2020-06-20 18:43:44 +03:00
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Microsemi Ocelot Switch driver
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 04:11:20 +02:00
*
* This contains glue logic between the switchdev driver operations and the
* mscc_ocelot_switch_lib .
2020-06-20 18:43:44 +03:00
*
* Copyright ( c ) 2017 , 2019 Microsemi Corporation
2021-09-17 14:17:35 +03:00
* Copyright 2020 - 2021 NXP
2020-06-20 18:43:44 +03:00
*/
2021-10-12 14:40:40 +03:00
# include <linux/dsa/ocelot.h>
2020-06-20 18:43:44 +03:00
# include <linux/if_bridge.h>
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
# include <linux/of_net.h>
# include <linux/phy/phy.h>
2021-01-29 03:00:00 +02:00
# include <net/pkt_cls.h>
2020-06-20 18:43:44 +03:00
# include "ocelot.h"
2020-06-20 18:43:45 +03:00
# include "ocelot_vcap.h"
2021-12-09 16:49:11 +01:00
# include "ocelot_fdma.h"
2020-06-20 18:43:44 +03:00
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
# define OCELOT_MAC_QUIRKS OCELOT_QUIRK_QSGMII_PORTS_MUST_BE_UP
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 04:11:20 +02:00
static struct ocelot * devlink_port_to_ocelot ( struct devlink_port * dlp )
{
return devlink_priv ( dlp - > devlink ) ;
}
static int devlink_port_to_port ( struct devlink_port * dlp )
{
struct ocelot * ocelot = devlink_port_to_ocelot ( dlp ) ;
return dlp - ocelot - > devlink_ports ;
}
static int ocelot_devlink_sb_pool_get ( struct devlink * dl ,
unsigned int sb_index , u16 pool_index ,
struct devlink_sb_pool_info * pool_info )
{
struct ocelot * ocelot = devlink_priv ( dl ) ;
return ocelot_sb_pool_get ( ocelot , sb_index , pool_index , pool_info ) ;
}
static int ocelot_devlink_sb_pool_set ( struct devlink * dl , unsigned int sb_index ,
u16 pool_index , u32 size ,
enum devlink_sb_threshold_type threshold_type ,
struct netlink_ext_ack * extack )
{
struct ocelot * ocelot = devlink_priv ( dl ) ;
return ocelot_sb_pool_set ( ocelot , sb_index , pool_index , size ,
threshold_type , extack ) ;
}
static int ocelot_devlink_sb_port_pool_get ( struct devlink_port * dlp ,
unsigned int sb_index , u16 pool_index ,
u32 * p_threshold )
{
struct ocelot * ocelot = devlink_port_to_ocelot ( dlp ) ;
int port = devlink_port_to_port ( dlp ) ;
return ocelot_sb_port_pool_get ( ocelot , port , sb_index , pool_index ,
p_threshold ) ;
}
static int ocelot_devlink_sb_port_pool_set ( struct devlink_port * dlp ,
unsigned int sb_index , u16 pool_index ,
u32 threshold ,
struct netlink_ext_ack * extack )
{
struct ocelot * ocelot = devlink_port_to_ocelot ( dlp ) ;
int port = devlink_port_to_port ( dlp ) ;
return ocelot_sb_port_pool_set ( ocelot , port , sb_index , pool_index ,
threshold , extack ) ;
}
static int
ocelot_devlink_sb_tc_pool_bind_get ( struct devlink_port * dlp ,
unsigned int sb_index , u16 tc_index ,
enum devlink_sb_pool_type pool_type ,
u16 * p_pool_index , u32 * p_threshold )
{
struct ocelot * ocelot = devlink_port_to_ocelot ( dlp ) ;
int port = devlink_port_to_port ( dlp ) ;
return ocelot_sb_tc_pool_bind_get ( ocelot , port , sb_index , tc_index ,
pool_type , p_pool_index ,
p_threshold ) ;
}
static int
ocelot_devlink_sb_tc_pool_bind_set ( struct devlink_port * dlp ,
unsigned int sb_index , u16 tc_index ,
enum devlink_sb_pool_type pool_type ,
u16 pool_index , u32 threshold ,
struct netlink_ext_ack * extack )
{
struct ocelot * ocelot = devlink_port_to_ocelot ( dlp ) ;
int port = devlink_port_to_port ( dlp ) ;
return ocelot_sb_tc_pool_bind_set ( ocelot , port , sb_index , tc_index ,
pool_type , pool_index , threshold ,
extack ) ;
}
static int ocelot_devlink_sb_occ_snapshot ( struct devlink * dl ,
unsigned int sb_index )
{
struct ocelot * ocelot = devlink_priv ( dl ) ;
return ocelot_sb_occ_snapshot ( ocelot , sb_index ) ;
}
static int ocelot_devlink_sb_occ_max_clear ( struct devlink * dl ,
unsigned int sb_index )
{
struct ocelot * ocelot = devlink_priv ( dl ) ;
return ocelot_sb_occ_max_clear ( ocelot , sb_index ) ;
}
static int ocelot_devlink_sb_occ_port_pool_get ( struct devlink_port * dlp ,
unsigned int sb_index ,
u16 pool_index , u32 * p_cur ,
u32 * p_max )
{
struct ocelot * ocelot = devlink_port_to_ocelot ( dlp ) ;
int port = devlink_port_to_port ( dlp ) ;
return ocelot_sb_occ_port_pool_get ( ocelot , port , sb_index , pool_index ,
p_cur , p_max ) ;
}
static int
ocelot_devlink_sb_occ_tc_port_bind_get ( struct devlink_port * dlp ,
unsigned int sb_index , u16 tc_index ,
enum devlink_sb_pool_type pool_type ,
u32 * p_cur , u32 * p_max )
{
struct ocelot * ocelot = devlink_port_to_ocelot ( dlp ) ;
int port = devlink_port_to_port ( dlp ) ;
return ocelot_sb_occ_tc_port_bind_get ( ocelot , port , sb_index ,
tc_index , pool_type ,
p_cur , p_max ) ;
}
net: mscc: ocelot: register devlink ports
Add devlink integration into the mscc_ocelot switchdev driver. All
physical ports (i.e. the unused ones as well) except the CPU port module
at ocelot->num_phys_ports are registered with devlink, and that requires
keeping the devlink_port structure outside struct ocelot_port_private,
since the latter has a 1:1 mapping with a struct net_device (which does
not exist for unused ports).
Since we use devlink_port_type_eth_set to link the devlink port to the
net_device, we can as well remove the .ndo_get_phys_port_name and
.ndo_get_port_parent_id implementations, since devlink takes care of
retrieving the port name and number automatically, once
.ndo_get_devlink_port is implemented.
Note that the felix DSA driver is already integrated with devlink by
default, since that is a thing that the DSA core takes care of. This is
the reason why these devlink stubs were put in ocelot_net.c and not in
the common library. It is also the reason why ocelot::devlink is a
pointer and not a full structure embedded inside struct ocelot: because
the mscc_ocelot driver allocates that by itself (as the container of
struct ocelot, in fact), but in the case of felix, it is DSA who
allocates the devlink, and felix just propagates the pointer towards
struct ocelot.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 04:11:18 +02:00
const struct devlink_ops ocelot_devlink_ops = {
net: mscc: ocelot: configure watermarks using devlink-sb
Using devlink-sb, we can configure 12/16 (the important 75%) of the
switch's controlling watermarks for congestion drops, and we can monitor
50% of the watermark occupancies (we can monitor the reservation
watermarks, but not the sharing watermarks, which are exposed as pool
sizes).
The following definitions can be made:
SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances
# have one of these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances
# have one of these.
Editing the hardware watermarks is done in the following way:
BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR
Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly
by modifying the corresponding pool size. By default, the pool size has
maximum size, so this can be skipped.
devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING \
size 129840 thtype static
Since by default there is no buffer reservation, the above command has
maxed out BUF_COL_SHR_I(dp=0).
Configuring the per-port reservation watermark (P_RSRV) is done in the
following way:
devlink sb port pool set pci/0000:00:00.5/0 sb $SB_BUF \
pool $POOL_ING th 1000
The above command sets BUF_P_RSRV_I(port 0) to 1000 bytes. After this
command, the sharing watermarks are internally reconfigured with 1000
bytes less, i.e. from 129840 bytes to 128840 bytes.
Configuring the per-port-tc reservation watermarks (Q_RSRV) is done in
the following way:
for tc in {0..7}; do
devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc \
type ingress pool $POOL_ING \
th 3000
done
The above command sets BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes.
The sharing watermarks are again reconfigured with 24000 bytes less.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 04:11:20 +02:00
. sb_pool_get = ocelot_devlink_sb_pool_get ,
. sb_pool_set = ocelot_devlink_sb_pool_set ,
. sb_port_pool_get = ocelot_devlink_sb_port_pool_get ,
. sb_port_pool_set = ocelot_devlink_sb_port_pool_set ,
. sb_tc_pool_bind_get = ocelot_devlink_sb_tc_pool_bind_get ,
. sb_tc_pool_bind_set = ocelot_devlink_sb_tc_pool_bind_set ,
. sb_occ_snapshot = ocelot_devlink_sb_occ_snapshot ,
. sb_occ_max_clear = ocelot_devlink_sb_occ_max_clear ,
. sb_occ_port_pool_get = ocelot_devlink_sb_occ_port_pool_get ,
. sb_occ_tc_port_bind_get = ocelot_devlink_sb_occ_tc_port_bind_get ,
net: mscc: ocelot: register devlink ports
Add devlink integration into the mscc_ocelot switchdev driver. All
physical ports (i.e. the unused ones as well) except the CPU port module
at ocelot->num_phys_ports are registered with devlink, and that requires
keeping the devlink_port structure outside struct ocelot_port_private,
since the latter has a 1:1 mapping with a struct net_device (which does
not exist for unused ports).
Since we use devlink_port_type_eth_set to link the devlink port to the
net_device, we can as well remove the .ndo_get_phys_port_name and
.ndo_get_port_parent_id implementations, since devlink takes care of
retrieving the port name and number automatically, once
.ndo_get_devlink_port is implemented.
Note that the felix DSA driver is already integrated with devlink by
default, since that is a thing that the DSA core takes care of. This is
the reason why these devlink stubs were put in ocelot_net.c and not in
the common library. It is also the reason why ocelot::devlink is a
pointer and not a full structure embedded inside struct ocelot: because
the mscc_ocelot driver allocates that by itself (as the container of
struct ocelot, in fact), but in the case of felix, it is DSA who
allocates the devlink, and felix just propagates the pointer towards
struct ocelot.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 04:11:18 +02:00
} ;
int ocelot_port_devlink_init ( struct ocelot * ocelot , int port ,
enum devlink_port_flavour flavour )
{
struct devlink_port * dlp = & ocelot - > devlink_ports [ port ] ;
int id_len = sizeof ( ocelot - > base_mac ) ;
struct devlink * dl = ocelot - > devlink ;
struct devlink_port_attrs attrs = { } ;
2021-08-19 19:49:57 +03:00
memset ( dlp , 0 , sizeof ( * dlp ) ) ;
net: mscc: ocelot: register devlink ports
Add devlink integration into the mscc_ocelot switchdev driver. All
physical ports (i.e. the unused ones as well) except the CPU port module
at ocelot->num_phys_ports are registered with devlink, and that requires
keeping the devlink_port structure outside struct ocelot_port_private,
since the latter has a 1:1 mapping with a struct net_device (which does
not exist for unused ports).
Since we use devlink_port_type_eth_set to link the devlink port to the
net_device, we can as well remove the .ndo_get_phys_port_name and
.ndo_get_port_parent_id implementations, since devlink takes care of
retrieving the port name and number automatically, once
.ndo_get_devlink_port is implemented.
Note that the felix DSA driver is already integrated with devlink by
default, since that is a thing that the DSA core takes care of. This is
the reason why these devlink stubs were put in ocelot_net.c and not in
the common library. It is also the reason why ocelot::devlink is a
pointer and not a full structure embedded inside struct ocelot: because
the mscc_ocelot driver allocates that by itself (as the container of
struct ocelot, in fact), but in the case of felix, it is DSA who
allocates the devlink, and felix just propagates the pointer towards
struct ocelot.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 04:11:18 +02:00
memcpy ( attrs . switch_id . id , & ocelot - > base_mac , id_len ) ;
attrs . switch_id . id_len = id_len ;
attrs . phys . port_number = port ;
attrs . flavour = flavour ;
devlink_port_attrs_set ( dlp , & attrs ) ;
return devlink_port_register ( dl , dlp , port ) ;
}
void ocelot_port_devlink_teardown ( struct ocelot * ocelot , int port )
{
struct devlink_port * dlp = & ocelot - > devlink_ports [ port ] ;
devlink_port_unregister ( dlp ) ;
}
static struct devlink_port * ocelot_get_devlink_port ( struct net_device * dev )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
return & ocelot - > devlink_ports [ port ] ;
}
2020-06-20 18:43:44 +03:00
int ocelot_setup_tc_cls_flower ( struct ocelot_port_private * priv ,
struct flow_cls_offload * f ,
bool ingress )
{
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
if ( ! ingress )
return - EOPNOTSUPP ;
switch ( f - > command ) {
case FLOW_CLS_REPLACE :
return ocelot_cls_flower_replace ( ocelot , port , f , ingress ) ;
case FLOW_CLS_DESTROY :
return ocelot_cls_flower_destroy ( ocelot , port , f , ingress ) ;
case FLOW_CLS_STATS :
return ocelot_cls_flower_stats ( ocelot , port , f , ingress ) ;
default :
return - EOPNOTSUPP ;
}
}
static int ocelot_setup_tc_cls_matchall ( struct ocelot_port_private * priv ,
struct tc_cls_matchall_offload * f ,
bool ingress )
{
struct netlink_ext_ack * extack = f - > common . extack ;
struct ocelot * ocelot = priv - > port . ocelot ;
struct ocelot_policer pol = { 0 } ;
struct flow_action_entry * action ;
int port = priv - > chip_port ;
int err ;
if ( ! ingress ) {
NL_SET_ERR_MSG_MOD ( extack , " Only ingress is supported " ) ;
return - EOPNOTSUPP ;
}
switch ( f - > command ) {
case TC_CLSMATCHALL_REPLACE :
if ( ! flow_offload_has_one_action ( & f - > rule - > action ) ) {
NL_SET_ERR_MSG_MOD ( extack ,
" Only one action is supported " ) ;
return - EOPNOTSUPP ;
}
if ( priv - > tc . block_shared ) {
NL_SET_ERR_MSG_MOD ( extack ,
" Rate limit is not supported on shared blocks " ) ;
return - EOPNOTSUPP ;
}
action = & f - > rule - > action . entries [ 0 ] ;
if ( action - > id ! = FLOW_ACTION_POLICE ) {
NL_SET_ERR_MSG_MOD ( extack , " Unsupported action " ) ;
return - EOPNOTSUPP ;
}
if ( priv - > tc . police_id & & priv - > tc . police_id ! = f - > cookie ) {
NL_SET_ERR_MSG_MOD ( extack ,
" Only one policer per port is supported " ) ;
return - EEXIST ;
}
2021-03-12 15:08:30 +01:00
if ( action - > police . rate_pkt_ps ) {
NL_SET_ERR_MSG_MOD ( extack ,
" QoS offload not support packets per second " ) ;
return - EOPNOTSUPP ;
}
2020-06-20 18:43:44 +03:00
pol . rate = ( u32 ) div_u64 ( action - > police . rate_bytes_ps , 1000 ) * 8 ;
2020-06-29 14:54:16 +08:00
pol . burst = action - > police . burst ;
2020-06-20 18:43:44 +03:00
err = ocelot_port_policer_add ( ocelot , port , & pol ) ;
if ( err ) {
NL_SET_ERR_MSG_MOD ( extack , " Could not add policer " ) ;
return err ;
}
priv - > tc . police_id = f - > cookie ;
priv - > tc . offload_cnt + + ;
return 0 ;
case TC_CLSMATCHALL_DESTROY :
if ( priv - > tc . police_id ! = f - > cookie )
return - ENOENT ;
err = ocelot_port_policer_del ( ocelot , port ) ;
if ( err ) {
NL_SET_ERR_MSG_MOD ( extack ,
" Could not delete policer " ) ;
return err ;
}
priv - > tc . police_id = 0 ;
priv - > tc . offload_cnt - - ;
return 0 ;
case TC_CLSMATCHALL_STATS :
default :
return - EOPNOTSUPP ;
}
}
static int ocelot_setup_tc_block_cb ( enum tc_setup_type type ,
void * type_data ,
void * cb_priv , bool ingress )
{
struct ocelot_port_private * priv = cb_priv ;
if ( ! tc_cls_can_offload_and_chain0 ( priv - > dev , type_data ) )
return - EOPNOTSUPP ;
switch ( type ) {
case TC_SETUP_CLSMATCHALL :
return ocelot_setup_tc_cls_matchall ( priv , type_data , ingress ) ;
case TC_SETUP_CLSFLOWER :
return ocelot_setup_tc_cls_flower ( priv , type_data , ingress ) ;
default :
return - EOPNOTSUPP ;
}
}
static int ocelot_setup_tc_block_cb_ig ( enum tc_setup_type type ,
void * type_data ,
void * cb_priv )
{
return ocelot_setup_tc_block_cb ( type , type_data ,
cb_priv , true ) ;
}
static int ocelot_setup_tc_block_cb_eg ( enum tc_setup_type type ,
void * type_data ,
void * cb_priv )
{
return ocelot_setup_tc_block_cb ( type , type_data ,
cb_priv , false ) ;
}
static LIST_HEAD ( ocelot_block_cb_list ) ;
static int ocelot_setup_tc_block ( struct ocelot_port_private * priv ,
struct flow_block_offload * f )
{
struct flow_block_cb * block_cb ;
flow_setup_cb_t * cb ;
if ( f - > binder_type = = FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS ) {
cb = ocelot_setup_tc_block_cb_ig ;
priv - > tc . block_shared = f - > block_shared ;
} else if ( f - > binder_type = = FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS ) {
cb = ocelot_setup_tc_block_cb_eg ;
} else {
return - EOPNOTSUPP ;
}
f - > driver_block_list = & ocelot_block_cb_list ;
switch ( f - > command ) {
case FLOW_BLOCK_BIND :
if ( flow_block_cb_is_busy ( cb , priv , & ocelot_block_cb_list ) )
return - EBUSY ;
block_cb = flow_block_cb_alloc ( cb , priv , priv , NULL ) ;
if ( IS_ERR ( block_cb ) )
return PTR_ERR ( block_cb ) ;
flow_block_cb_add ( block_cb , f ) ;
list_add_tail ( & block_cb - > driver_list , f - > driver_block_list ) ;
return 0 ;
case FLOW_BLOCK_UNBIND :
block_cb = flow_block_cb_lookup ( f - > block , cb , priv ) ;
if ( ! block_cb )
return - ENOENT ;
flow_block_cb_remove ( block_cb , f ) ;
list_del ( & block_cb - > driver_list ) ;
return 0 ;
default :
return - EOPNOTSUPP ;
}
}
static int ocelot_setup_tc ( struct net_device * dev , enum tc_setup_type type ,
void * type_data )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
switch ( type ) {
case TC_SETUP_BLOCK :
return ocelot_setup_tc_block ( priv , type_data ) ;
default :
return - EOPNOTSUPP ;
}
return 0 ;
}
static int ocelot_vlan_vid_add ( struct net_device * dev , u16 vid , bool pvid ,
bool untagged )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
int ret ;
ret = ocelot_vlan_add ( ocelot , port , vid , pvid , untagged ) ;
if ( ret )
return ret ;
/* Add the port MAC address to with the right VLAN information */
ocelot_mact_learn ( ocelot , PGID_CPU , dev - > dev_addr , vid ,
ENTRYTYPE_LOCKED ) ;
return 0 ;
}
static int ocelot_vlan_vid_del ( struct net_device * dev , u16 vid )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
int ret ;
/* 8021q removes VID 0 on module unload for all interfaces
* with VLAN filtering feature . We need to keep it to receive
* untagged traffic .
*/
net: mscc: ocelot: add the local station MAC addresses in VID 0
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc05 ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-20 20:58:51 +03:00
if ( vid = = OCELOT_VLAN_UNAWARE_PVID )
2020-06-20 18:43:44 +03:00
return 0 ;
ret = ocelot_vlan_del ( ocelot , port , vid ) ;
if ( ret )
return ret ;
/* Del the port MAC address to with the right VLAN information */
ocelot_mact_forget ( ocelot , dev - > dev_addr , vid ) ;
return 0 ;
}
static int ocelot_port_open ( struct net_device * dev )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
phylink_start ( priv - > phylink ) ;
2020-06-20 18:43:44 +03:00
return 0 ;
}
static int ocelot_port_stop ( struct net_device * dev )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
phylink_stop ( priv - > phylink ) ;
2020-06-20 18:43:44 +03:00
return 0 ;
}
2021-02-14 00:37:54 +02:00
static netdev_tx_t ocelot_port_xmit ( struct sk_buff * skb , struct net_device * dev )
2020-06-20 18:43:44 +03:00
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
2021-02-14 00:37:54 +02:00
u32 rew_op = 0 ;
2020-06-20 18:43:44 +03:00
2021-12-09 16:49:11 +01:00
if ( ! static_branch_unlikely ( & ocelot_fdma_enabled ) & &
! ocelot_can_inject ( ocelot , 0 ) )
2020-06-20 18:43:44 +03:00
return NETDEV_TX_BUSY ;
/* Check if timestamping is needed */
2021-02-14 00:37:54 +02:00
if ( ocelot - > ptp & & ( skb_shinfo ( skb ) - > tx_flags & SKBTX_HW_TSTAMP ) ) {
2021-04-27 12:22:02 +08:00
struct sk_buff * clone = NULL ;
2020-09-23 14:24:20 +03:00
2021-04-27 12:22:02 +08:00
if ( ocelot_port_txtstamp_request ( ocelot , port , skb , & clone ) ) {
kfree_skb ( skb ) ;
return NETDEV_TX_OK ;
}
2020-09-23 14:24:20 +03:00
2021-04-27 12:22:03 +08:00
if ( clone )
OCELOT_SKB_CB ( skb ) - > clone = clone ;
rew_op = ocelot_ptp_rew_op ( skb ) ;
2020-09-23 14:24:20 +03:00
}
2020-09-18 04:07:23 +03:00
2021-12-09 16:49:11 +01:00
if ( static_branch_unlikely ( & ocelot_fdma_enabled ) ) {
ocelot_fdma_inject_frame ( ocelot , port , rew_op , skb , dev ) ;
} else {
ocelot_port_inject_frame ( ocelot , port , 0 , rew_op , skb ) ;
2020-06-20 18:43:44 +03:00
2021-12-09 16:49:11 +01:00
consume_skb ( skb ) ;
}
2020-06-20 18:43:44 +03:00
return NETDEV_TX_OK ;
}
2020-12-12 21:16:12 +02:00
enum ocelot_action_type {
OCELOT_MACT_LEARN ,
OCELOT_MACT_FORGET ,
} ;
struct ocelot_mact_work_ctx {
struct work_struct work ;
struct ocelot * ocelot ;
enum ocelot_action_type type ;
union {
/* OCELOT_MACT_LEARN */
struct {
unsigned char addr [ ETH_ALEN ] ;
u16 vid ;
enum macaccess_entry_type entry_type ;
int pgid ;
} learn ;
/* OCELOT_MACT_FORGET */
struct {
unsigned char addr [ ETH_ALEN ] ;
u16 vid ;
} forget ;
} ;
} ;
# define ocelot_work_to_ctx(x) \
container_of ( ( x ) , struct ocelot_mact_work_ctx , work )
static void ocelot_mact_work ( struct work_struct * work )
{
struct ocelot_mact_work_ctx * w = ocelot_work_to_ctx ( work ) ;
struct ocelot * ocelot = w - > ocelot ;
switch ( w - > type ) {
case OCELOT_MACT_LEARN :
ocelot_mact_learn ( ocelot , w - > learn . pgid , w - > learn . addr ,
w - > learn . vid , w - > learn . entry_type ) ;
break ;
case OCELOT_MACT_FORGET :
ocelot_mact_forget ( ocelot , w - > forget . addr , w - > forget . vid ) ;
break ;
default :
break ;
2021-01-15 09:55:44 +00:00
}
2020-12-12 21:16:12 +02:00
kfree ( w ) ;
}
static int ocelot_enqueue_mact_action ( struct ocelot * ocelot ,
const struct ocelot_mact_work_ctx * ctx )
{
struct ocelot_mact_work_ctx * w = kmemdup ( ctx , sizeof ( * w ) , GFP_ATOMIC ) ;
if ( ! w )
return - ENOMEM ;
w - > ocelot = ocelot ;
INIT_WORK ( & w - > work , ocelot_mact_work ) ;
queue_work ( ocelot - > owq , & w - > work ) ;
return 0 ;
}
2020-06-20 18:43:44 +03:00
static int ocelot_mc_unsync ( struct net_device * dev , const unsigned char * addr )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
2020-12-12 21:16:12 +02:00
struct ocelot_mact_work_ctx w ;
ether_addr_copy ( w . forget . addr , addr ) ;
net: mscc: ocelot: add the local station MAC addresses in VID 0
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc05 ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-20 20:58:51 +03:00
w . forget . vid = OCELOT_VLAN_UNAWARE_PVID ;
2020-12-12 21:16:12 +02:00
w . type = OCELOT_MACT_FORGET ;
2020-06-20 18:43:44 +03:00
2020-12-12 21:16:12 +02:00
return ocelot_enqueue_mact_action ( ocelot , & w ) ;
2020-06-20 18:43:44 +03:00
}
static int ocelot_mc_sync ( struct net_device * dev , const unsigned char * addr )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
2020-12-12 21:16:12 +02:00
struct ocelot_mact_work_ctx w ;
ether_addr_copy ( w . learn . addr , addr ) ;
net: mscc: ocelot: add the local station MAC addresses in VID 0
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc05 ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-20 20:58:51 +03:00
w . learn . vid = OCELOT_VLAN_UNAWARE_PVID ;
2020-12-12 21:16:12 +02:00
w . learn . pgid = PGID_CPU ;
w . learn . entry_type = ENTRYTYPE_LOCKED ;
w . type = OCELOT_MACT_LEARN ;
2020-06-20 18:43:44 +03:00
2020-12-12 21:16:12 +02:00
return ocelot_enqueue_mact_action ( ocelot , & w ) ;
2020-06-20 18:43:44 +03:00
}
static void ocelot_set_rx_mode ( struct net_device * dev )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
u32 val ;
int i ;
/* This doesn't handle promiscuous mode because the bridge core is
* setting IFF_PROMISC on all slave interfaces and all frames would be
* forwarded to the CPU port .
*/
val = GENMASK ( ocelot - > num_phys_ports - 1 , 0 ) ;
2020-06-21 14:46:02 +03:00
for_each_nonreserved_multicast_dest_pgid ( ocelot , i )
2020-06-20 18:43:44 +03:00
ocelot_write_rix ( ocelot , val , ANA_PGID_PGID , i ) ;
__dev_mc_sync ( dev , ocelot_mc_sync , ocelot_mc_unsync ) ;
}
static int ocelot_port_set_mac_address ( struct net_device * dev , void * p )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
const struct sockaddr * addr = p ;
/* Learn the new net device MAC address in the mac table. */
2020-10-31 12:29:12 +02:00
ocelot_mact_learn ( ocelot , PGID_CPU , addr - > sa_data ,
net: mscc: ocelot: add the local station MAC addresses in VID 0
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc05 ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-20 20:58:51 +03:00
OCELOT_VLAN_UNAWARE_PVID , ENTRYTYPE_LOCKED ) ;
2020-06-20 18:43:44 +03:00
/* Then forget the previous one. */
net: mscc: ocelot: add the local station MAC addresses in VID 0
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc05 ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-20 20:58:51 +03:00
ocelot_mact_forget ( ocelot , dev - > dev_addr , OCELOT_VLAN_UNAWARE_PVID ) ;
2020-06-20 18:43:44 +03:00
2021-10-01 14:32:23 -07:00
eth_hw_addr_set ( dev , addr - > sa_data ) ;
2020-06-20 18:43:44 +03:00
return 0 ;
}
static void ocelot_get_stats64 ( struct net_device * dev ,
struct rtnl_link_stats64 * stats )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
/* Configure the port to read the stats from */
ocelot_write ( ocelot , SYS_STAT_CFG_STAT_VIEW ( port ) ,
SYS_STAT_CFG ) ;
/* Get Rx stats */
stats - > rx_bytes = ocelot_read ( ocelot , SYS_COUNT_RX_OCTETS ) ;
stats - > rx_packets = ocelot_read ( ocelot , SYS_COUNT_RX_SHORTS ) +
ocelot_read ( ocelot , SYS_COUNT_RX_FRAGMENTS ) +
ocelot_read ( ocelot , SYS_COUNT_RX_JABBERS ) +
ocelot_read ( ocelot , SYS_COUNT_RX_LONGS ) +
ocelot_read ( ocelot , SYS_COUNT_RX_64 ) +
ocelot_read ( ocelot , SYS_COUNT_RX_65_127 ) +
ocelot_read ( ocelot , SYS_COUNT_RX_128_255 ) +
ocelot_read ( ocelot , SYS_COUNT_RX_256_1023 ) +
ocelot_read ( ocelot , SYS_COUNT_RX_1024_1526 ) +
ocelot_read ( ocelot , SYS_COUNT_RX_1527_MAX ) ;
stats - > multicast = ocelot_read ( ocelot , SYS_COUNT_RX_MULTICAST ) ;
stats - > rx_dropped = dev - > stats . rx_dropped ;
/* Get Tx stats */
stats - > tx_bytes = ocelot_read ( ocelot , SYS_COUNT_TX_OCTETS ) ;
stats - > tx_packets = ocelot_read ( ocelot , SYS_COUNT_TX_64 ) +
ocelot_read ( ocelot , SYS_COUNT_TX_65_127 ) +
ocelot_read ( ocelot , SYS_COUNT_TX_128_511 ) +
ocelot_read ( ocelot , SYS_COUNT_TX_512_1023 ) +
ocelot_read ( ocelot , SYS_COUNT_TX_1024_1526 ) +
ocelot_read ( ocelot , SYS_COUNT_TX_1527_MAX ) ;
stats - > tx_dropped = ocelot_read ( ocelot , SYS_COUNT_TX_DROPS ) +
ocelot_read ( ocelot , SYS_COUNT_TX_AGING ) ;
stats - > collisions = ocelot_read ( ocelot , SYS_COUNT_TX_COLLISION ) ;
}
static int ocelot_port_fdb_add ( struct ndmsg * ndm , struct nlattr * tb [ ] ,
struct net_device * dev ,
const unsigned char * addr ,
u16 vid , u16 flags ,
struct netlink_ext_ack * extack )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
return ocelot_fdb_add ( ocelot , port , addr , vid ) ;
}
static int ocelot_port_fdb_del ( struct ndmsg * ndm , struct nlattr * tb [ ] ,
struct net_device * dev ,
const unsigned char * addr , u16 vid )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
return ocelot_fdb_del ( ocelot , port , addr , vid ) ;
}
static int ocelot_port_fdb_dump ( struct sk_buff * skb ,
struct netlink_callback * cb ,
struct net_device * dev ,
struct net_device * filter_dev , int * idx )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
struct ocelot_dump_ctx dump = {
. dev = dev ,
. skb = skb ,
. cb = cb ,
. idx = * idx ,
} ;
int port = priv - > chip_port ;
int ret ;
ret = ocelot_fdb_dump ( ocelot , port , ocelot_port_fdb_do_dump , & dump ) ;
* idx = dump . idx ;
return ret ;
}
static int ocelot_vlan_rx_add_vid ( struct net_device * dev , __be16 proto ,
u16 vid )
{
return ocelot_vlan_vid_add ( dev , vid , false , false ) ;
}
static int ocelot_vlan_rx_kill_vid ( struct net_device * dev , __be16 proto ,
u16 vid )
{
return ocelot_vlan_vid_del ( dev , vid ) ;
}
static void ocelot_vlan_mode ( struct ocelot * ocelot , int port ,
netdev_features_t features )
{
u32 val ;
/* Filtering */
val = ocelot_read ( ocelot , ANA_VLANMASK ) ;
if ( features & NETIF_F_HW_VLAN_CTAG_FILTER )
val | = BIT ( port ) ;
else
val & = ~ BIT ( port ) ;
ocelot_write ( ocelot , val , ANA_VLANMASK ) ;
}
static int ocelot_set_features ( struct net_device * dev ,
netdev_features_t features )
{
netdev_features_t changed = dev - > features ^ features ;
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
if ( ( dev - > features & NETIF_F_HW_TC ) > ( features & NETIF_F_HW_TC ) & &
priv - > tc . offload_cnt ) {
netdev_err ( dev ,
" Cannot disable HW TC offload while offloads active \n " ) ;
return - EBUSY ;
}
if ( changed & NETIF_F_HW_VLAN_CTAG_FILTER )
ocelot_vlan_mode ( ocelot , port , features ) ;
return 0 ;
}
static int ocelot_ioctl ( struct net_device * dev , struct ifreq * ifr , int cmd )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
/* If the attached PHY device isn't capable of timestamping operations,
* use our own ( when possible ) .
*/
if ( ! phy_has_hwtstamp ( dev - > phydev ) & & ocelot - > ptp ) {
switch ( cmd ) {
case SIOCSHWTSTAMP :
return ocelot_hwstamp_set ( ocelot , port , ifr ) ;
case SIOCGHWTSTAMP :
return ocelot_hwstamp_get ( ocelot , port , ifr ) ;
}
}
return phy_mii_ioctl ( dev - > phydev , ifr , cmd ) ;
}
2021-12-09 16:49:10 +01:00
static int ocelot_change_mtu ( struct net_device * dev , int new_mtu )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
ocelot_port_set_maxlen ( ocelot , priv - > chip_port , new_mtu ) ;
WRITE_ONCE ( dev - > mtu , new_mtu ) ;
return 0 ;
}
2020-06-20 18:43:44 +03:00
static const struct net_device_ops ocelot_port_netdev_ops = {
. ndo_open = ocelot_port_open ,
. ndo_stop = ocelot_port_stop ,
. ndo_start_xmit = ocelot_port_xmit ,
2021-12-09 16:49:10 +01:00
. ndo_change_mtu = ocelot_change_mtu ,
2020-06-20 18:43:44 +03:00
. ndo_set_rx_mode = ocelot_set_rx_mode ,
. ndo_set_mac_address = ocelot_port_set_mac_address ,
. ndo_get_stats64 = ocelot_get_stats64 ,
. ndo_fdb_add = ocelot_port_fdb_add ,
. ndo_fdb_del = ocelot_port_fdb_del ,
. ndo_fdb_dump = ocelot_port_fdb_dump ,
. ndo_vlan_rx_add_vid = ocelot_vlan_rx_add_vid ,
. ndo_vlan_rx_kill_vid = ocelot_vlan_rx_kill_vid ,
. ndo_set_features = ocelot_set_features ,
. ndo_setup_tc = ocelot_setup_tc ,
2021-07-27 15:45:13 +02:00
. ndo_eth_ioctl = ocelot_ioctl ,
net: mscc: ocelot: register devlink ports
Add devlink integration into the mscc_ocelot switchdev driver. All
physical ports (i.e. the unused ones as well) except the CPU port module
at ocelot->num_phys_ports are registered with devlink, and that requires
keeping the devlink_port structure outside struct ocelot_port_private,
since the latter has a 1:1 mapping with a struct net_device (which does
not exist for unused ports).
Since we use devlink_port_type_eth_set to link the devlink port to the
net_device, we can as well remove the .ndo_get_phys_port_name and
.ndo_get_port_parent_id implementations, since devlink takes care of
retrieving the port name and number automatically, once
.ndo_get_devlink_port is implemented.
Note that the felix DSA driver is already integrated with devlink by
default, since that is a thing that the DSA core takes care of. This is
the reason why these devlink stubs were put in ocelot_net.c and not in
the common library. It is also the reason why ocelot::devlink is a
pointer and not a full structure embedded inside struct ocelot: because
the mscc_ocelot driver allocates that by itself (as the container of
struct ocelot, in fact), but in the case of felix, it is DSA who
allocates the devlink, and felix just propagates the pointer towards
struct ocelot.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-15 04:11:18 +02:00
. ndo_get_devlink_port = ocelot_get_devlink_port ,
2020-06-20 18:43:44 +03:00
} ;
2020-10-02 15:02:21 +03:00
struct net_device * ocelot_port_to_netdev ( struct ocelot * ocelot , int port )
{
struct ocelot_port * ocelot_port = ocelot - > ports [ port ] ;
struct ocelot_port_private * priv ;
if ( ! ocelot_port )
return NULL ;
priv = container_of ( ocelot_port , struct ocelot_port_private , port ) ;
return priv - > dev ;
}
2020-10-11 12:20:41 +03:00
/* Checks if the net_device instance given to us originates from our driver */
static bool ocelot_netdevice_dev_check ( const struct net_device * dev )
2020-10-02 15:02:21 +03:00
{
return dev - > netdev_ops = = & ocelot_port_netdev_ops ;
}
int ocelot_netdev_to_port ( struct net_device * dev )
{
struct ocelot_port_private * priv ;
2020-10-11 12:20:41 +03:00
if ( ! dev | | ! ocelot_netdevice_dev_check ( dev ) )
2020-10-02 15:02:21 +03:00
return - EINVAL ;
priv = netdev_priv ( dev ) ;
return priv - > chip_port ;
}
2020-06-20 18:43:44 +03:00
static void ocelot_port_get_strings ( struct net_device * netdev , u32 sset ,
u8 * data )
{
struct ocelot_port_private * priv = netdev_priv ( netdev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
ocelot_get_strings ( ocelot , port , sset , data ) ;
}
static void ocelot_port_get_ethtool_stats ( struct net_device * dev ,
struct ethtool_stats * stats ,
u64 * data )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
ocelot_get_ethtool_stats ( ocelot , port , data ) ;
}
static int ocelot_port_get_sset_count ( struct net_device * dev , int sset )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
return ocelot_get_sset_count ( ocelot , port , sset ) ;
}
static int ocelot_port_get_ts_info ( struct net_device * dev ,
struct ethtool_ts_info * info )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
if ( ! ocelot - > ptp )
return ethtool_op_get_ts_info ( dev , info ) ;
return ocelot_get_ts_info ( ocelot , port , info ) ;
}
static const struct ethtool_ops ocelot_ethtool_ops = {
. get_strings = ocelot_port_get_strings ,
. get_ethtool_stats = ocelot_port_get_ethtool_stats ,
. get_sset_count = ocelot_port_get_sset_count ,
. get_link_ksettings = phy_ethtool_get_link_ksettings ,
. set_link_ksettings = phy_ethtool_set_link_ksettings ,
. get_ts_info = ocelot_port_get_ts_info ,
} ;
static void ocelot_port_attr_stp_state_set ( struct ocelot * ocelot , int port ,
u8 state )
{
ocelot_bridge_stp_state_set ( ocelot , port , state ) ;
}
static void ocelot_port_attr_ageing_set ( struct ocelot * ocelot , int port ,
unsigned long ageing_clock_t )
{
unsigned long ageing_jiffies = clock_t_to_jiffies ( ageing_clock_t ) ;
u32 ageing_time = jiffies_to_msecs ( ageing_jiffies ) ;
ocelot_set_ageing_time ( ocelot , ageing_time ) ;
}
static void ocelot_port_attr_mc_set ( struct ocelot * ocelot , int port , bool mc )
{
u32 cpu_fwd_mcast = ANA_PORT_CPU_FWD_CFG_CPU_IGMP_REDIR_ENA |
ANA_PORT_CPU_FWD_CFG_CPU_MLD_REDIR_ENA |
ANA_PORT_CPU_FWD_CFG_CPU_IPMC_CTRL_COPY_ENA ;
u32 val = 0 ;
if ( mc )
val = cpu_fwd_mcast ;
ocelot_rmw_gix ( ocelot , val , cpu_fwd_mcast ,
ANA_PORT_CPU_FWD_CFG , port ) ;
}
2021-06-27 14:54:24 +03:00
static int ocelot_port_attr_set ( struct net_device * dev , const void * ctx ,
2021-02-12 17:15:51 +02:00
const struct switchdev_attr * attr ,
struct netlink_ext_ack * extack )
2020-06-20 18:43:44 +03:00
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
int err = 0 ;
2021-06-27 14:54:25 +03:00
if ( ctx & & ctx ! = priv )
return 0 ;
2020-06-20 18:43:44 +03:00
switch ( attr - > id ) {
case SWITCHDEV_ATTR_ID_PORT_STP_STATE :
net: switchdev: remove the transaction structure from port attributes
Since the introduction of the switchdev API, port attributes were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
attribute notifier structures, and converts drivers to not look at this
member.
In part, this patch contains a revert of my previous commit 2e554a7a5d8a
("net: dsa: propagate switchdev vlan_filtering prepare phase to
drivers").
For the most part, the conversion was trivial except for:
- Rocker's world implementation based on Broadcom OF-DPA had an odd
implementation of ofdpa_port_attr_bridge_flags_set. The conversion was
done mechanically, by pasting the implementation twice, then only
keeping the code that would get executed during prepare phase on top,
then only keeping the code that gets executed during the commit phase
on bottom, then simplifying the resulting code until this was obtained.
- DSA's offloading of STP state, bridge flags, VLAN filtering and
multicast router could be converted right away. But the ageing time
could not, so a shim was introduced and this was left for a further
commit.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Reviewed-by: Linus Walleij <linus.walleij@linaro.org> # RTL8366RB
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 02:01:50 +02:00
ocelot_port_attr_stp_state_set ( ocelot , port , attr - > u . stp_state ) ;
2020-06-20 18:43:44 +03:00
break ;
case SWITCHDEV_ATTR_ID_BRIDGE_AGEING_TIME :
ocelot_port_attr_ageing_set ( ocelot , port , attr - > u . ageing_time ) ;
break ;
case SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING :
2021-08-19 20:40:07 +03:00
ocelot_port_vlan_filtering ( ocelot , port , attr - > u . vlan_filtering ,
extack ) ;
2020-06-20 18:43:44 +03:00
break ;
case SWITCHDEV_ATTR_ID_BRIDGE_MC_DISABLED :
ocelot_port_attr_mc_set ( ocelot , port , ! attr - > u . mc_disabled ) ;
break ;
2021-02-12 17:15:59 +02:00
case SWITCHDEV_ATTR_ID_PORT_PRE_BRIDGE_FLAGS :
err = ocelot_port_pre_bridge_flags ( ocelot , port ,
attr - > u . brport_flags ) ;
break ;
case SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS :
ocelot_port_bridge_flags ( ocelot , port , attr - > u . brport_flags ) ;
break ;
2020-06-20 18:43:44 +03:00
default :
err = - EOPNOTSUPP ;
break ;
}
return err ;
}
2021-08-19 20:40:06 +03:00
static int ocelot_vlan_vid_prepare ( struct net_device * dev , u16 vid , bool pvid ,
bool untagged , struct netlink_ext_ack * extack )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
return ocelot_vlan_prepare ( ocelot , port , vid , pvid , untagged , extack ) ;
}
2020-06-20 18:43:44 +03:00
static int ocelot_port_obj_add_vlan ( struct net_device * dev ,
2021-08-19 20:40:06 +03:00
const struct switchdev_obj_port_vlan * vlan ,
struct netlink_ext_ack * extack )
2020-06-20 18:43:44 +03:00
{
net: switchdev: remove vid_begin -> vid_end range from VLAN objects
The call path of a switchdev VLAN addition to the bridge looks something
like this today:
nbp_vlan_init
| __br_vlan_set_default_pvid
| | |
| | br_afspec |
| | | |
| | v |
| | br_process_vlan_info |
| | | |
| | v |
| | br_vlan_info |
| | / \ /
| | / \ /
| | / \ /
| | / \ /
v v v v v
nbp_vlan_add br_vlan_add ------+
| ^ ^ | |
| / | | |
| / / / |
\ br_vlan_get_master/ / v
\ ^ / / br_vlan_add_existing
\ | / / |
\ | / / /
\ | / / /
\ | / / /
\ | / / /
v | | v /
__vlan_add /
/ | /
/ | /
v | /
__vlan_vid_add | /
\ | /
v v v
br_switchdev_port_vlan_add
The ranges UAPI was introduced to the bridge in commit bdced7ef7838
("bridge: support for multiple vlans and vlan ranges in setlink and
dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
have always been passed one by one, through struct bridge_vlan_info
tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
Then Scott Feldman introduced the switchdev_port_bridge_setlink function
in commit 47f8328bb1a4 ("switchdev: add new switchdev bridge setlink").
That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
full use of the range. But switchdev_port_bridge_setlink was called like
this:
br_setlink
-> br_afspec
-> switchdev_port_bridge_setlink
Basically, the switchdev and the bridge code were not tightly integrated.
Then commit 41c498b9359e ("bridge: restore br_setlink back to original")
came, and switchdev drivers were required to implement
.ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
In the meantime, commits such as 0944d6b5a2fa ("bridge: try switchdev op
first in __vlan_vid_add/del") finally made switchdev penetrate the
br_vlan_info() barrier and start to develop the call path we have today.
But remember, br_vlan_info() still receives VLANs one by one.
Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
29ab586c3d83 ("net: switchdev: Remove bridge bypass support from
switchdev") so that drivers would not implement .ndo_bridge_setlink any
longer. The switchdev_port_bridge_setlink also got deleted.
This refactoring removed the parallel bridge_setlink implementation from
switchdev, and left the only switchdev VLAN objects to be the ones
offloaded from __vlan_vid_add (basically RX filtering) and __vlan_add
(the latter coming from commit 9c86ce2c1ae3 ("net: bridge: Notify about
bridge VLANs")).
That is to say, today the switchdev VLAN object ranges are not used in
the kernel. Refactoring the above call path is a bit complicated, when
the bridge VLAN call path is already a bit complicated.
Let's go off and finish the job of commit 29ab586c3d83 by deleting the
bogus iteration through the VLAN ranges from the drivers. Some aspects
of this feature never made too much sense in the first place. For
example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
flag supposed to mean, when a port can obviously have a single pvid?
This particular configuration _is_ denied as of commit 6623c60dc28e
("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
perspective, the driver still has to play pretend, and only offload the
vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
modify the flags of another, completely unrelated, switchdev VLAN
object! (a VLAN that is PVID will invalidate the PVID flag from whatever
other VLAN had previously been offloaded with switchdev and had that
flag. Yet switchdev never notifies about that change, drivers are
supposed to guess).
Nonetheless, having a VLAN range in the API makes error handling look
scarier than it really is - unwinding on errors and all of that.
When in reality, no one really calls this API with more than one VLAN.
It is all unnecessary complexity.
And despite appearing pretentious (two-phase transactional model and
all), the switchdev API is really sloppy because the VLAN addition and
removal operations are not paired with one another (you can add a VLAN
100 times and delete it just once). The bridge notifies through
switchdev of a VLAN addition not only when the flags of an existing VLAN
change, but also when nothing changes. There are switchdev drivers out
there who don't like adding a VLAN that has already been added, and
those checks don't really belong at driver level. But the fact that the
API contains ranges is yet another factor that prevents this from being
addressed in the future.
Of the existing switchdev pieces of hardware, it appears that only
Mellanox Spectrum supports offloading more than one VLAN at a time,
through mlxsw_sp_port_vlan_set. I have kept that code internal to the
driver, because there is some more bookkeeping that makes use of it, but
I deleted it from the switchdev API. But since the switchdev support for
ranges has already been de facto deleted by a Mellanox employee and
nobody noticed for 4 years, I'm going to assume it's not a biggie.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 02:01:46 +02:00
bool untagged = vlan - > flags & BRIDGE_VLAN_INFO_UNTAGGED ;
bool pvid = vlan - > flags & BRIDGE_VLAN_INFO_PVID ;
2020-06-20 18:43:44 +03:00
int ret ;
2021-08-19 20:40:06 +03:00
ret = ocelot_vlan_vid_prepare ( dev , vlan - > vid , pvid , untagged , extack ) ;
net: switchdev: remove the transaction structure from port object notifiers
Since the introduction of the switchdev API, port objects were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
object notifier structures, and converts drivers to not look at this
member.
Where driver conversion is trivial (like in the case of the Marvell
Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
done in this patch.
Where driver conversion needs more attention (DSA, Mellanox Spectrum),
the conversion is left for subsequent patches and here we only fake the
prepare/commit phases at a lower level, just not in the switchdev
notifier itself.
Where the code has a natural structure that is best left alone as a
preparation and a commit phase (as in the case of the Ocelot switch),
that structure is left in place, just made to not depend upon the
switchdev transactional model.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 02:01:48 +02:00
if ( ret )
return ret ;
2020-06-20 18:43:44 +03:00
net: switchdev: remove the transaction structure from port object notifiers
Since the introduction of the switchdev API, port objects were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
object notifier structures, and converts drivers to not look at this
member.
Where driver conversion is trivial (like in the case of the Marvell
Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
done in this patch.
Where driver conversion needs more attention (DSA, Mellanox Spectrum),
the conversion is left for subsequent patches and here we only fake the
prepare/commit phases at a lower level, just not in the switchdev
notifier itself.
Where the code has a natural structure that is best left alone as a
preparation and a commit phase (as in the case of the Ocelot switch),
that structure is left in place, just made to not depend upon the
switchdev transactional model.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 02:01:48 +02:00
return ocelot_vlan_vid_add ( dev , vlan - > vid , pvid , untagged ) ;
2020-06-20 18:43:44 +03:00
}
2020-06-21 14:46:01 +03:00
static int ocelot_port_obj_add_mdb ( struct net_device * dev ,
net: switchdev: remove the transaction structure from port object notifiers
Since the introduction of the switchdev API, port objects were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
object notifier structures, and converts drivers to not look at this
member.
Where driver conversion is trivial (like in the case of the Marvell
Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
done in this patch.
Where driver conversion needs more attention (DSA, Mellanox Spectrum),
the conversion is left for subsequent patches and here we only fake the
prepare/commit phases at a lower level, just not in the switchdev
notifier itself.
Where the code has a natural structure that is best left alone as a
preparation and a commit phase (as in the case of the Ocelot switch),
that structure is left in place, just made to not depend upon the
switchdev transactional model.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 02:01:48 +02:00
const struct switchdev_obj_port_mdb * mdb )
2020-06-21 14:46:01 +03:00
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
return ocelot_port_mdb_add ( ocelot , port , mdb ) ;
}
static int ocelot_port_obj_del_mdb ( struct net_device * dev ,
const struct switchdev_obj_port_mdb * mdb )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
return ocelot_port_mdb_del ( ocelot , port , mdb ) ;
}
2021-02-16 22:42:03 +01:00
static int ocelot_port_obj_mrp_add ( struct net_device * dev ,
const struct switchdev_obj_mrp * mrp )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
return ocelot_mrp_add ( ocelot , port , mrp ) ;
}
static int ocelot_port_obj_mrp_del ( struct net_device * dev ,
const struct switchdev_obj_mrp * mrp )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
return ocelot_mrp_del ( ocelot , port , mrp ) ;
}
static int
ocelot_port_obj_mrp_add_ring_role ( struct net_device * dev ,
const struct switchdev_obj_ring_role_mrp * mrp )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
return ocelot_mrp_add_ring_role ( ocelot , port , mrp ) ;
}
static int
ocelot_port_obj_mrp_del_ring_role ( struct net_device * dev ,
const struct switchdev_obj_ring_role_mrp * mrp )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
return ocelot_mrp_del_ring_role ( ocelot , port , mrp ) ;
}
2021-06-27 14:54:24 +03:00
static int ocelot_port_obj_add ( struct net_device * dev , const void * ctx ,
2020-06-20 18:43:44 +03:00
const struct switchdev_obj * obj ,
struct netlink_ext_ack * extack )
{
2021-06-27 14:54:25 +03:00
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
2020-06-20 18:43:44 +03:00
int ret = 0 ;
2021-06-27 14:54:25 +03:00
if ( ctx & & ctx ! = priv )
return 0 ;
2020-06-20 18:43:44 +03:00
switch ( obj - > id ) {
case SWITCHDEV_OBJ_ID_PORT_VLAN :
ret = ocelot_port_obj_add_vlan ( dev ,
2021-08-19 20:40:06 +03:00
SWITCHDEV_OBJ_PORT_VLAN ( obj ) ,
extack ) ;
2020-06-20 18:43:44 +03:00
break ;
case SWITCHDEV_OBJ_ID_PORT_MDB :
net: switchdev: remove the transaction structure from port object notifiers
Since the introduction of the switchdev API, port objects were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
object notifier structures, and converts drivers to not look at this
member.
Where driver conversion is trivial (like in the case of the Marvell
Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
done in this patch.
Where driver conversion needs more attention (DSA, Mellanox Spectrum),
the conversion is left for subsequent patches and here we only fake the
prepare/commit phases at a lower level, just not in the switchdev
notifier itself.
Where the code has a natural structure that is best left alone as a
preparation and a commit phase (as in the case of the Ocelot switch),
that structure is left in place, just made to not depend upon the
switchdev transactional model.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 02:01:48 +02:00
ret = ocelot_port_obj_add_mdb ( dev , SWITCHDEV_OBJ_PORT_MDB ( obj ) ) ;
2020-06-20 18:43:44 +03:00
break ;
2021-02-16 22:42:03 +01:00
case SWITCHDEV_OBJ_ID_MRP :
ret = ocelot_port_obj_mrp_add ( dev , SWITCHDEV_OBJ_MRP ( obj ) ) ;
break ;
case SWITCHDEV_OBJ_ID_RING_ROLE_MRP :
ret = ocelot_port_obj_mrp_add_ring_role ( dev ,
SWITCHDEV_OBJ_RING_ROLE_MRP ( obj ) ) ;
break ;
2020-06-20 18:43:44 +03:00
default :
return - EOPNOTSUPP ;
}
return ret ;
}
2021-06-27 14:54:24 +03:00
static int ocelot_port_obj_del ( struct net_device * dev , const void * ctx ,
2020-06-20 18:43:44 +03:00
const struct switchdev_obj * obj )
{
2021-06-27 14:54:25 +03:00
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
2020-06-20 18:43:44 +03:00
int ret = 0 ;
2021-06-27 14:54:25 +03:00
if ( ctx & & ctx ! = priv )
return 0 ;
2020-06-20 18:43:44 +03:00
switch ( obj - > id ) {
case SWITCHDEV_OBJ_ID_PORT_VLAN :
net: switchdev: remove vid_begin -> vid_end range from VLAN objects
The call path of a switchdev VLAN addition to the bridge looks something
like this today:
nbp_vlan_init
| __br_vlan_set_default_pvid
| | |
| | br_afspec |
| | | |
| | v |
| | br_process_vlan_info |
| | | |
| | v |
| | br_vlan_info |
| | / \ /
| | / \ /
| | / \ /
| | / \ /
v v v v v
nbp_vlan_add br_vlan_add ------+
| ^ ^ | |
| / | | |
| / / / |
\ br_vlan_get_master/ / v
\ ^ / / br_vlan_add_existing
\ | / / |
\ | / / /
\ | / / /
\ | / / /
\ | / / /
v | | v /
__vlan_add /
/ | /
/ | /
v | /
__vlan_vid_add | /
\ | /
v v v
br_switchdev_port_vlan_add
The ranges UAPI was introduced to the bridge in commit bdced7ef7838
("bridge: support for multiple vlans and vlan ranges in setlink and
dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
have always been passed one by one, through struct bridge_vlan_info
tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
Then Scott Feldman introduced the switchdev_port_bridge_setlink function
in commit 47f8328bb1a4 ("switchdev: add new switchdev bridge setlink").
That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
full use of the range. But switchdev_port_bridge_setlink was called like
this:
br_setlink
-> br_afspec
-> switchdev_port_bridge_setlink
Basically, the switchdev and the bridge code were not tightly integrated.
Then commit 41c498b9359e ("bridge: restore br_setlink back to original")
came, and switchdev drivers were required to implement
.ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
In the meantime, commits such as 0944d6b5a2fa ("bridge: try switchdev op
first in __vlan_vid_add/del") finally made switchdev penetrate the
br_vlan_info() barrier and start to develop the call path we have today.
But remember, br_vlan_info() still receives VLANs one by one.
Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
29ab586c3d83 ("net: switchdev: Remove bridge bypass support from
switchdev") so that drivers would not implement .ndo_bridge_setlink any
longer. The switchdev_port_bridge_setlink also got deleted.
This refactoring removed the parallel bridge_setlink implementation from
switchdev, and left the only switchdev VLAN objects to be the ones
offloaded from __vlan_vid_add (basically RX filtering) and __vlan_add
(the latter coming from commit 9c86ce2c1ae3 ("net: bridge: Notify about
bridge VLANs")).
That is to say, today the switchdev VLAN object ranges are not used in
the kernel. Refactoring the above call path is a bit complicated, when
the bridge VLAN call path is already a bit complicated.
Let's go off and finish the job of commit 29ab586c3d83 by deleting the
bogus iteration through the VLAN ranges from the drivers. Some aspects
of this feature never made too much sense in the first place. For
example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
flag supposed to mean, when a port can obviously have a single pvid?
This particular configuration _is_ denied as of commit 6623c60dc28e
("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
perspective, the driver still has to play pretend, and only offload the
vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
modify the flags of another, completely unrelated, switchdev VLAN
object! (a VLAN that is PVID will invalidate the PVID flag from whatever
other VLAN had previously been offloaded with switchdev and had that
flag. Yet switchdev never notifies about that change, drivers are
supposed to guess).
Nonetheless, having a VLAN range in the API makes error handling look
scarier than it really is - unwinding on errors and all of that.
When in reality, no one really calls this API with more than one VLAN.
It is all unnecessary complexity.
And despite appearing pretentious (two-phase transactional model and
all), the switchdev API is really sloppy because the VLAN addition and
removal operations are not paired with one another (you can add a VLAN
100 times and delete it just once). The bridge notifies through
switchdev of a VLAN addition not only when the flags of an existing VLAN
change, but also when nothing changes. There are switchdev drivers out
there who don't like adding a VLAN that has already been added, and
those checks don't really belong at driver level. But the fact that the
API contains ranges is yet another factor that prevents this from being
addressed in the future.
Of the existing switchdev pieces of hardware, it appears that only
Mellanox Spectrum supports offloading more than one VLAN at a time,
through mlxsw_sp_port_vlan_set. I have kept that code internal to the
driver, because there is some more bookkeeping that makes use of it, but
I deleted it from the switchdev API. But since the switchdev support for
ranges has already been de facto deleted by a Mellanox employee and
nobody noticed for 4 years, I'm going to assume it's not a biggie.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 02:01:46 +02:00
ret = ocelot_vlan_vid_del ( dev ,
SWITCHDEV_OBJ_PORT_VLAN ( obj ) - > vid ) ;
2020-06-20 18:43:44 +03:00
break ;
case SWITCHDEV_OBJ_ID_PORT_MDB :
ret = ocelot_port_obj_del_mdb ( dev , SWITCHDEV_OBJ_PORT_MDB ( obj ) ) ;
break ;
2021-02-16 22:42:03 +01:00
case SWITCHDEV_OBJ_ID_MRP :
ret = ocelot_port_obj_mrp_del ( dev , SWITCHDEV_OBJ_MRP ( obj ) ) ;
break ;
case SWITCHDEV_OBJ_ID_RING_ROLE_MRP :
ret = ocelot_port_obj_mrp_del_ring_role ( dev ,
SWITCHDEV_OBJ_RING_ROLE_MRP ( obj ) ) ;
break ;
2020-06-20 18:43:44 +03:00
default :
return - EOPNOTSUPP ;
}
return ret ;
}
2021-03-23 01:51:52 +02:00
static void ocelot_inherit_brport_flags ( struct ocelot * ocelot , int port ,
struct net_device * brport_dev )
{
struct switchdev_brport_flags flags = { 0 } ;
int flag ;
flags . mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD ;
for_each_set_bit ( flag , & flags . mask , 32 )
if ( br_port_flag_is_set ( brport_dev , BIT ( flag ) ) )
flags . val | = BIT ( flag ) ;
ocelot_port_bridge_flags ( ocelot , port , flags ) ;
}
static void ocelot_clear_brport_flags ( struct ocelot * ocelot , int port )
{
struct switchdev_brport_flags flags ;
flags . mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD ;
flags . val = flags . mask & ~ BR_LEARNING ;
ocelot_port_bridge_flags ( ocelot , port , flags ) ;
}
static int ocelot_switchdev_sync ( struct ocelot * ocelot , int port ,
struct net_device * brport_dev ,
struct net_device * bridge_dev ,
struct netlink_ext_ack * extack )
{
clock_t ageing_time ;
u8 stp_state ;
2021-06-27 14:54:25 +03:00
2021-03-23 01:51:52 +02:00
ocelot_inherit_brport_flags ( ocelot , port , brport_dev ) ;
stp_state = br_port_get_stp_state ( brport_dev ) ;
ocelot_bridge_stp_state_set ( ocelot , port , stp_state ) ;
ageing_time = br_get_ageing_time ( bridge_dev ) ;
ocelot_port_attr_ageing_set ( ocelot , port , ageing_time ) ;
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
return ocelot_port_vlan_filtering ( ocelot , port ,
2021-08-19 20:40:07 +03:00
br_vlan_enabled ( bridge_dev ) ,
extack ) ;
2021-03-23 01:51:52 +02:00
}
static int ocelot_switchdev_unsync ( struct ocelot * ocelot , int port )
{
int err ;
2021-08-19 20:40:07 +03:00
err = ocelot_port_vlan_filtering ( ocelot , port , false , NULL ) ;
2021-03-23 01:51:52 +02:00
if ( err )
return err ;
ocelot_clear_brport_flags ( ocelot , port ) ;
ocelot_bridge_stp_state_set ( ocelot , port , BR_STATE_FORWARDING ) ;
return 0 ;
}
2021-03-23 01:51:51 +02:00
static int ocelot_netdevice_bridge_join ( struct net_device * dev ,
2021-03-23 01:51:52 +02:00
struct net_device * brport_dev ,
2021-03-23 01:51:51 +02:00
struct net_device * bridge ,
struct netlink_ext_ack * extack )
2021-02-12 17:15:59 +02:00
{
2021-03-23 01:51:51 +02:00
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
2021-02-12 17:15:59 +02:00
int err ;
2021-03-23 01:51:52 +02:00
ocelot_port_bridge_join ( ocelot , port , bridge ) ;
2021-02-12 17:15:59 +02:00
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
err = switchdev_bridge_port_offload ( brport_dev , dev , priv ,
& ocelot_netdevice_nb ,
& ocelot_switchdev_blocking_nb ,
2021-07-22 18:55:38 +03:00
false , extack ) ;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
if ( err )
goto err_switchdev_offload ;
2021-03-23 01:51:52 +02:00
err = ocelot_switchdev_sync ( ocelot , port , brport_dev , bridge , extack ) ;
2021-02-12 17:15:59 +02:00
if ( err )
2021-03-23 01:51:52 +02:00
goto err_switchdev_sync ;
2021-02-12 17:15:59 +02:00
return 0 ;
2021-03-23 01:51:52 +02:00
err_switchdev_sync :
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
switchdev_bridge_port_unoffload ( brport_dev , priv ,
& ocelot_netdevice_nb ,
& ocelot_switchdev_blocking_nb ) ;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
err_switchdev_offload :
2021-03-23 01:51:52 +02:00
ocelot_port_bridge_leave ( ocelot , port , bridge ) ;
return err ;
2021-02-12 17:15:59 +02:00
}
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
static void ocelot_netdevice_pre_bridge_leave ( struct net_device * dev ,
struct net_device * brport_dev )
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
{
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
switchdev_bridge_port_unoffload ( brport_dev , priv ,
& ocelot_netdevice_nb ,
& ocelot_switchdev_blocking_nb ) ;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
}
2021-03-23 01:51:51 +02:00
static int ocelot_netdevice_bridge_leave ( struct net_device * dev ,
2021-03-23 01:51:52 +02:00
struct net_device * brport_dev ,
2021-02-12 17:15:59 +02:00
struct net_device * bridge )
{
2021-03-23 01:51:51 +02:00
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
2021-02-12 17:15:59 +02:00
int err ;
2021-03-23 01:51:52 +02:00
err = ocelot_switchdev_unsync ( ocelot , port ) ;
if ( err )
return err ;
2021-02-12 17:15:59 +02:00
2021-03-23 01:51:52 +02:00
ocelot_port_bridge_leave ( ocelot , port , bridge ) ;
2021-02-12 17:15:59 +02:00
2021-03-23 01:51:52 +02:00
return 0 ;
2021-02-12 17:15:59 +02:00
}
2021-03-23 01:51:51 +02:00
static int ocelot_netdevice_lag_join ( struct net_device * dev ,
struct net_device * bond ,
struct netdev_lag_upper_info * info ,
struct netlink_ext_ack * extack )
2020-06-20 18:43:44 +03:00
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
2021-03-23 01:51:51 +02:00
struct net_device * bridge_dev ;
2020-06-20 18:43:44 +03:00
int port = priv - > chip_port ;
2021-03-23 01:51:51 +02:00
int err ;
err = ocelot_port_lag_join ( ocelot , port , bond , info ) ;
if ( err = = - EOPNOTSUPP ) {
NL_SET_ERR_MSG_MOD ( extack , " Offloading not supported " ) ;
return 0 ;
}
bridge_dev = netdev_master_upper_dev_get ( bond ) ;
if ( ! bridge_dev | | ! netif_is_bridge_master ( bridge_dev ) )
return 0 ;
2021-03-23 01:51:52 +02:00
err = ocelot_netdevice_bridge_join ( dev , bond , bridge_dev , extack ) ;
2021-03-23 01:51:51 +02:00
if ( err )
goto err_bridge_join ;
return 0 ;
err_bridge_join :
ocelot_port_lag_leave ( ocelot , port , bond ) ;
return err ;
}
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
static void ocelot_netdevice_pre_lag_leave ( struct net_device * dev ,
struct net_device * bond )
{
struct net_device * bridge_dev ;
bridge_dev = netdev_master_upper_dev_get ( bond ) ;
if ( ! bridge_dev | | ! netif_is_bridge_master ( bridge_dev ) )
return ;
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
ocelot_netdevice_pre_bridge_leave ( dev , bond ) ;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
}
2021-03-23 01:51:51 +02:00
static int ocelot_netdevice_lag_leave ( struct net_device * dev ,
struct net_device * bond )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
struct net_device * bridge_dev ;
int port = priv - > chip_port ;
ocelot_port_lag_leave ( ocelot , port , bond ) ;
bridge_dev = netdev_master_upper_dev_get ( bond ) ;
if ( ! bridge_dev | | ! netif_is_bridge_master ( bridge_dev ) )
return 0 ;
2021-03-23 01:51:52 +02:00
return ocelot_netdevice_bridge_leave ( dev , bond , bridge_dev ) ;
2021-03-23 01:51:51 +02:00
}
static int ocelot_netdevice_changeupper ( struct net_device * dev ,
2021-07-13 12:33:50 +03:00
struct net_device * brport_dev ,
2021-03-23 01:51:51 +02:00
struct netdev_notifier_changeupper_info * info )
{
struct netlink_ext_ack * extack ;
2020-06-20 18:43:44 +03:00
int err = 0 ;
2021-03-23 01:51:51 +02:00
extack = netdev_notifier_info_to_extack ( & info - > info ) ;
2021-02-06 00:02:10 +02:00
if ( netif_is_bridge_master ( info - > upper_dev ) ) {
2021-03-23 01:51:51 +02:00
if ( info - > linking )
2021-07-13 12:33:50 +03:00
err = ocelot_netdevice_bridge_join ( dev , brport_dev ,
2021-03-23 01:51:52 +02:00
info - > upper_dev ,
2021-03-23 01:51:51 +02:00
extack ) ;
else
2021-07-13 12:33:50 +03:00
err = ocelot_netdevice_bridge_leave ( dev , brport_dev ,
2021-03-23 01:51:52 +02:00
info - > upper_dev ) ;
2021-02-06 00:02:10 +02:00
}
if ( netif_is_lag_master ( info - > upper_dev ) ) {
2021-03-23 01:51:51 +02:00
if ( info - > linking )
err = ocelot_netdevice_lag_join ( dev , info - > upper_dev ,
info - > upper_info , extack ) ;
else
ocelot_netdevice_lag_leave ( dev , info - > upper_dev ) ;
2020-06-20 18:43:44 +03:00
}
2021-02-06 00:02:11 +02:00
return notifier_from_errno ( err ) ;
}
2021-03-23 01:51:51 +02:00
/* Treat CHANGEUPPER events on an offloaded LAG as individual CHANGEUPPER
* events for the lower physical ports of the LAG .
* If the LAG upper isn ' t offloaded , ignore its CHANGEUPPER events .
* In case the LAG joined a bridge , notify that we are offloading it and can do
* forwarding in hardware towards it .
*/
2021-02-06 00:02:11 +02:00
static int
ocelot_netdevice_lag_changeupper ( struct net_device * dev ,
struct netdev_notifier_changeupper_info * info )
{
struct net_device * lower ;
struct list_head * iter ;
int err = NOTIFY_DONE ;
netdev_for_each_lower_dev ( dev , lower , iter ) {
2021-03-23 01:51:51 +02:00
struct ocelot_port_private * priv = netdev_priv ( lower ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
if ( ocelot_port - > bond ! = dev )
return NOTIFY_OK ;
2021-07-13 12:33:50 +03:00
err = ocelot_netdevice_changeupper ( lower , dev , info ) ;
2021-02-06 00:02:11 +02:00
if ( err )
return notifier_from_errno ( err ) ;
}
return NOTIFY_DONE ;
2020-06-20 18:43:44 +03:00
}
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
static int
ocelot_netdevice_prechangeupper ( struct net_device * dev ,
struct net_device * brport_dev ,
struct netdev_notifier_changeupper_info * info )
{
if ( netif_is_bridge_master ( info - > upper_dev ) & & ! info - > linking )
net: bridge: move the switchdev object replay helpers to "push" mode
Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
ocelot_netdevice_pre_bridge_leave ( dev , brport_dev ) ;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
if ( netif_is_lag_master ( info - > upper_dev ) & & ! info - > linking )
ocelot_netdevice_pre_lag_leave ( dev , info - > upper_dev ) ;
return NOTIFY_DONE ;
}
static int
ocelot_netdevice_lag_prechangeupper ( struct net_device * dev ,
struct netdev_notifier_changeupper_info * info )
{
struct net_device * lower ;
struct list_head * iter ;
int err = NOTIFY_DONE ;
netdev_for_each_lower_dev ( dev , lower , iter ) {
struct ocelot_port_private * priv = netdev_priv ( lower ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
if ( ocelot_port - > bond ! = dev )
return NOTIFY_OK ;
err = ocelot_netdevice_prechangeupper ( dev , lower , info ) ;
if ( err )
return err ;
}
return NOTIFY_DONE ;
}
2021-02-06 00:02:19 +02:00
static int
ocelot_netdevice_changelowerstate ( struct net_device * dev ,
struct netdev_lag_lower_state_info * info )
{
struct ocelot_port_private * priv = netdev_priv ( dev ) ;
bool is_active = info - > link_up & & info - > tx_enabled ;
struct ocelot_port * ocelot_port = & priv - > port ;
struct ocelot * ocelot = ocelot_port - > ocelot ;
int port = priv - > chip_port ;
if ( ! ocelot_port - > bond )
return NOTIFY_DONE ;
if ( ocelot_port - > lag_tx_active = = is_active )
return NOTIFY_DONE ;
ocelot_port_lag_change ( ocelot , port , is_active ) ;
return NOTIFY_OK ;
}
2020-06-20 18:43:44 +03:00
static int ocelot_netdevice_event ( struct notifier_block * unused ,
unsigned long event , void * ptr )
{
struct net_device * dev = netdev_notifier_info_to_dev ( ptr ) ;
2021-02-06 00:02:11 +02:00
switch ( event ) {
net: bridge: switchdev: let drivers inform which bridge ports are offloaded
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
case NETDEV_PRECHANGEUPPER : {
struct netdev_notifier_changeupper_info * info = ptr ;
if ( ocelot_netdevice_dev_check ( dev ) )
return ocelot_netdevice_prechangeupper ( dev , dev , info ) ;
if ( netif_is_lag_master ( dev ) )
return ocelot_netdevice_lag_prechangeupper ( dev , info ) ;
break ;
}
2021-02-06 00:02:11 +02:00
case NETDEV_CHANGEUPPER : {
struct netdev_notifier_changeupper_info * info = ptr ;
2020-06-20 18:43:44 +03:00
2021-02-06 00:02:11 +02:00
if ( ocelot_netdevice_dev_check ( dev ) )
2021-07-13 12:33:50 +03:00
return ocelot_netdevice_changeupper ( dev , dev , info ) ;
2020-06-20 18:43:44 +03:00
2021-02-06 00:02:11 +02:00
if ( netif_is_lag_master ( dev ) )
return ocelot_netdevice_lag_changeupper ( dev , info ) ;
break ;
}
2021-02-06 00:02:19 +02:00
case NETDEV_CHANGELOWERSTATE : {
struct netdev_notifier_changelowerstate_info * info = ptr ;
if ( ! ocelot_netdevice_dev_check ( dev ) )
break ;
return ocelot_netdevice_changelowerstate ( dev ,
info - > lower_state_info ) ;
}
2021-02-06 00:02:11 +02:00
default :
break ;
2020-06-20 18:43:44 +03:00
}
2021-02-06 00:02:11 +02:00
return NOTIFY_DONE ;
2020-06-20 18:43:44 +03:00
}
struct notifier_block ocelot_netdevice_nb __read_mostly = {
. notifier_call = ocelot_netdevice_event ,
} ;
static int ocelot_switchdev_event ( struct notifier_block * unused ,
unsigned long event , void * ptr )
{
struct net_device * dev = switchdev_notifier_info_to_dev ( ptr ) ;
int err ;
switch ( event ) {
case SWITCHDEV_PORT_ATTR_SET :
err = switchdev_handle_port_attr_set ( dev , ptr ,
ocelot_netdevice_dev_check ,
ocelot_port_attr_set ) ;
return notifier_from_errno ( err ) ;
}
return NOTIFY_DONE ;
}
struct notifier_block ocelot_switchdev_nb __read_mostly = {
. notifier_call = ocelot_switchdev_event ,
} ;
static int ocelot_switchdev_blocking_event ( struct notifier_block * unused ,
unsigned long event , void * ptr )
{
struct net_device * dev = switchdev_notifier_info_to_dev ( ptr ) ;
int err ;
switch ( event ) {
/* Blocking events. */
case SWITCHDEV_PORT_OBJ_ADD :
err = switchdev_handle_port_obj_add ( dev , ptr ,
ocelot_netdevice_dev_check ,
ocelot_port_obj_add ) ;
return notifier_from_errno ( err ) ;
case SWITCHDEV_PORT_OBJ_DEL :
err = switchdev_handle_port_obj_del ( dev , ptr ,
ocelot_netdevice_dev_check ,
ocelot_port_obj_del ) ;
return notifier_from_errno ( err ) ;
case SWITCHDEV_PORT_ATTR_SET :
err = switchdev_handle_port_attr_set ( dev , ptr ,
ocelot_netdevice_dev_check ,
ocelot_port_attr_set ) ;
return notifier_from_errno ( err ) ;
}
return NOTIFY_DONE ;
}
struct notifier_block ocelot_switchdev_blocking_nb __read_mostly = {
. notifier_call = ocelot_switchdev_blocking_event ,
} ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
static void vsc7514_phylink_mac_config ( struct phylink_config * config ,
unsigned int link_an_mode ,
const struct phylink_link_state * state )
{
struct net_device * ndev = to_net_dev ( config - > dev ) ;
struct ocelot_port_private * priv = netdev_priv ( ndev ) ;
struct ocelot_port * ocelot_port = & priv - > port ;
/* Disable HDX fast control */
ocelot_port_writel ( ocelot_port , DEV_PORT_MISC_HDX_FAST_DIS ,
DEV_PORT_MISC ) ;
/* SGMII only for now */
ocelot_port_writel ( ocelot_port , PCS1G_MODE_CFG_SGMII_MODE_ENA ,
PCS1G_MODE_CFG ) ;
ocelot_port_writel ( ocelot_port , PCS1G_SD_CFG_SD_SEL , PCS1G_SD_CFG ) ;
/* Enable PCS */
ocelot_port_writel ( ocelot_port , PCS1G_CFG_PCS_ENA , PCS1G_CFG ) ;
/* No aneg on SGMII */
ocelot_port_writel ( ocelot_port , 0 , PCS1G_ANEG_CFG ) ;
/* No loopback */
ocelot_port_writel ( ocelot_port , 0 , PCS1G_LB_CFG ) ;
}
static void vsc7514_phylink_mac_link_down ( struct phylink_config * config ,
unsigned int link_an_mode ,
phy_interface_t interface )
{
struct net_device * ndev = to_net_dev ( config - > dev ) ;
struct ocelot_port_private * priv = netdev_priv ( ndev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
ocelot_phylink_mac_link_down ( ocelot , port , link_an_mode , interface ,
OCELOT_MAC_QUIRKS ) ;
}
static void vsc7514_phylink_mac_link_up ( struct phylink_config * config ,
struct phy_device * phydev ,
unsigned int link_an_mode ,
phy_interface_t interface ,
int speed , int duplex ,
bool tx_pause , bool rx_pause )
{
struct net_device * ndev = to_net_dev ( config - > dev ) ;
struct ocelot_port_private * priv = netdev_priv ( ndev ) ;
struct ocelot * ocelot = priv - > port . ocelot ;
int port = priv - > chip_port ;
ocelot_phylink_mac_link_up ( ocelot , port , phydev , link_an_mode ,
interface , speed , duplex ,
tx_pause , rx_pause , OCELOT_MAC_QUIRKS ) ;
}
static const struct phylink_mac_ops ocelot_phylink_ops = {
2021-11-16 10:09:41 +00:00
. validate = phylink_generic_validate ,
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
. mac_config = vsc7514_phylink_mac_config ,
. mac_link_down = vsc7514_phylink_mac_link_down ,
. mac_link_up = vsc7514_phylink_mac_link_up ,
} ;
static int ocelot_port_phylink_create ( struct ocelot * ocelot , int port ,
struct device_node * portnp )
{
struct ocelot_port * ocelot_port = ocelot - > ports [ port ] ;
struct ocelot_port_private * priv ;
struct device * dev = ocelot - > dev ;
phy_interface_t phy_mode ;
struct phylink * phylink ;
int err ;
of_get_phy_mode ( portnp , & phy_mode ) ;
/* DT bindings of internal PHY ports are broken and don't
* specify a phy - mode
*/
if ( phy_mode = = PHY_INTERFACE_MODE_NA )
phy_mode = PHY_INTERFACE_MODE_INTERNAL ;
if ( phy_mode ! = PHY_INTERFACE_MODE_SGMII & &
phy_mode ! = PHY_INTERFACE_MODE_QSGMII & &
phy_mode ! = PHY_INTERFACE_MODE_INTERNAL ) {
dev_err ( dev , " unsupported phy mode %s for port %d \n " ,
phy_modes ( phy_mode ) , port ) ;
return - EINVAL ;
}
/* Ensure clock signals and speed are set on all QSGMII links */
if ( phy_mode = = PHY_INTERFACE_MODE_QSGMII )
ocelot_port_rmwl ( ocelot_port , 0 ,
DEV_CLOCK_CFG_MAC_TX_RST |
2021-10-11 10:27:41 +08:00
DEV_CLOCK_CFG_MAC_RX_RST ,
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
DEV_CLOCK_CFG ) ;
ocelot_port - > phy_mode = phy_mode ;
if ( phy_mode ! = PHY_INTERFACE_MODE_INTERNAL ) {
struct phy * serdes = of_phy_get ( portnp , NULL ) ;
if ( IS_ERR ( serdes ) ) {
err = PTR_ERR ( serdes ) ;
dev_err_probe ( dev , err ,
" missing SerDes phys for port %d \n " ,
port ) ;
return err ;
}
err = phy_set_mode_ext ( serdes , PHY_MODE_ETHERNET , phy_mode ) ;
of_phy_put ( serdes ) ;
if ( err ) {
dev_err ( dev , " Could not SerDes mode on port %d: %pe \n " ,
port , ERR_PTR ( err ) ) ;
return err ;
}
}
priv = container_of ( ocelot_port , struct ocelot_port_private , port ) ;
priv - > phylink_config . dev = & priv - > dev - > dev ;
priv - > phylink_config . type = PHYLINK_NETDEV ;
2021-11-16 10:09:41 +00:00
priv - > phylink_config . mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_10 | MAC_100 | MAC_1000FD | MAC_2500FD ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
2021-11-16 10:09:31 +00:00
__set_bit ( ocelot_port - > phy_mode ,
priv - > phylink_config . supported_interfaces ) ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
phylink = phylink_create ( & priv - > phylink_config ,
of_fwnode_handle ( portnp ) ,
phy_mode , & ocelot_phylink_ops ) ;
if ( IS_ERR ( phylink ) ) {
err = PTR_ERR ( phylink ) ;
dev_err ( dev , " Could not create phylink (%pe) \n " , phylink ) ;
return err ;
}
priv - > phylink = phylink ;
err = phylink_of_phy_connect ( phylink , portnp , 0 ) ;
if ( err ) {
dev_err ( dev , " Could not connect to PHY: %pe \n " , ERR_PTR ( err ) ) ;
phylink_destroy ( phylink ) ;
priv - > phylink = NULL ;
return err ;
}
return 0 ;
}
2020-07-13 19:57:01 +03:00
int ocelot_probe_port ( struct ocelot * ocelot , int port , struct regmap * target ,
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
struct device_node * portnp )
2020-06-20 18:43:44 +03:00
{
struct ocelot_port_private * priv ;
struct ocelot_port * ocelot_port ;
struct net_device * dev ;
int err ;
dev = alloc_etherdev ( sizeof ( struct ocelot_port_private ) ) ;
if ( ! dev )
return - ENOMEM ;
SET_NETDEV_DEV ( dev , ocelot - > dev ) ;
priv = netdev_priv ( dev ) ;
priv - > dev = dev ;
priv - > chip_port = port ;
ocelot_port = & priv - > port ;
ocelot_port - > ocelot = ocelot ;
2020-07-13 19:57:01 +03:00
ocelot_port - > target = target ;
2020-06-20 18:43:44 +03:00
ocelot - > ports [ port ] = ocelot_port ;
dev - > netdev_ops = & ocelot_port_netdev_ops ;
dev - > ethtool_ops = & ocelot_ethtool_ops ;
2021-12-09 16:49:10 +01:00
dev - > max_mtu = OCELOT_JUMBO_MTU ;
2020-06-20 18:43:44 +03:00
dev - > hw_features | = NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXFCS |
NETIF_F_HW_TC ;
dev - > features | = NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_TC ;
2021-12-14 10:55:34 +01:00
err = of_get_ethdev_address ( portnp , dev ) ;
if ( err )
eth_hw_addr_gen ( dev , ocelot - > base_mac , port ) ;
2020-10-31 12:29:12 +02:00
ocelot_mact_learn ( ocelot , PGID_CPU , dev - > dev_addr ,
net: mscc: ocelot: add the local station MAC addresses in VID 0
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc05 ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-20 20:58:51 +03:00
OCELOT_VLAN_UNAWARE_PVID , ENTRYTYPE_LOCKED ) ;
2020-06-20 18:43:44 +03:00
ocelot_init_port ( ocelot , port ) ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
err = ocelot_port_phylink_create ( ocelot , port , portnp ) ;
if ( err )
goto out ;
2021-12-09 16:49:11 +01:00
if ( ocelot - > fdma )
ocelot_fdma_netdev_init ( ocelot , dev ) ;
2020-06-20 18:43:44 +03:00
err = register_netdev ( dev ) ;
if ( err ) {
dev_err ( ocelot - > dev , " register_netdev failed \n " ) ;
2021-12-09 16:49:11 +01:00
goto out_fdma_deinit ;
2020-06-20 18:43:44 +03:00
}
2021-02-02 12:12:38 +03:00
return 0 ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
2021-12-09 16:49:11 +01:00
out_fdma_deinit :
if ( ocelot - > fdma )
ocelot_fdma_netdev_deinit ( ocelot , dev ) ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
out :
ocelot - > ports [ port ] = NULL ;
free_netdev ( dev ) ;
return err ;
2021-02-02 12:12:38 +03:00
}
void ocelot_release_port ( struct ocelot_port * ocelot_port )
{
struct ocelot_port_private * priv = container_of ( ocelot_port ,
struct ocelot_port_private ,
port ) ;
2021-12-09 16:49:11 +01:00
struct ocelot * ocelot = ocelot_port - > ocelot ;
struct ocelot_fdma * fdma = ocelot - > fdma ;
2021-02-02 12:12:38 +03:00
unregister_netdev ( priv - > dev ) ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
2021-12-09 16:49:11 +01:00
if ( fdma )
ocelot_fdma_netdev_deinit ( ocelot , priv - > dev ) ;
net: mscc: ocelot: convert to phylink
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-15 04:47:48 +03:00
if ( priv - > phylink ) {
rtnl_lock ( ) ;
phylink_disconnect_phy ( priv - > phylink ) ;
rtnl_unlock ( ) ;
phylink_destroy ( priv - > phylink ) ;
}
2021-02-02 12:12:38 +03:00
free_netdev ( priv - > dev ) ;
2020-06-20 18:43:44 +03:00
}