227 lines
5.5 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* linux/boot/head.S
*
* Copyright (C) 1991, 1992, 1993 Linus Torvalds
*/
/*
* head.S contains the 32-bit startup code.
*
* NOTE!!! Startup happens at absolute address 0x00001000, which is also where
* the page directory will exist. The startup code will be overwritten by
* the page directory. [According to comments etc elsewhere on a compressed
* kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
*
* Page 0 is deliberately kept safe, since System Management Mode code in
* laptops may need to access the BIOS data stored there. This is also
* useful for future device drivers that either access the BIOS via VM86
* mode.
*/
/*
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
*/
.text
#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/page_types.h>
#include <asm/boot.h>
#include <asm/asm-offsets.h>
#include <asm/bootparam.h>
x86/build: Build compressed x86 kernels as PIE The 32-bit x86 assembler in binutils 2.26 will generate R_386_GOT32X relocation to get the symbol address in PIC. When the compressed x86 kernel isn't built as PIC, the linker optimizes R_386_GOT32X relocations to their fixed symbol addresses. However, when the compressed x86 kernel is loaded at a different address, it leads to the following load failure: Failed to allocate space for phdrs during the decompression stage. If the compressed x86 kernel is relocatable at run-time, it should be compiled with -fPIE, instead of -fPIC, if possible and should be built as Position Independent Executable (PIE) so that linker won't optimize R_386_GOT32X relocation to its fixed symbol address. Older linkers generate R_386_32 relocations against locally defined symbols, _bss, _ebss, _got and _egot, in PIE. It isn't wrong, just less optimal than R_386_RELATIVE. But the x86 kernel fails to properly handle R_386_32 relocations when relocating the kernel. To generate R_386_RELATIVE relocations, we mark _bss, _ebss, _got and _egot as hidden in both 32-bit and 64-bit x86 kernels. To build a 64-bit compressed x86 kernel as PIE, we need to disable the relocation overflow check to avoid relocation overflow errors. We do this with a new linker command-line option, -z noreloc-overflow, which got added recently: commit 4c10bbaa0912742322f10d9d5bb630ba4e15dfa7 Author: H.J. Lu <hjl.tools@gmail.com> Date: Tue Mar 15 11:07:06 2016 -0700 Add -z noreloc-overflow option to x86-64 ld Add -z noreloc-overflow command-line option to the x86-64 ELF linker to disable relocation overflow check. This can be used to avoid relocation overflow check if there will be no dynamic relocation overflow at run-time. The 64-bit compressed x86 kernel is built as PIE only if the linker supports -z noreloc-overflow. So far 64-bit relocatable compressed x86 kernel boots fine even when it is built as a normal executable. Signed-off-by: H.J. Lu <hjl.tools@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org [ Edited the changelog and comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-16 20:04:35 -07:00
/*
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
* These symbols needed to be marked as .hidden to prevent the BFD linker from
* generating R_386_32 (rather than R_386_RELATIVE) relocations for them when
* the 32-bit compressed kernel is linked as PIE. This is no longer necessary,
* but it doesn't hurt to keep them .hidden.
x86/build: Build compressed x86 kernels as PIE The 32-bit x86 assembler in binutils 2.26 will generate R_386_GOT32X relocation to get the symbol address in PIC. When the compressed x86 kernel isn't built as PIC, the linker optimizes R_386_GOT32X relocations to their fixed symbol addresses. However, when the compressed x86 kernel is loaded at a different address, it leads to the following load failure: Failed to allocate space for phdrs during the decompression stage. If the compressed x86 kernel is relocatable at run-time, it should be compiled with -fPIE, instead of -fPIC, if possible and should be built as Position Independent Executable (PIE) so that linker won't optimize R_386_GOT32X relocation to its fixed symbol address. Older linkers generate R_386_32 relocations against locally defined symbols, _bss, _ebss, _got and _egot, in PIE. It isn't wrong, just less optimal than R_386_RELATIVE. But the x86 kernel fails to properly handle R_386_32 relocations when relocating the kernel. To generate R_386_RELATIVE relocations, we mark _bss, _ebss, _got and _egot as hidden in both 32-bit and 64-bit x86 kernels. To build a 64-bit compressed x86 kernel as PIE, we need to disable the relocation overflow check to avoid relocation overflow errors. We do this with a new linker command-line option, -z noreloc-overflow, which got added recently: commit 4c10bbaa0912742322f10d9d5bb630ba4e15dfa7 Author: H.J. Lu <hjl.tools@gmail.com> Date: Tue Mar 15 11:07:06 2016 -0700 Add -z noreloc-overflow option to x86-64 ld Add -z noreloc-overflow command-line option to the x86-64 ELF linker to disable relocation overflow check. This can be used to avoid relocation overflow check if there will be no dynamic relocation overflow at run-time. The 64-bit compressed x86 kernel is built as PIE only if the linker supports -z noreloc-overflow. So far 64-bit relocatable compressed x86 kernel boots fine even when it is built as a normal executable. Signed-off-by: H.J. Lu <hjl.tools@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org [ Edited the changelog and comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-16 20:04:35 -07:00
*/
.hidden _bss
.hidden _ebss
x86/boot: Correct relocation destination on old linkers For the 32-bit kernel, as described in 6d92bc9d483a ("x86/build: Build compressed x86 kernels as PIE"), pre-2.26 binutils generates R_386_32 relocations in PIE mode. Since the startup code does not perform relocation, any reloc entry with R_386_32 will remain as 0 in the executing code. Commit 974f221c84b0 ("x86/boot: Move compressed kernel to the end of the decompression buffer") added a new symbol _end but did not mark it hidden, which doesn't give the correct offset on older linkers. This causes the compressed kernel to be copied beyond the end of the decompression buffer, rather than flush against it. This region of memory may be reserved or already allocated for other purposes by the bootloader. Mark _end as hidden to fix. This changes the relocation from R_386_32 to R_386_RELATIVE even on the pre-2.26 binutils. For 64-bit, this is not strictly necessary, as the 64-bit kernel is only built as PIE if the linker supports -z noreloc-overflow, which implies binutils-2.27+, but for consistency, mark _end as hidden here too. The below illustrates the before/after impact of the patch using binutils-2.25 and gcc-4.6.4 (locally compiled from source) and QEMU. Disassembly before patch: 48: 8b 86 60 02 00 00 mov 0x260(%esi),%eax 4e: 2d 00 00 00 00 sub $0x0,%eax 4f: R_386_32 _end Disassembly after patch: 48: 8b 86 60 02 00 00 mov 0x260(%esi),%eax 4e: 2d 00 f0 76 00 sub $0x76f000,%eax 4f: R_386_RELATIVE *ABS* Dump from extract_kernel before patch: early console in extract_kernel input_data: 0x0207c098 <--- this is at output + init_size input_len: 0x0074fef1 output: 0x01000000 output_len: 0x00fa63d0 kernel_total_size: 0x0107c000 needed_size: 0x0107c000 Dump from extract_kernel after patch: early console in extract_kernel input_data: 0x0190d098 <--- this is at output + init_size - _end input_len: 0x0074fef1 output: 0x01000000 output_len: 0x00fa63d0 kernel_total_size: 0x0107c000 needed_size: 0x0107c000 Fixes: 974f221c84b0 ("x86/boot: Move compressed kernel to the end of the decompression buffer") Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200207214926.3564079-1-nivedita@alum.mit.edu
2020-02-07 16:49:26 -05:00
.hidden _end
x86/build: Build compressed x86 kernels as PIE The 32-bit x86 assembler in binutils 2.26 will generate R_386_GOT32X relocation to get the symbol address in PIC. When the compressed x86 kernel isn't built as PIC, the linker optimizes R_386_GOT32X relocations to their fixed symbol addresses. However, when the compressed x86 kernel is loaded at a different address, it leads to the following load failure: Failed to allocate space for phdrs during the decompression stage. If the compressed x86 kernel is relocatable at run-time, it should be compiled with -fPIE, instead of -fPIC, if possible and should be built as Position Independent Executable (PIE) so that linker won't optimize R_386_GOT32X relocation to its fixed symbol address. Older linkers generate R_386_32 relocations against locally defined symbols, _bss, _ebss, _got and _egot, in PIE. It isn't wrong, just less optimal than R_386_RELATIVE. But the x86 kernel fails to properly handle R_386_32 relocations when relocating the kernel. To generate R_386_RELATIVE relocations, we mark _bss, _ebss, _got and _egot as hidden in both 32-bit and 64-bit x86 kernels. To build a 64-bit compressed x86 kernel as PIE, we need to disable the relocation overflow check to avoid relocation overflow errors. We do this with a new linker command-line option, -z noreloc-overflow, which got added recently: commit 4c10bbaa0912742322f10d9d5bb630ba4e15dfa7 Author: H.J. Lu <hjl.tools@gmail.com> Date: Tue Mar 15 11:07:06 2016 -0700 Add -z noreloc-overflow option to x86-64 ld Add -z noreloc-overflow command-line option to the x86-64 ELF linker to disable relocation overflow check. This can be used to avoid relocation overflow check if there will be no dynamic relocation overflow at run-time. The 64-bit compressed x86 kernel is built as PIE only if the linker supports -z noreloc-overflow. So far 64-bit relocatable compressed x86 kernel boots fine even when it is built as a normal executable. Signed-off-by: H.J. Lu <hjl.tools@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org [ Edited the changelog and comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-16 20:04:35 -07:00
__HEAD
SYM_FUNC_START(startup_32)
cld
cli
/*
* Calculate the delta between where we were compiled to run
* at and where we were actually loaded at. This can only be done
* with a short local call on x86. Nothing else will tell us what
* address we are running at. The reserved chunk of the real-mode
* data at 0x1e4 (defined as a scratch field) are used as the stack
* for this calculation. Only 4 bytes are needed.
*/
leal (BP_scratch+4)(%esi), %esp
call 1f
1: popl %edx
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
addl $_GLOBAL_OFFSET_TABLE_+(.-1b), %edx
/* Load new GDT */
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal gdt@GOTOFF(%edx), %eax
movl %eax, 2(%eax)
lgdt (%eax)
/* Load segment registers with our descriptors */
movl $__BOOT_DS, %eax
movl %eax, %ds
movl %eax, %es
movl %eax, %fs
movl %eax, %gs
movl %eax, %ss
/*
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
* %edx contains the address we are loaded at by the boot loader (plus the
* offset to the GOT). The below code calculates %ebx to be the address where
* we should move the kernel image temporarily for safe in-place decompression
* (again, plus the offset to the GOT).
*
* %ebp is calculated to be the address that the kernel will be decompressed to.
*/
#ifdef CONFIG_RELOCATABLE
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal startup_32@GOTOFF(%edx), %ebx
#ifdef CONFIG_EFI_STUB
/*
* If we were loaded via the EFI LoadImage service, startup_32() will be at an
* offset to the start of the space allocated for the image. efi_pe_entry() will
* set up image_offset to tell us where the image actually starts, so that we
* can use the full available buffer.
* image_offset = startup_32 - image_base
* Otherwise image_offset will be zero and has no effect on the calculations.
*/
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
subl image_offset@GOTOFF(%edx), %ebx
#endif
movl BP_kernel_alignment(%esi), %eax
decl %eax
addl %eax, %ebx
notl %eax
andl %eax, %ebx
cmpl $LOAD_PHYSICAL_ADDR, %ebx
jae 1f
#endif
movl $LOAD_PHYSICAL_ADDR, %ebx
1:
movl %ebx, %ebp // Save the output address for later
/* Target address to relocate to for decompression */
addl BP_init_size(%esi), %ebx
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
subl $_end@GOTOFF, %ebx
/* Set up the stack */
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal boot_stack_end@GOTOFF(%ebx), %esp
/* Zero EFLAGS */
pushl $0
popfl
/*
* Copy the compressed kernel to the end of our buffer
* where decompression in place becomes safe.
*/
pushl %esi
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal (_bss@GOTOFF-4)(%edx), %esi
leal (_bss@GOTOFF-4)(%ebx), %edi
movl $(_bss - startup_32), %ecx
shrl $2, %ecx
std
rep movsl
cld
popl %esi
/*
* The GDT may get overwritten either during the copy we just did or
* during extract_kernel below. To avoid any issues, repoint the GDTR
* to the new copy of the GDT.
*/
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal gdt@GOTOFF(%ebx), %eax
movl %eax, 2(%eax)
lgdt (%eax)
/*
* Jump to the relocated address.
*/
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal .Lrelocated@GOTOFF(%ebx), %eax
jmp *%eax
SYM_FUNC_END(startup_32)
x86/boot/32: Extract efi_pe_entry() from startup_32() The efi_pe_entry() body is somehow squashed into startup_32(). In the old days, we forced startup_32() to start at offset 0x00 and efi_pe_entry() to start at 0x10. But this requirement was removed long time ago, in: 99f857db8857 ("x86, build: Dynamically find entry points in compressed startup code") The way it is now makes the code less readable and illogical. Given we can now safely extract the inlined efi_pe_entry() body from startup_32() into a separate function, we do so and we separate it to two functions as they are marked already: efi_pe_entry() + efi32_stub_entry(). We also annotate the functions appropriatelly by ENTRY+ENDPROC. ABI offset is preserved: 0000 128 FUNC GLOBAL DEFAULT 6 startup_32 0080 60 FUNC GLOBAL DEFAULT 6 efi_pe_entry 00bc 68 FUNC GLOBAL DEFAULT 6 efi32_stub_entry On the top-level, it looked like this: ENTRY(startup_32) #ifdef CONFIG_EFI_STUB ; start of inlined jmp preferred_addr ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal preferred_addr(%eax), %eax jmp *%eax preferred_addr: #endif ; end of inlined ... ; a lot of assembly (startup_32) ENDPROC(startup_32) And it is now converted into: ENTRY(startup_32) ... ; a lot of assembly (startup_32) ENDPROC(startup_32) #ifdef CONFIG_EFI_STUB ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENDPROC(efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal startup_32(%eax), %eax jmp *%eax ENDPROC(efi32_stub_entry) #endif Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170824073327.4129-1-jslaby@suse.cz Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-24 09:33:26 +02:00
#ifdef CONFIG_EFI_STUB
SYM_FUNC_START(efi32_stub_entry)
SYM_FUNC_START_ALIAS(efi_stub_entry)
x86/boot/32: Extract efi_pe_entry() from startup_32() The efi_pe_entry() body is somehow squashed into startup_32(). In the old days, we forced startup_32() to start at offset 0x00 and efi_pe_entry() to start at 0x10. But this requirement was removed long time ago, in: 99f857db8857 ("x86, build: Dynamically find entry points in compressed startup code") The way it is now makes the code less readable and illogical. Given we can now safely extract the inlined efi_pe_entry() body from startup_32() into a separate function, we do so and we separate it to two functions as they are marked already: efi_pe_entry() + efi32_stub_entry(). We also annotate the functions appropriatelly by ENTRY+ENDPROC. ABI offset is preserved: 0000 128 FUNC GLOBAL DEFAULT 6 startup_32 0080 60 FUNC GLOBAL DEFAULT 6 efi_pe_entry 00bc 68 FUNC GLOBAL DEFAULT 6 efi32_stub_entry On the top-level, it looked like this: ENTRY(startup_32) #ifdef CONFIG_EFI_STUB ; start of inlined jmp preferred_addr ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal preferred_addr(%eax), %eax jmp *%eax preferred_addr: #endif ; end of inlined ... ; a lot of assembly (startup_32) ENDPROC(startup_32) And it is now converted into: ENTRY(startup_32) ... ; a lot of assembly (startup_32) ENDPROC(startup_32) #ifdef CONFIG_EFI_STUB ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENDPROC(efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal startup_32(%eax), %eax jmp *%eax ENDPROC(efi32_stub_entry) #endif Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170824073327.4129-1-jslaby@suse.cz Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-24 09:33:26 +02:00
add $0x4, %esp
movl 8(%esp), %esi /* save boot_params pointer */
x86/boot/32: Extract efi_pe_entry() from startup_32() The efi_pe_entry() body is somehow squashed into startup_32(). In the old days, we forced startup_32() to start at offset 0x00 and efi_pe_entry() to start at 0x10. But this requirement was removed long time ago, in: 99f857db8857 ("x86, build: Dynamically find entry points in compressed startup code") The way it is now makes the code less readable and illogical. Given we can now safely extract the inlined efi_pe_entry() body from startup_32() into a separate function, we do so and we separate it to two functions as they are marked already: efi_pe_entry() + efi32_stub_entry(). We also annotate the functions appropriatelly by ENTRY+ENDPROC. ABI offset is preserved: 0000 128 FUNC GLOBAL DEFAULT 6 startup_32 0080 60 FUNC GLOBAL DEFAULT 6 efi_pe_entry 00bc 68 FUNC GLOBAL DEFAULT 6 efi32_stub_entry On the top-level, it looked like this: ENTRY(startup_32) #ifdef CONFIG_EFI_STUB ; start of inlined jmp preferred_addr ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal preferred_addr(%eax), %eax jmp *%eax preferred_addr: #endif ; end of inlined ... ; a lot of assembly (startup_32) ENDPROC(startup_32) And it is now converted into: ENTRY(startup_32) ... ; a lot of assembly (startup_32) ENDPROC(startup_32) #ifdef CONFIG_EFI_STUB ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENDPROC(efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal startup_32(%eax), %eax jmp *%eax ENDPROC(efi32_stub_entry) #endif Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170824073327.4129-1-jslaby@suse.cz Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-24 09:33:26 +02:00
call efi_main
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
/* efi_main returns the possibly relocated address of startup_32 */
x86/boot/32: Extract efi_pe_entry() from startup_32() The efi_pe_entry() body is somehow squashed into startup_32(). In the old days, we forced startup_32() to start at offset 0x00 and efi_pe_entry() to start at 0x10. But this requirement was removed long time ago, in: 99f857db8857 ("x86, build: Dynamically find entry points in compressed startup code") The way it is now makes the code less readable and illogical. Given we can now safely extract the inlined efi_pe_entry() body from startup_32() into a separate function, we do so and we separate it to two functions as they are marked already: efi_pe_entry() + efi32_stub_entry(). We also annotate the functions appropriatelly by ENTRY+ENDPROC. ABI offset is preserved: 0000 128 FUNC GLOBAL DEFAULT 6 startup_32 0080 60 FUNC GLOBAL DEFAULT 6 efi_pe_entry 00bc 68 FUNC GLOBAL DEFAULT 6 efi32_stub_entry On the top-level, it looked like this: ENTRY(startup_32) #ifdef CONFIG_EFI_STUB ; start of inlined jmp preferred_addr ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal preferred_addr(%eax), %eax jmp *%eax preferred_addr: #endif ; end of inlined ... ; a lot of assembly (startup_32) ENDPROC(startup_32) And it is now converted into: ENTRY(startup_32) ... ; a lot of assembly (startup_32) ENDPROC(startup_32) #ifdef CONFIG_EFI_STUB ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENDPROC(efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal startup_32(%eax), %eax jmp *%eax ENDPROC(efi32_stub_entry) #endif Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170824073327.4129-1-jslaby@suse.cz Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-24 09:33:26 +02:00
jmp *%eax
SYM_FUNC_END(efi32_stub_entry)
SYM_FUNC_END_ALIAS(efi_stub_entry)
x86/boot/32: Extract efi_pe_entry() from startup_32() The efi_pe_entry() body is somehow squashed into startup_32(). In the old days, we forced startup_32() to start at offset 0x00 and efi_pe_entry() to start at 0x10. But this requirement was removed long time ago, in: 99f857db8857 ("x86, build: Dynamically find entry points in compressed startup code") The way it is now makes the code less readable and illogical. Given we can now safely extract the inlined efi_pe_entry() body from startup_32() into a separate function, we do so and we separate it to two functions as they are marked already: efi_pe_entry() + efi32_stub_entry(). We also annotate the functions appropriatelly by ENTRY+ENDPROC. ABI offset is preserved: 0000 128 FUNC GLOBAL DEFAULT 6 startup_32 0080 60 FUNC GLOBAL DEFAULT 6 efi_pe_entry 00bc 68 FUNC GLOBAL DEFAULT 6 efi32_stub_entry On the top-level, it looked like this: ENTRY(startup_32) #ifdef CONFIG_EFI_STUB ; start of inlined jmp preferred_addr ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal preferred_addr(%eax), %eax jmp *%eax preferred_addr: #endif ; end of inlined ... ; a lot of assembly (startup_32) ENDPROC(startup_32) And it is now converted into: ENTRY(startup_32) ... ; a lot of assembly (startup_32) ENDPROC(startup_32) #ifdef CONFIG_EFI_STUB ENTRY(efi_pe_entry) ... ; a lot of assembly (efi_pe_entry) ENDPROC(efi_pe_entry) ENTRY(efi32_stub_entry) ... ; a lot of assembly (efi32_stub_entry) leal startup_32(%eax), %eax jmp *%eax ENDPROC(efi32_stub_entry) #endif Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170824073327.4129-1-jslaby@suse.cz Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-24 09:33:26 +02:00
#endif
.text
SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
/*
* Clear BSS (stack is currently empty)
*/
xorl %eax, %eax
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal _bss@GOTOFF(%ebx), %edi
leal _ebss@GOTOFF(%ebx), %ecx
subl %edi, %ecx
shrl $2, %ecx
rep stosl
/*
* Do the extraction, and jump to the new kernel..
*/
/* push arguments for extract_kernel: */
x86, kaslr: Prevent .bss from overlaping initrd When choosing a random address, the current implementation does not take into account the reversed space for .bss and .brk sections. Thus the relocated kernel may overlap other components in memory. Here is an example of the overlap from a x86_64 kernel in qemu (the ranges of physical addresses are presented): Physical Address 0x0fe00000 --+--------------------+ <-- randomized base / | relocated kernel | vmlinux.bin | (from vmlinux.bin) | 0x1336d000 (an ELF file) +--------------------+-- \ | | \ 0x1376d870 --+--------------------+ | | relocs table | | 0x13c1c2a8 +--------------------+ .bss and .brk | | | 0x13ce6000 +--------------------+ | | | / 0x13f77000 | initrd |-- | | 0x13fef374 +--------------------+ The initrd image will then be overwritten by the memset during early initialization: [ 1.655204] Unpacking initramfs... [ 1.662831] Initramfs unpacking failed: junk in compressed archive This patch prevents the above situation by requiring a larger space when looking for a random kernel base, so that existing logic can effectively avoids the overlap. [kees: switched to perl to avoid hex translation pain in mawk vs gawk] [kees: calculated overlap without relocs table] Fixes: 82fa9637a2 ("x86, kaslr: Select random position from e820 maps") Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Junjie Mao <eternal.n08@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1414762838-13067-1-git-send-email-eternal.n08@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-10-31 21:40:38 +08:00
pushl $z_output_len /* decompressed length, end of relocs */
x86/boot: Move compressed kernel to the end of the decompression buffer This change makes later calculations about where the kernel is located easier to reason about. To better understand this change, we must first clarify what 'VO' and 'ZO' are. These values were introduced in commits by hpa: 77d1a4999502 ("x86, boot: make symbols from the main vmlinux available") 37ba7ab5e33c ("x86, boot: make kernel_alignment adjustable; new bzImage fields") Specifically: All names prefixed with 'VO_': - relate to the uncompressed kernel image - the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define) All names prefixed with 'ZO_': - relate to the bootable compressed kernel image (boot/compressed/vmlinux), which is composed of the following memory areas: - head text - compressed kernel (VO image and relocs table) - decompressor code - the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below) The 'INIT_SIZE' value is used to find the larger of the two image sizes: #define ZO_INIT_SIZE (ZO__end - ZO_startup_32 + ZO_z_extract_offset) #define VO_INIT_SIZE (VO__end - VO__text) #if ZO_INIT_SIZE > VO_INIT_SIZE # define INIT_SIZE ZO_INIT_SIZE #else # define INIT_SIZE VO_INIT_SIZE #endif The current code uses extract_offset to decide where to position the copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE currently includes the extract_offset.) Why does z_extract_offset exist? It's needed because we are trying to minimize the amount of RAM used for the whole act of creating an uncompressed, executable, properly relocation-linked kernel image in system memory. We do this so that kernels can be booted on even very small systems. To achieve the goal of minimal memory consumption we have implemented an in-place decompression strategy: instead of cleanly separating the VO and ZO images and also allocating some memory for the decompression code's runtime needs, we instead create this elaborate layout of memory buffers where the output (decompressed) stream, as it progresses, overlaps with and destroys the input (compressed) stream. This can only be done safely if the ZO image is placed to the end of the VO range, plus a certain amount of safety distance to make sure that when the last bytes of the VO range are decompressed, the compressed stream pointer is safely beyond the end of the VO range. z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during the build process, at a point when we know the exact compressed and uncompressed size of the kernel images and can calculate this safe minimum offset value. (Note that the mkpiggy.c calculation is not perfect, because we don't know the decompressor used at that stage, so the z_extract_offset calculation is necessarily imprecise and is mostly based on gzip internals - we'll improve that in the next patch.) When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible), the copied ZO occupies the memory from extract_offset to the end of decompression buffer. It overlaps with the soon-to-be-uncompressed kernel like this: |-----compressed kernel image------| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO VO__end ZO__end ^ ^ |-------uncompressed kernel image---------| When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space left from end of ZO to the end of decompressing buffer, like below. |-compressed kernel image-| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO ZO__end VO__end ^ ^ |------------uncompressed kernel image-------------| To simplify calculations and avoid special cases, it is cleaner to always place the compressed kernel image in memory so that ZO__end is at the end of the decompression buffer, instead of placing t at the start of extract_offset as is currently done. This patch adds BP_init_size (which is the INIT_SIZE as passed in from the boot_params) into asm-offsets.c to make it visible to the assembly code. Then when moving the ZO, it calculates the starting position of the copied ZO (via BP_init_size and the ZO run size) so that the VO__end will be at the end of the decompression buffer. To make the position calculation safe, the end of ZO is page aligned (and a comment is added to the existing VO alignment for good measure). Signed-off-by: Yinghai Lu <yinghai@kernel.org> [ Rewrote changelog and comments. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org [ Rewrote the changelog some more. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-28 17:09:04 -07:00
pushl %ebp /* output address */
x86/boot: Move compressed kernel to the end of the decompression buffer This change makes later calculations about where the kernel is located easier to reason about. To better understand this change, we must first clarify what 'VO' and 'ZO' are. These values were introduced in commits by hpa: 77d1a4999502 ("x86, boot: make symbols from the main vmlinux available") 37ba7ab5e33c ("x86, boot: make kernel_alignment adjustable; new bzImage fields") Specifically: All names prefixed with 'VO_': - relate to the uncompressed kernel image - the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define) All names prefixed with 'ZO_': - relate to the bootable compressed kernel image (boot/compressed/vmlinux), which is composed of the following memory areas: - head text - compressed kernel (VO image and relocs table) - decompressor code - the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below) The 'INIT_SIZE' value is used to find the larger of the two image sizes: #define ZO_INIT_SIZE (ZO__end - ZO_startup_32 + ZO_z_extract_offset) #define VO_INIT_SIZE (VO__end - VO__text) #if ZO_INIT_SIZE > VO_INIT_SIZE # define INIT_SIZE ZO_INIT_SIZE #else # define INIT_SIZE VO_INIT_SIZE #endif The current code uses extract_offset to decide where to position the copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE currently includes the extract_offset.) Why does z_extract_offset exist? It's needed because we are trying to minimize the amount of RAM used for the whole act of creating an uncompressed, executable, properly relocation-linked kernel image in system memory. We do this so that kernels can be booted on even very small systems. To achieve the goal of minimal memory consumption we have implemented an in-place decompression strategy: instead of cleanly separating the VO and ZO images and also allocating some memory for the decompression code's runtime needs, we instead create this elaborate layout of memory buffers where the output (decompressed) stream, as it progresses, overlaps with and destroys the input (compressed) stream. This can only be done safely if the ZO image is placed to the end of the VO range, plus a certain amount of safety distance to make sure that when the last bytes of the VO range are decompressed, the compressed stream pointer is safely beyond the end of the VO range. z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during the build process, at a point when we know the exact compressed and uncompressed size of the kernel images and can calculate this safe minimum offset value. (Note that the mkpiggy.c calculation is not perfect, because we don't know the decompressor used at that stage, so the z_extract_offset calculation is necessarily imprecise and is mostly based on gzip internals - we'll improve that in the next patch.) When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible), the copied ZO occupies the memory from extract_offset to the end of decompression buffer. It overlaps with the soon-to-be-uncompressed kernel like this: |-----compressed kernel image------| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO VO__end ZO__end ^ ^ |-------uncompressed kernel image---------| When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space left from end of ZO to the end of decompressing buffer, like below. |-compressed kernel image-| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO ZO__end VO__end ^ ^ |------------uncompressed kernel image-------------| To simplify calculations and avoid special cases, it is cleaner to always place the compressed kernel image in memory so that ZO__end is at the end of the decompression buffer, instead of placing t at the start of extract_offset as is currently done. This patch adds BP_init_size (which is the INIT_SIZE as passed in from the boot_params) into asm-offsets.c to make it visible to the assembly code. Then when moving the ZO, it calculates the starting position of the copied ZO (via BP_init_size and the ZO run size) so that the VO__end will be at the end of the decompression buffer. To make the position calculation safe, the end of ZO is page aligned (and a comment is added to the existing VO alignment for good measure). Signed-off-by: Yinghai Lu <yinghai@kernel.org> [ Rewrote changelog and comments. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org [ Rewrote the changelog some more. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-28 17:09:04 -07:00
pushl $z_input_len /* input_len */
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal input_data@GOTOFF(%ebx), %eax
pushl %eax /* input_data */
x86/boot: Remove run-time relocations from .head.text code The assembly code in head_{32,64}.S, while meant to be position-independent, generates run-time relocations because it uses instructions such as: leal gdt(%edx), %eax which make the assembler and linker think that the code is using %edx as an index into gdt, and hence gdt needs to be relocated to its run-time address. On 32-bit, with lld Dmitry Golovin reports that this results in a link-time error with default options (i.e. unless -z notext is explicitly passed): LD arch/x86/boot/compressed/vmlinux ld.lld: error: can't create dynamic relocation R_386_32 against local symbol in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output With the BFD linker, this generates a warning during the build, if --warn-shared-textrel is enabled, which at least Gentoo enables by default: LD arch/x86/boot/compressed/vmlinux ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text' ld: warning: creating a DT_TEXTREL in object On 64-bit, it is not possible to link the kernel as -pie with lld, and it is only possible with a BFD linker that supports -z noreloc-overflow, i.e. versions >2.26. This is because these instructions cannot really be relocated: the displacement field is only 32-bits wide, and thus cannot be relocated for a 64-bit load address. The -z noreloc-overflow option simply overrides the linker error, and results in R_X86_64_RELATIVE relocations that apply a 64-bit relocation to a 32-bit field anyway. This happens to work because nothing will process these run-time relocations. Start fixing this by removing relocations from .head.text: - On 32-bit, use a base register that holds the address of the GOT and reference symbol addresses using @GOTOFF, i.e. leal gdt@GOTOFF(%edx), %eax - On 64-bit, most of the code can (and already does) use %rip-relative addressing, however the .code32 bits can't, and the 64-bit code also needs to reference symbol addresses as they will be after moving the compressed kernel to the end of the decompression buffer. For these cases, reference the symbols as an offset to startup_32 to avoid creating relocations, i.e.: leal (gdt-startup_32)(%bp), %eax This only works in .head.text as the subtraction cannot be represented as a PC-relative relocation unless startup_32 is in the same section as the code. Move efi32_pe_entry into .head.text so that it can use the same method to avoid relocations. Reported-by: Dmitry Golovin <dima@golovin.in> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
2020-07-31 16:07:49 -07:00
leal boot_heap@GOTOFF(%ebx), %eax
pushl %eax /* heap area */
pushl %esi /* real mode pointer */
call extract_kernel /* returns kernel location in %eax */
addl $24, %esp
/*
* Jump to the extracted kernel.
*/
xorl %ebx, %ebx
jmp *%eax
SYM_FUNC_END(.Lrelocated)
.data
.balign 8
SYM_DATA_START_LOCAL(gdt)
.word gdt_end - gdt - 1
.long 0
.word 0
.quad 0x0000000000000000 /* Reserved */
.quad 0x00cf9a000000ffff /* __KERNEL_CS */
.quad 0x00cf92000000ffff /* __KERNEL_DS */
SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
#ifdef CONFIG_EFI_STUB
SYM_DATA(image_offset, .long 0)
#endif
/*
* Stack and heap for uncompression
*/
.bss
.balign 4
boot_heap:
.fill BOOT_HEAP_SIZE, 1, 0
boot_stack:
.fill BOOT_STACK_SIZE, 1, 0
boot_stack_end: