2019-05-27 08:55:01 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
2017-03-11 16:12:48 -05:00
/*
* Marvell 88E6 xxx Address Translation Unit ( ATU ) support
*
* Copyright ( c ) 2008 Marvell Semiconductor
* Copyright ( c ) 2017 Savoir - faire Linux , Inc .
*/
2019-08-09 18:47:55 -04:00
# include <linux/bitfield.h>
2018-01-14 02:32:44 +01:00
# include <linux/interrupt.h>
# include <linux/irqdomain.h>
2017-03-11 16:12:48 -05:00
2017-06-02 17:06:15 -04:00
# include "chip.h"
2017-03-11 16:12:48 -05:00
# include "global1.h"
2023-01-08 10:48:49 +01:00
# include "switchdev.h"
2022-12-09 19:28:16 +02:00
# include "trace.h"
2017-03-11 16:12:48 -05:00
2017-03-11 16:12:52 -05:00
/* Offset 0x01: ATU FID Register */
static int mv88e6xxx_g1_atu_fid_write ( struct mv88e6xxx_chip * chip , u16 fid )
{
2017-06-15 12:14:01 -04:00
return mv88e6xxx_g1_write ( chip , MV88E6352_G1_ATU_FID , fid & 0xfff ) ;
2017-03-11 16:12:52 -05:00
}
2017-03-11 16:12:48 -05:00
/* Offset 0x0A: ATU Control Register */
2017-03-11 16:12:51 -05:00
int mv88e6xxx_g1_atu_set_learn2all ( struct mv88e6xxx_chip * chip , bool learn2all )
{
u16 val ;
int err ;
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_CTL , & val ) ;
2017-03-11 16:12:51 -05:00
if ( err )
return err ;
if ( learn2all )
2017-06-15 12:14:01 -04:00
val | = MV88E6XXX_G1_ATU_CTL_LEARN2ALL ;
2017-03-11 16:12:51 -05:00
else
2017-06-15 12:14:01 -04:00
val & = ~ MV88E6XXX_G1_ATU_CTL_LEARN2ALL ;
2017-03-11 16:12:51 -05:00
2017-06-15 12:14:01 -04:00
return mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_CTL , val ) ;
2017-03-11 16:12:51 -05:00
}
2017-03-11 16:12:48 -05:00
int mv88e6xxx_g1_atu_set_age_time ( struct mv88e6xxx_chip * chip ,
unsigned int msecs )
{
const unsigned int coeff = chip - > info - > age_time_coeff ;
const unsigned int min = 0x01 * coeff ;
const unsigned int max = 0xff * coeff ;
u8 age_time ;
u16 val ;
int err ;
if ( msecs < min | | msecs > max )
return - ERANGE ;
/* Round to nearest multiple of coeff */
age_time = ( msecs + coeff / 2 ) / coeff ;
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_CTL , & val ) ;
2017-03-11 16:12:48 -05:00
if ( err )
return err ;
/* AgeTime is 11:4 bits */
val & = ~ 0xff0 ;
val | = age_time < < 4 ;
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_CTL , val ) ;
2017-03-29 15:38:37 -04:00
if ( err )
return err ;
dev_dbg ( chip - > dev , " AgeTime set to 0x%02x (%d ms) \n " , age_time ,
age_time * coeff ) ;
return 0 ;
2017-03-11 16:12:48 -05:00
}
2017-03-11 16:12:52 -05:00
2019-10-25 01:03:52 +02:00
int mv88e6165_g1_atu_get_hash ( struct mv88e6xxx_chip * chip , u8 * hash )
{
int err ;
u16 val ;
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_CTL , & val ) ;
if ( err )
return err ;
* hash = val & MV88E6161_G1_ATU_CTL_HASH_MASK ;
return 0 ;
}
int mv88e6165_g1_atu_set_hash ( struct mv88e6xxx_chip * chip , u8 hash )
{
int err ;
u16 val ;
if ( hash & ~ MV88E6161_G1_ATU_CTL_HASH_MASK )
return - EINVAL ;
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_CTL , & val ) ;
if ( err )
return err ;
val & = ~ MV88E6161_G1_ATU_CTL_HASH_MASK ;
val | = hash ;
return mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_CTL , val ) ;
}
2017-03-11 16:12:52 -05:00
/* Offset 0x0B: ATU Operation Register */
static int mv88e6xxx_g1_atu_op_wait ( struct mv88e6xxx_chip * chip )
{
2019-08-09 18:47:55 -04:00
int bit = __bf_shf ( MV88E6XXX_G1_ATU_OP_BUSY ) ;
return mv88e6xxx_g1_wait_bit ( chip , MV88E6XXX_G1_ATU_OP , bit , 0 ) ;
2017-03-11 16:12:52 -05:00
}
net: dsa: mv88e6xxx: read FID when handling ATU violations
When an ATU violation occurs, the switch uses the ATU FID register to
report the FID of the MAC address that incurred the violation. It would
be good for the driver to know the FID value for purposes such as
logging and CPU-based authentication.
Up until now, the driver has been calling the mv88e6xxx_g1_atu_op()
function to read ATU violations, but that doesn't do exactly what we
want, namely it calls mv88e6xxx_g1_atu_fid_write() with FID 0.
(side note, the documentation for the ATU Get/Clear Violation command
says that writes to the ATU FID register have no effect before the
operation starts, it's only that we disregard the value that this
register provides once the operation completes)
So mv88e6xxx_g1_atu_fid_write() is not what we want, but rather
mv88e6xxx_g1_atu_fid_read(). However, the latter doesn't exist, we need
to write it.
The remainder of mv88e6xxx_g1_atu_op() except for
mv88e6xxx_g1_atu_fid_write() is still needed, namely to send a
GET_CLR_VIOLATION command to the ATU. In principle we could have still
kept calling mv88e6xxx_g1_atu_op(), but the MDIO writes to the ATU FID
register are pointless, but in the interest of doing less CPU work per
interrupt, write a new function called mv88e6xxx_g1_read_atu_violation()
and call it.
The FID will be the port default FID as set by mv88e6xxx_port_set_fid()
if the VID from the packet cannot be found in the VTU. Otherwise it is
the FID derived from the VTU entry associated with that VID.
Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-09 19:28:15 +02:00
static int mv88e6xxx_g1_read_atu_violation ( struct mv88e6xxx_chip * chip )
{
int err ;
err = mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_OP ,
MV88E6XXX_G1_ATU_OP_BUSY |
MV88E6XXX_G1_ATU_OP_GET_CLR_VIOLATION ) ;
if ( err )
return err ;
return mv88e6xxx_g1_atu_op_wait ( chip ) ;
}
2017-03-11 16:12:52 -05:00
static int mv88e6xxx_g1_atu_op ( struct mv88e6xxx_chip * chip , u16 fid , u16 op )
{
u16 val ;
int err ;
/* FID bits are dispatched all around gradually as more are supported */
if ( mv88e6xxx_num_databases ( chip ) > 256 ) {
err = mv88e6xxx_g1_atu_fid_write ( chip , fid ) ;
if ( err )
return err ;
} else {
2019-06-04 07:34:25 +00:00
if ( mv88e6xxx_num_databases ( chip ) > 64 ) {
2017-03-11 16:12:52 -05:00
/* ATU DBNum[7:4] are located in ATU Control 15:12 */
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_CTL ,
& val ) ;
2017-03-11 16:12:52 -05:00
if ( err )
return err ;
val = ( val & 0x0fff ) | ( ( fid < < 8 ) & 0xf000 ) ;
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_CTL ,
val ) ;
2017-03-11 16:12:52 -05:00
if ( err )
return err ;
2019-06-04 07:34:25 +00:00
} else if ( mv88e6xxx_num_databases ( chip ) > 16 ) {
/* ATU DBNum[5:4] are located in ATU Operation 9:8 */
op | = ( fid & 0x30 ) < < 4 ;
2017-03-11 16:12:52 -05:00
}
/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
op | = fid & 0xf ;
}
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_OP ,
MV88E6XXX_G1_ATU_OP_BUSY | op ) ;
2017-03-11 16:12:52 -05:00
if ( err )
return err ;
return mv88e6xxx_g1_atu_op_wait ( chip ) ;
}
2019-11-05 01:13:00 +01:00
int mv88e6xxx_g1_atu_get_next ( struct mv88e6xxx_chip * chip , u16 fid )
{
return mv88e6xxx_g1_atu_op ( chip , fid , MV88E6XXX_G1_ATU_OP_GET_NEXT_DB ) ;
}
net: dsa: mv88e6xxx: read FID when handling ATU violations
When an ATU violation occurs, the switch uses the ATU FID register to
report the FID of the MAC address that incurred the violation. It would
be good for the driver to know the FID value for purposes such as
logging and CPU-based authentication.
Up until now, the driver has been calling the mv88e6xxx_g1_atu_op()
function to read ATU violations, but that doesn't do exactly what we
want, namely it calls mv88e6xxx_g1_atu_fid_write() with FID 0.
(side note, the documentation for the ATU Get/Clear Violation command
says that writes to the ATU FID register have no effect before the
operation starts, it's only that we disregard the value that this
register provides once the operation completes)
So mv88e6xxx_g1_atu_fid_write() is not what we want, but rather
mv88e6xxx_g1_atu_fid_read(). However, the latter doesn't exist, we need
to write it.
The remainder of mv88e6xxx_g1_atu_op() except for
mv88e6xxx_g1_atu_fid_write() is still needed, namely to send a
GET_CLR_VIOLATION command to the ATU. In principle we could have still
kept calling mv88e6xxx_g1_atu_op(), but the MDIO writes to the ATU FID
register are pointless, but in the interest of doing less CPU work per
interrupt, write a new function called mv88e6xxx_g1_read_atu_violation()
and call it.
The FID will be the port default FID as set by mv88e6xxx_port_set_fid()
if the VID from the packet cannot be found in the VTU. Otherwise it is
the FID derived from the VTU entry associated with that VID.
Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-09 19:28:15 +02:00
static int mv88e6xxx_g1_atu_fid_read ( struct mv88e6xxx_chip * chip , u16 * fid )
{
u16 val = 0 , upper = 0 , op = 0 ;
int err = - EOPNOTSUPP ;
if ( mv88e6xxx_num_databases ( chip ) > 256 ) {
err = mv88e6xxx_g1_read ( chip , MV88E6352_G1_ATU_FID , & val ) ;
val & = 0xfff ;
if ( err )
return err ;
} else {
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_OP , & op ) ;
if ( err )
return err ;
if ( mv88e6xxx_num_databases ( chip ) > 64 ) {
/* ATU DBNum[7:4] are located in ATU Control 15:12 */
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_CTL ,
& upper ) ;
if ( err )
return err ;
upper = ( upper > > 8 ) & 0x00f0 ;
} else if ( mv88e6xxx_num_databases ( chip ) > 16 ) {
/* ATU DBNum[5:4] are located in ATU Operation 9:8 */
upper = ( op > > 4 ) & 0x30 ;
}
/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
val = ( op & 0xf ) | upper ;
}
* fid = val ;
return err ;
}
2017-03-11 16:12:52 -05:00
/* Offset 0x0C: ATU Data Register */
2017-03-11 16:12:53 -05:00
static int mv88e6xxx_g1_atu_data_read ( struct mv88e6xxx_chip * chip ,
struct mv88e6xxx_atu_entry * entry )
{
u16 val ;
int err ;
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_DATA , & val ) ;
2017-03-11 16:12:53 -05:00
if ( err )
return err ;
entry - > state = val & 0xf ;
2019-09-07 16:00:47 -04:00
if ( entry - > state ) {
2017-06-15 12:14:01 -04:00
entry - > trunk = ! ! ( val & MV88E6XXX_G1_ATU_DATA_TRUNK ) ;
2017-03-11 16:12:57 -05:00
entry - > portvec = ( val > > 4 ) & mv88e6xxx_port_mask ( chip ) ;
2017-03-11 16:12:53 -05:00
}
return 0 ;
}
2017-03-11 16:12:52 -05:00
static int mv88e6xxx_g1_atu_data_write ( struct mv88e6xxx_chip * chip ,
struct mv88e6xxx_atu_entry * entry )
{
u16 data = entry - > state & 0xf ;
2019-09-07 16:00:47 -04:00
if ( entry - > state ) {
2017-03-11 16:12:52 -05:00
if ( entry - > trunk )
2017-06-15 12:14:01 -04:00
data | = MV88E6XXX_G1_ATU_DATA_TRUNK ;
2017-03-11 16:12:52 -05:00
2017-03-11 16:12:57 -05:00
data | = ( entry - > portvec & mv88e6xxx_port_mask ( chip ) ) < < 4 ;
2017-03-11 16:12:52 -05:00
}
2017-06-15 12:14:01 -04:00
return mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_DATA , data ) ;
2017-03-11 16:12:52 -05:00
}
/* Offset 0x0D: ATU MAC Address Register Bytes 0 & 1
* Offset 0x0E : ATU MAC Address Register Bytes 2 & 3
* Offset 0x0F : ATU MAC Address Register Bytes 4 & 5
*/
2017-03-11 16:12:53 -05:00
static int mv88e6xxx_g1_atu_mac_read ( struct mv88e6xxx_chip * chip ,
struct mv88e6xxx_atu_entry * entry )
{
u16 val ;
int i , err ;
for ( i = 0 ; i < 3 ; i + + ) {
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_MAC01 + i , & val ) ;
2017-03-11 16:12:53 -05:00
if ( err )
return err ;
entry - > mac [ i * 2 ] = val > > 8 ;
entry - > mac [ i * 2 + 1 ] = val & 0xff ;
}
return 0 ;
}
2017-03-11 16:12:52 -05:00
static int mv88e6xxx_g1_atu_mac_write ( struct mv88e6xxx_chip * chip ,
struct mv88e6xxx_atu_entry * entry )
{
u16 val ;
int i , err ;
for ( i = 0 ; i < 3 ; i + + ) {
val = ( entry - > mac [ i * 2 ] < < 8 ) | entry - > mac [ i * 2 + 1 ] ;
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_write ( chip , MV88E6XXX_G1_ATU_MAC01 + i , val ) ;
2017-03-11 16:12:52 -05:00
if ( err )
return err ;
}
return 0 ;
}
/* Address Translation Unit operations */
2017-03-11 16:12:53 -05:00
int mv88e6xxx_g1_atu_getnext ( struct mv88e6xxx_chip * chip , u16 fid ,
struct mv88e6xxx_atu_entry * entry )
{
int err ;
err = mv88e6xxx_g1_atu_op_wait ( chip ) ;
if ( err )
return err ;
/* Write the MAC address to iterate from only once */
2019-09-07 16:00:47 -04:00
if ( ! entry - > state ) {
2017-03-11 16:12:53 -05:00
err = mv88e6xxx_g1_atu_mac_write ( chip , entry ) ;
if ( err )
return err ;
}
2017-06-15 12:14:01 -04:00
err = mv88e6xxx_g1_atu_op ( chip , fid , MV88E6XXX_G1_ATU_OP_GET_NEXT_DB ) ;
2017-03-11 16:12:53 -05:00
if ( err )
return err ;
err = mv88e6xxx_g1_atu_data_read ( chip , entry ) ;
if ( err )
return err ;
return mv88e6xxx_g1_atu_mac_read ( chip , entry ) ;
}
2017-03-11 16:12:52 -05:00
int mv88e6xxx_g1_atu_loadpurge ( struct mv88e6xxx_chip * chip , u16 fid ,
struct mv88e6xxx_atu_entry * entry )
{
int err ;
err = mv88e6xxx_g1_atu_op_wait ( chip ) ;
if ( err )
return err ;
err = mv88e6xxx_g1_atu_mac_write ( chip , entry ) ;
if ( err )
return err ;
err = mv88e6xxx_g1_atu_data_write ( chip , entry ) ;
if ( err )
return err ;
2017-06-15 12:14:01 -04:00
return mv88e6xxx_g1_atu_op ( chip , fid , MV88E6XXX_G1_ATU_OP_LOAD_DB ) ;
2017-03-11 16:12:52 -05:00
}
2017-03-11 16:12:54 -05:00
static int mv88e6xxx_g1_atu_flushmove ( struct mv88e6xxx_chip * chip , u16 fid ,
struct mv88e6xxx_atu_entry * entry ,
bool all )
{
u16 op ;
int err ;
err = mv88e6xxx_g1_atu_op_wait ( chip ) ;
if ( err )
return err ;
err = mv88e6xxx_g1_atu_data_write ( chip , entry ) ;
if ( err )
return err ;
/* Flush/Move all or non-static entries from all or a given database */
if ( all & & fid )
2017-06-15 12:14:01 -04:00
op = MV88E6XXX_G1_ATU_OP_FLUSH_MOVE_ALL_DB ;
2017-03-11 16:12:54 -05:00
else if ( fid )
2017-06-15 12:14:01 -04:00
op = MV88E6XXX_G1_ATU_OP_FLUSH_MOVE_NON_STATIC_DB ;
2017-03-11 16:12:54 -05:00
else if ( all )
2017-06-15 12:14:01 -04:00
op = MV88E6XXX_G1_ATU_OP_FLUSH_MOVE_ALL ;
2017-03-11 16:12:54 -05:00
else
2017-06-15 12:14:01 -04:00
op = MV88E6XXX_G1_ATU_OP_FLUSH_MOVE_NON_STATIC ;
2017-03-11 16:12:54 -05:00
return mv88e6xxx_g1_atu_op ( chip , fid , op ) ;
}
int mv88e6xxx_g1_atu_flush ( struct mv88e6xxx_chip * chip , u16 fid , bool all )
{
struct mv88e6xxx_atu_entry entry = {
. state = 0 , /* Null EntryState means Flush */
} ;
return mv88e6xxx_g1_atu_flushmove ( chip , fid , & entry , all ) ;
}
2017-03-11 16:12:55 -05:00
static int mv88e6xxx_g1_atu_move ( struct mv88e6xxx_chip * chip , u16 fid ,
int from_port , int to_port , bool all )
{
struct mv88e6xxx_atu_entry entry = { 0 } ;
unsigned long mask ;
int shift ;
if ( ! chip - > info - > atu_move_port_mask )
return - EOPNOTSUPP ;
mask = chip - > info - > atu_move_port_mask ;
shift = bitmap_weight ( & mask , 16 ) ;
2020-12-09 21:39:38 +08:00
entry . state = 0xf ; /* Full EntryState means Move */
2017-03-11 16:12:57 -05:00
entry . portvec = from_port & mask ;
entry . portvec | = ( to_port & mask ) < < shift ;
2017-03-11 16:12:55 -05:00
return mv88e6xxx_g1_atu_flushmove ( chip , fid , & entry , all ) ;
}
int mv88e6xxx_g1_atu_remove ( struct mv88e6xxx_chip * chip , u16 fid , int port ,
bool all )
{
int from_port = port ;
int to_port = chip - > info - > atu_move_port_mask ;
return mv88e6xxx_g1_atu_move ( chip , fid , from_port , to_port , all ) ;
}
2018-01-14 02:32:44 +01:00
static irqreturn_t mv88e6xxx_g1_atu_prob_irq_thread_fn ( int irq , void * dev_id )
{
struct mv88e6xxx_chip * chip = dev_id ;
struct mv88e6xxx_atu_entry entry ;
net: dsa: mv88e6xxx: read FID when handling ATU violations
When an ATU violation occurs, the switch uses the ATU FID register to
report the FID of the MAC address that incurred the violation. It would
be good for the driver to know the FID value for purposes such as
logging and CPU-based authentication.
Up until now, the driver has been calling the mv88e6xxx_g1_atu_op()
function to read ATU violations, but that doesn't do exactly what we
want, namely it calls mv88e6xxx_g1_atu_fid_write() with FID 0.
(side note, the documentation for the ATU Get/Clear Violation command
says that writes to the ATU FID register have no effect before the
operation starts, it's only that we disregard the value that this
register provides once the operation completes)
So mv88e6xxx_g1_atu_fid_write() is not what we want, but rather
mv88e6xxx_g1_atu_fid_read(). However, the latter doesn't exist, we need
to write it.
The remainder of mv88e6xxx_g1_atu_op() except for
mv88e6xxx_g1_atu_fid_write() is still needed, namely to send a
GET_CLR_VIOLATION command to the ATU. In principle we could have still
kept calling mv88e6xxx_g1_atu_op(), but the MDIO writes to the ATU FID
register are pointless, but in the interest of doing less CPU work per
interrupt, write a new function called mv88e6xxx_g1_read_atu_violation()
and call it.
The FID will be the port default FID as set by mv88e6xxx_port_set_fid()
if the VID from the packet cannot be found in the VTU. Otherwise it is
the FID derived from the VTU entry associated with that VID.
Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-09 19:28:15 +02:00
int err , spid ;
u16 val , fid ;
2018-01-14 02:32:44 +01:00
2019-06-20 13:50:42 +00:00
mv88e6xxx_reg_lock ( chip ) ;
2018-01-14 02:32:44 +01:00
net: dsa: mv88e6xxx: read FID when handling ATU violations
When an ATU violation occurs, the switch uses the ATU FID register to
report the FID of the MAC address that incurred the violation. It would
be good for the driver to know the FID value for purposes such as
logging and CPU-based authentication.
Up until now, the driver has been calling the mv88e6xxx_g1_atu_op()
function to read ATU violations, but that doesn't do exactly what we
want, namely it calls mv88e6xxx_g1_atu_fid_write() with FID 0.
(side note, the documentation for the ATU Get/Clear Violation command
says that writes to the ATU FID register have no effect before the
operation starts, it's only that we disregard the value that this
register provides once the operation completes)
So mv88e6xxx_g1_atu_fid_write() is not what we want, but rather
mv88e6xxx_g1_atu_fid_read(). However, the latter doesn't exist, we need
to write it.
The remainder of mv88e6xxx_g1_atu_op() except for
mv88e6xxx_g1_atu_fid_write() is still needed, namely to send a
GET_CLR_VIOLATION command to the ATU. In principle we could have still
kept calling mv88e6xxx_g1_atu_op(), but the MDIO writes to the ATU FID
register are pointless, but in the interest of doing less CPU work per
interrupt, write a new function called mv88e6xxx_g1_read_atu_violation()
and call it.
The FID will be the port default FID as set by mv88e6xxx_port_set_fid()
if the VID from the packet cannot be found in the VTU. Otherwise it is
the FID derived from the VTU entry associated with that VID.
Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-09 19:28:15 +02:00
err = mv88e6xxx_g1_read_atu_violation ( chip ) ;
2018-01-14 02:32:44 +01:00
if ( err )
2023-01-08 10:48:48 +01:00
goto out_unlock ;
2018-01-14 02:32:44 +01:00
err = mv88e6xxx_g1_read ( chip , MV88E6XXX_G1_ATU_OP , & val ) ;
if ( err )
2023-01-08 10:48:48 +01:00
goto out_unlock ;
2018-01-14 02:32:44 +01:00
net: dsa: mv88e6xxx: read FID when handling ATU violations
When an ATU violation occurs, the switch uses the ATU FID register to
report the FID of the MAC address that incurred the violation. It would
be good for the driver to know the FID value for purposes such as
logging and CPU-based authentication.
Up until now, the driver has been calling the mv88e6xxx_g1_atu_op()
function to read ATU violations, but that doesn't do exactly what we
want, namely it calls mv88e6xxx_g1_atu_fid_write() with FID 0.
(side note, the documentation for the ATU Get/Clear Violation command
says that writes to the ATU FID register have no effect before the
operation starts, it's only that we disregard the value that this
register provides once the operation completes)
So mv88e6xxx_g1_atu_fid_write() is not what we want, but rather
mv88e6xxx_g1_atu_fid_read(). However, the latter doesn't exist, we need
to write it.
The remainder of mv88e6xxx_g1_atu_op() except for
mv88e6xxx_g1_atu_fid_write() is still needed, namely to send a
GET_CLR_VIOLATION command to the ATU. In principle we could have still
kept calling mv88e6xxx_g1_atu_op(), but the MDIO writes to the ATU FID
register are pointless, but in the interest of doing less CPU work per
interrupt, write a new function called mv88e6xxx_g1_read_atu_violation()
and call it.
The FID will be the port default FID as set by mv88e6xxx_port_set_fid()
if the VID from the packet cannot be found in the VTU. Otherwise it is
the FID derived from the VTU entry associated with that VID.
Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-09 19:28:15 +02:00
err = mv88e6xxx_g1_atu_fid_read ( chip , & fid ) ;
if ( err )
2023-01-08 10:48:48 +01:00
goto out_unlock ;
net: dsa: mv88e6xxx: read FID when handling ATU violations
When an ATU violation occurs, the switch uses the ATU FID register to
report the FID of the MAC address that incurred the violation. It would
be good for the driver to know the FID value for purposes such as
logging and CPU-based authentication.
Up until now, the driver has been calling the mv88e6xxx_g1_atu_op()
function to read ATU violations, but that doesn't do exactly what we
want, namely it calls mv88e6xxx_g1_atu_fid_write() with FID 0.
(side note, the documentation for the ATU Get/Clear Violation command
says that writes to the ATU FID register have no effect before the
operation starts, it's only that we disregard the value that this
register provides once the operation completes)
So mv88e6xxx_g1_atu_fid_write() is not what we want, but rather
mv88e6xxx_g1_atu_fid_read(). However, the latter doesn't exist, we need
to write it.
The remainder of mv88e6xxx_g1_atu_op() except for
mv88e6xxx_g1_atu_fid_write() is still needed, namely to send a
GET_CLR_VIOLATION command to the ATU. In principle we could have still
kept calling mv88e6xxx_g1_atu_op(), but the MDIO writes to the ATU FID
register are pointless, but in the interest of doing less CPU work per
interrupt, write a new function called mv88e6xxx_g1_read_atu_violation()
and call it.
The FID will be the port default FID as set by mv88e6xxx_port_set_fid()
if the VID from the packet cannot be found in the VTU. Otherwise it is
the FID derived from the VTU entry associated with that VID.
Signed-off-by: Hans J. Schultz <netdev@kapio-technology.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-09 19:28:15 +02:00
2018-01-14 02:32:44 +01:00
err = mv88e6xxx_g1_atu_data_read ( chip , & entry ) ;
if ( err )
2023-01-08 10:48:48 +01:00
goto out_unlock ;
2018-01-14 02:32:44 +01:00
err = mv88e6xxx_g1_atu_mac_read ( chip , & entry ) ;
if ( err )
2023-01-08 10:48:48 +01:00
goto out_unlock ;
mv88e6xxx_reg_unlock ( chip ) ;
2018-01-14 02:32:44 +01:00
2019-02-06 00:02:58 +01:00
spid = entry . state ;
2018-01-14 02:32:44 +01:00
if ( val & MV88E6XXX_G1_ATU_OP_MEMBER_VIOLATION ) {
2022-12-09 19:28:16 +02:00
trace_mv88e6xxx_atu_member_violation ( chip - > dev , spid ,
entry . portvec , entry . mac ,
fid ) ;
2019-02-06 00:02:58 +01:00
chip - > ports [ spid ] . atu_member_violation + + ;
2018-01-14 02:32:44 +01:00
}
2018-09-14 23:46:12 +02:00
if ( val & MV88E6XXX_G1_ATU_OP_MISS_VIOLATION ) {
2022-12-09 19:28:16 +02:00
trace_mv88e6xxx_atu_miss_violation ( chip - > dev , spid ,
entry . portvec , entry . mac ,
fid ) ;
2019-02-06 00:02:58 +01:00
chip - > ports [ spid ] . atu_miss_violation + + ;
2023-01-08 10:48:49 +01:00
if ( fid ! = MV88E6XXX_FID_STANDALONE & & chip - > ports [ spid ] . mab ) {
err = mv88e6xxx_handle_miss_violation ( chip , spid ,
& entry , fid ) ;
if ( err )
goto out ;
}
2018-03-28 23:50:28 +02:00
}
2018-01-14 02:32:44 +01:00
2018-03-28 23:50:28 +02:00
if ( val & MV88E6XXX_G1_ATU_OP_FULL_VIOLATION ) {
2022-12-09 19:28:16 +02:00
trace_mv88e6xxx_atu_full_violation ( chip - > dev , spid ,
entry . portvec , entry . mac ,
fid ) ;
2019-02-06 00:02:58 +01:00
chip - > ports [ spid ] . atu_full_violation + + ;
2018-03-28 23:50:28 +02:00
}
2018-01-14 02:32:44 +01:00
return IRQ_HANDLED ;
2023-01-08 10:48:48 +01:00
out_unlock :
2019-06-20 13:50:42 +00:00
mv88e6xxx_reg_unlock ( chip ) ;
2023-01-08 10:48:49 +01:00
out :
2018-01-14 02:32:44 +01:00
dev_err ( chip - > dev , " ATU problem: error %d while handling interrupt \n " ,
err ) ;
return IRQ_HANDLED ;
}
int mv88e6xxx_g1_atu_prob_irq_setup ( struct mv88e6xxx_chip * chip )
{
int err ;
chip - > atu_prob_irq = irq_find_mapping ( chip - > g1_irq . domain ,
MV88E6XXX_G1_STS_IRQ_ATU_PROB ) ;
if ( chip - > atu_prob_irq < 0 )
2018-01-18 17:42:49 +01:00
return chip - > atu_prob_irq ;
2018-01-14 02:32:44 +01:00
2020-01-06 17:13:52 +01:00
snprintf ( chip - > atu_prob_irq_name , sizeof ( chip - > atu_prob_irq_name ) ,
" mv88e6xxx-%s-g1-atu-prob " , dev_name ( chip - > dev ) ) ;
2018-01-14 02:32:44 +01:00
err = request_threaded_irq ( chip - > atu_prob_irq , NULL ,
mv88e6xxx_g1_atu_prob_irq_thread_fn ,
2020-01-06 17:13:52 +01:00
IRQF_ONESHOT , chip - > atu_prob_irq_name ,
2018-01-14 02:32:44 +01:00
chip ) ;
if ( err )
irq_dispose_mapping ( chip - > atu_prob_irq ) ;
return err ;
}
void mv88e6xxx_g1_atu_prob_irq_free ( struct mv88e6xxx_chip * chip )
{
free_irq ( chip - > atu_prob_irq , chip ) ;
irq_dispose_mapping ( chip - > atu_prob_irq ) ;
}