : Iterator + ? Sized , A : Allocator > BoxIter for Box < I , A > {
type Item = I ::Item ;
default fn last ( self ) -> Option < I ::Item > {
#[ inline ]
fn some < T > ( _ : Option < T > , x : T ) -> Option < T > {
Some ( x )
}
self . fold ( None , some )
}
}
/// Specialization for sized `I`s that uses `I`s implementation of `last()`
/// instead of the default.
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < I : Iterator , A : Allocator > BoxIter for Box < I , A > {
fn last ( self ) -> Option < I ::Item > {
( * self ) . last ( )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < I : DoubleEndedIterator + ? Sized , A : Allocator > DoubleEndedIterator for Box < I , A > {
fn next_back ( & mut self ) -> Option < I ::Item > {
( * * self ) . next_back ( )
}
fn nth_back ( & mut self , n : usize ) -> Option < I ::Item > {
( * * self ) . nth_back ( n )
}
}
#[ stable(feature = " rust1 " , since = " 1.0.0 " ) ]
impl < I : ExactSizeIterator + ? Sized , A : Allocator > ExactSizeIterator for Box < I , A > {
fn len ( & self ) -> usize {
( * * self ) . len ( )
}
fn is_empty ( & self ) -> bool {
( * * self ) . is_empty ( )
}
}
#[ stable(feature = " fused " , since = " 1.26.0 " ) ]
impl < I : FusedIterator + ? Sized , A : Allocator > FusedIterator for Box < I , A > { }
#[ stable(feature = " boxed_closure_impls " , since = " 1.35.0 " ) ]
impl < Args , F : FnOnce < Args > + ? Sized , A : Allocator > FnOnce < Args > for Box < F , A > {
type Output = < F as FnOnce < Args > > ::Output ;
extern " rust-call " fn call_once ( self , args : Args ) -> Self ::Output {
< F as FnOnce < Args > > ::call_once ( * self , args )
}
}
#[ stable(feature = " boxed_closure_impls " , since = " 1.35.0 " ) ]
impl < Args , F : FnMut < Args > + ? Sized , A : Allocator > FnMut < Args > for Box < F , A > {
extern " rust-call " fn call_mut ( & mut self , args : Args ) -> Self ::Output {
< F as FnMut < Args > > ::call_mut ( self , args )
}
}
#[ stable(feature = " boxed_closure_impls " , since = " 1.35.0 " ) ]
impl < Args , F : Fn < Args > + ? Sized , A : Allocator > Fn < Args > for Box < F , A > {
extern " rust-call " fn call ( & self , args : Args ) -> Self ::Output {
< F as Fn < Args > > ::call ( self , args )
}
}
#[ unstable(feature = " coerce_unsized " , issue = " 27732 " ) ]
impl < T : ? Sized + Unsize < U > , U : ? Sized , A : Allocator > CoerceUnsized < Box < U , A > > for Box < T , A > { }
#[ unstable(feature = " dispatch_from_dyn " , issue = " none " ) ]
impl < T : ? Sized + Unsize < U > , U : ? Sized > DispatchFromDyn < Box < U > > for Box < T , Global > { }
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " boxed_slice_from_iter " , since = " 1.32.0 " ) ]
impl < I > FromIterator < I > for Box < [ I ] > {
fn from_iter < T : IntoIterator < Item = I > > ( iter : T ) -> Self {
iter . into_iter ( ) . collect ::< Vec < _ > > ( ) . into_boxed_slice ( )
}
}
#[ cfg(not(no_global_oom_handling)) ]
#[ stable(feature = " box_slice_clone " , since = " 1.3.0 " ) ]
impl < T : Clone , A : Allocator + Clone > Clone for Box < [ T ] , A > {
fn clone ( & self ) -> Self {
let alloc = Box ::allocator ( self ) . clone ( ) ;
self . to_vec_in ( alloc ) . into_boxed_slice ( )
}
fn clone_from ( & mut self , other : & Self ) {
if self . len ( ) = = other . len ( ) {
self . clone_from_slice ( & other ) ;
} else {
* self = other . clone ( ) ;
}
}
}
#[ stable(feature = " box_borrow " , since = " 1.1.0 " ) ]
impl < T : ? Sized , A : Allocator > borrow ::Borrow < T > for Box < T , A > {
fn borrow ( & self ) -> & T {
& * * self
}
}
#[ stable(feature = " box_borrow " , since = " 1.1.0 " ) ]
impl < T : ? Sized , A : Allocator > borrow ::BorrowMut < T > for Box < T , A > {
fn borrow_mut ( & mut self ) -> & mut T {
& mut * * self
}
}
#[ stable(since = " 1.5.0 " , feature = " smart_ptr_as_ref " ) ]
impl < T : ? Sized , A : Allocator > AsRef < T > for Box < T , A > {
fn as_ref ( & self ) -> & T {
& * * self
}
}
#[ stable(since = " 1.5.0 " , feature = " smart_ptr_as_ref " ) ]
impl < T : ? Sized , A : Allocator > AsMut < T > for Box < T , A > {
fn as_mut ( & mut self ) -> & mut T {
& mut * * self
}
}
/* Nota bene
*
* We could have chosen not to add this impl , and instead have written a
* function of Pin < Box < T > > to Pin < T > . Such a function would not be sound ,
* because Box < T > implements Unpin even when T does not , as a result of
* this impl .
*
* We chose this API instead of the alternative for a few reasons :
* - Logically , it is helpful to understand pinning in regard to the
* memory region being pointed to . For this reason none of the
* standard library pointer types support projecting through a pin
* ( Box < T > is the only pointer type in std for which this would be
* safe . )
* - It is in practice very useful to have Box < T > be unconditionally
* Unpin because of trait objects , for which the structural auto
* trait functionality does not apply ( e . g . , Box < dyn Foo > would
* otherwise not be Unpin ) .
*
* Another type with the same semantics as Box but only a conditional
* implementation of ` Unpin ` ( where ` T : Unpin ` ) would be valid / safe , and
* could have a method to project a Pin < T > from it .
* /
#[ stable(feature = " pin " , since = " 1.33.0 " ) ]
#[ rustc_const_unstable(feature = " const_box " , issue = " 92521 " ) ]
impl < T : ? Sized , A : Allocator > const Unpin for Box < T , A > where A : 'static { }
#[ unstable(feature = " generator_trait " , issue = " 43122 " ) ]
impl < G : ? Sized + Generator < R > + Unpin , R , A : Allocator > Generator < R > for Box < G , A >
where
A : 'static ,
{
type Yield = G ::Yield ;
type Return = G ::Return ;
fn resume ( mut self : Pin < & mut Self > , arg : R ) -> GeneratorState < Self ::Yield , Self ::Return > {
G ::resume ( Pin ::new ( & mut * self ) , arg )
}
}
#[ unstable(feature = " generator_trait " , issue = " 43122 " ) ]
impl < G : ? Sized + Generator < R > , R , A : Allocator > Generator < R > for Pin < Box < G , A > >
where
A : 'static ,
{
type Yield = G ::Yield ;
type Return = G ::Return ;
fn resume ( mut self : Pin < & mut Self > , arg : R ) -> GeneratorState < Self ::Yield , Self ::Return > {
G ::resume ( ( * self ) . as_mut ( ) , arg )
}
}
#[ stable(feature = " futures_api " , since = " 1.36.0 " ) ]
impl < F : ? Sized + Future + Unpin , A : Allocator > Future for Box < F , A >
where
A : 'static ,
{
type Output = F ::Output ;
fn poll ( mut self : Pin < & mut Self > , cx : & mut Context < '_ > ) -> Poll < Self ::Output > {
F ::poll ( Pin ::new ( & mut * self ) , cx )
}
}
#[ unstable(feature = " async_iterator " , issue = " 79024 " ) ]
impl < S : ? Sized + AsyncIterator + Unpin > AsyncIterator for Box < S > {
type Item = S ::Item ;
fn poll_next ( mut self : Pin < & mut Self > , cx : & mut Context < '_ > ) -> Poll < Option < Self ::Item > > {
Pin ::new ( & mut * * self ) . poll_next ( cx )
}
fn size_hint ( & self ) -> ( usize , Option < usize > ) {
( * * self ) . size_hint ( )
}
}