linux/kernel/bpf/btf.c

6162 lines
158 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2018 Facebook */
#include <uapi/linux/btf.h>
#include <uapi/linux/bpf.h>
#include <uapi/linux/bpf_perf_event.h>
#include <uapi/linux/types.h>
#include <linux/seq_file.h>
#include <linux/compiler.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/anon_inodes.h>
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/kernel.h>
#include <linux/idr.h>
#include <linux/sort.h>
#include <linux/bpf_verifier.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/skmsg.h>
#include <linux/perf_event.h>
#include <linux/bsearch.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <net/sock.h>
/* BTF (BPF Type Format) is the meta data format which describes
* the data types of BPF program/map. Hence, it basically focus
* on the C programming language which the modern BPF is primary
* using.
*
* ELF Section:
* ~~~~~~~~~~~
* The BTF data is stored under the ".BTF" ELF section
*
* struct btf_type:
* ~~~~~~~~~~~~~~~
* Each 'struct btf_type' object describes a C data type.
* Depending on the type it is describing, a 'struct btf_type'
* object may be followed by more data. F.e.
* To describe an array, 'struct btf_type' is followed by
* 'struct btf_array'.
*
* 'struct btf_type' and any extra data following it are
* 4 bytes aligned.
*
* Type section:
* ~~~~~~~~~~~~~
* The BTF type section contains a list of 'struct btf_type' objects.
* Each one describes a C type. Recall from the above section
* that a 'struct btf_type' object could be immediately followed by extra
* data in order to describe some particular C types.
*
* type_id:
* ~~~~~~~
* Each btf_type object is identified by a type_id. The type_id
* is implicitly implied by the location of the btf_type object in
* the BTF type section. The first one has type_id 1. The second
* one has type_id 2...etc. Hence, an earlier btf_type has
* a smaller type_id.
*
* A btf_type object may refer to another btf_type object by using
* type_id (i.e. the "type" in the "struct btf_type").
*
* NOTE that we cannot assume any reference-order.
* A btf_type object can refer to an earlier btf_type object
* but it can also refer to a later btf_type object.
*
* For example, to describe "const void *". A btf_type
* object describing "const" may refer to another btf_type
* object describing "void *". This type-reference is done
* by specifying type_id:
*
* [1] CONST (anon) type_id=2
* [2] PTR (anon) type_id=0
*
* The above is the btf_verifier debug log:
* - Each line started with "[?]" is a btf_type object
* - [?] is the type_id of the btf_type object.
* - CONST/PTR is the BTF_KIND_XXX
* - "(anon)" is the name of the type. It just
* happens that CONST and PTR has no name.
* - type_id=XXX is the 'u32 type' in btf_type
*
* NOTE: "void" has type_id 0
*
* String section:
* ~~~~~~~~~~~~~~
* The BTF string section contains the names used by the type section.
* Each string is referred by an "offset" from the beginning of the
* string section.
*
* Each string is '\0' terminated.
*
* The first character in the string section must be '\0'
* which is used to mean 'anonymous'. Some btf_type may not
* have a name.
*/
/* BTF verification:
*
* To verify BTF data, two passes are needed.
*
* Pass #1
* ~~~~~~~
* The first pass is to collect all btf_type objects to
* an array: "btf->types".
*
* Depending on the C type that a btf_type is describing,
* a btf_type may be followed by extra data. We don't know
* how many btf_type is there, and more importantly we don't
* know where each btf_type is located in the type section.
*
* Without knowing the location of each type_id, most verifications
* cannot be done. e.g. an earlier btf_type may refer to a later
* btf_type (recall the "const void *" above), so we cannot
* check this type-reference in the first pass.
*
* In the first pass, it still does some verifications (e.g.
* checking the name is a valid offset to the string section).
*
* Pass #2
* ~~~~~~~
* The main focus is to resolve a btf_type that is referring
* to another type.
*
* We have to ensure the referring type:
* 1) does exist in the BTF (i.e. in btf->types[])
* 2) does not cause a loop:
* struct A {
* struct B b;
* };
*
* struct B {
* struct A a;
* };
*
* btf_type_needs_resolve() decides if a btf_type needs
* to be resolved.
*
* The needs_resolve type implements the "resolve()" ops which
* essentially does a DFS and detects backedge.
*
* During resolve (or DFS), different C types have different
* "RESOLVED" conditions.
*
* When resolving a BTF_KIND_STRUCT, we need to resolve all its
* members because a member is always referring to another
* type. A struct's member can be treated as "RESOLVED" if
* it is referring to a BTF_KIND_PTR. Otherwise, the
* following valid C struct would be rejected:
*
* struct A {
* int m;
* struct A *a;
* };
*
* When resolving a BTF_KIND_PTR, it needs to keep resolving if
* it is referring to another BTF_KIND_PTR. Otherwise, we cannot
* detect a pointer loop, e.g.:
* BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
* ^ |
* +-----------------------------------------+
*
*/
#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
#define BITS_ROUNDUP_BYTES(bits) \
(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
#define BTF_INFO_MASK 0x9f00ffff
#define BTF_INT_MASK 0x0fffffff
#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
/* 16MB for 64k structs and each has 16 members and
* a few MB spaces for the string section.
* The hard limit is S32_MAX.
*/
#define BTF_MAX_SIZE (16 * 1024 * 1024)
#define for_each_member_from(i, from, struct_type, member) \
for (i = from, member = btf_type_member(struct_type) + from; \
i < btf_type_vlen(struct_type); \
i++, member++)
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
#define for_each_vsi_from(i, from, struct_type, member) \
for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
i < btf_type_vlen(struct_type); \
i++, member++)
DEFINE_IDR(btf_idr);
DEFINE_SPINLOCK(btf_idr_lock);
struct btf {
void *data;
struct btf_type **types;
u32 *resolved_ids;
u32 *resolved_sizes;
const char *strings;
void *nohdr_data;
struct btf_header hdr;
u32 nr_types; /* includes VOID for base BTF */
u32 types_size;
u32 data_size;
refcount_t refcnt;
u32 id;
struct rcu_head rcu;
/* split BTF support */
struct btf *base_btf;
u32 start_id; /* first type ID in this BTF (0 for base BTF) */
u32 start_str_off; /* first string offset (0 for base BTF) */
char name[MODULE_NAME_LEN];
bool kernel_btf;
};
enum verifier_phase {
CHECK_META,
CHECK_TYPE,
};
struct resolve_vertex {
const struct btf_type *t;
u32 type_id;
u16 next_member;
};
enum visit_state {
NOT_VISITED,
VISITED,
RESOLVED,
};
enum resolve_mode {
RESOLVE_TBD, /* To Be Determined */
RESOLVE_PTR, /* Resolving for Pointer */
RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
* or array
*/
};
#define MAX_RESOLVE_DEPTH 32
struct btf_sec_info {
u32 off;
u32 len;
};
struct btf_verifier_env {
struct btf *btf;
u8 *visit_states;
struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
struct bpf_verifier_log log;
u32 log_type_id;
u32 top_stack;
enum verifier_phase phase;
enum resolve_mode resolve_mode;
};
static const char * const btf_kind_str[NR_BTF_KINDS] = {
[BTF_KIND_UNKN] = "UNKNOWN",
[BTF_KIND_INT] = "INT",
[BTF_KIND_PTR] = "PTR",
[BTF_KIND_ARRAY] = "ARRAY",
[BTF_KIND_STRUCT] = "STRUCT",
[BTF_KIND_UNION] = "UNION",
[BTF_KIND_ENUM] = "ENUM",
[BTF_KIND_FWD] = "FWD",
[BTF_KIND_TYPEDEF] = "TYPEDEF",
[BTF_KIND_VOLATILE] = "VOLATILE",
[BTF_KIND_CONST] = "CONST",
[BTF_KIND_RESTRICT] = "RESTRICT",
[BTF_KIND_FUNC] = "FUNC",
[BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
[BTF_KIND_VAR] = "VAR",
[BTF_KIND_DATASEC] = "DATASEC",
[BTF_KIND_FLOAT] = "FLOAT",
};
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
const char *btf_type_str(const struct btf_type *t)
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
{
return btf_kind_str[BTF_INFO_KIND(t->info)];
}
/* Chunk size we use in safe copy of data to be shown. */
#define BTF_SHOW_OBJ_SAFE_SIZE 32
/*
* This is the maximum size of a base type value (equivalent to a
* 128-bit int); if we are at the end of our safe buffer and have
* less than 16 bytes space we can't be assured of being able
* to copy the next type safely, so in such cases we will initiate
* a new copy.
*/
#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
/* Type name size */
#define BTF_SHOW_NAME_SIZE 80
/*
* Common data to all BTF show operations. Private show functions can add
* their own data to a structure containing a struct btf_show and consult it
* in the show callback. See btf_type_show() below.
*
* One challenge with showing nested data is we want to skip 0-valued
* data, but in order to figure out whether a nested object is all zeros
* we need to walk through it. As a result, we need to make two passes
* when handling structs, unions and arrays; the first path simply looks
* for nonzero data, while the second actually does the display. The first
* pass is signalled by show->state.depth_check being set, and if we
* encounter a non-zero value we set show->state.depth_to_show to
* the depth at which we encountered it. When we have completed the
* first pass, we will know if anything needs to be displayed if
* depth_to_show > depth. See btf_[struct,array]_show() for the
* implementation of this.
*
* Another problem is we want to ensure the data for display is safe to
* access. To support this, the anonymous "struct {} obj" tracks the data
* object and our safe copy of it. We copy portions of the data needed
* to the object "copy" buffer, but because its size is limited to
* BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
* traverse larger objects for display.
*
* The various data type show functions all start with a call to
* btf_show_start_type() which returns a pointer to the safe copy
* of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
* raw data itself). btf_show_obj_safe() is responsible for
* using copy_from_kernel_nofault() to update the safe data if necessary
* as we traverse the object's data. skbuff-like semantics are
* used:
*
* - obj.head points to the start of the toplevel object for display
* - obj.size is the size of the toplevel object
* - obj.data points to the current point in the original data at
* which our safe data starts. obj.data will advance as we copy
* portions of the data.
*
* In most cases a single copy will suffice, but larger data structures
* such as "struct task_struct" will require many copies. The logic in
* btf_show_obj_safe() handles the logic that determines if a new
* copy_from_kernel_nofault() is needed.
*/
struct btf_show {
u64 flags;
void *target; /* target of show operation (seq file, buffer) */
void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
const struct btf *btf;
/* below are used during iteration */
struct {
u8 depth;
u8 depth_to_show;
u8 depth_check;
u8 array_member:1,
array_terminated:1;
u16 array_encoding;
u32 type_id;
int status; /* non-zero for error */
const struct btf_type *type;
const struct btf_member *member;
char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
} state;
struct {
u32 size;
void *head;
void *data;
u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
} obj;
};
struct btf_kind_operations {
s32 (*check_meta)(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left);
int (*resolve)(struct btf_verifier_env *env,
const struct resolve_vertex *v);
int (*check_member)(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
int (*check_kflag_member)(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type);
void (*log_details)(struct btf_verifier_env *env,
const struct btf_type *t);
void (*show)(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offsets,
struct btf_show *show);
};
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
static struct btf_type btf_void;
static int btf_resolve(struct btf_verifier_env *env,
const struct btf_type *t, u32 type_id);
static bool btf_type_is_modifier(const struct btf_type *t)
{
/* Some of them is not strictly a C modifier
* but they are grouped into the same bucket
* for BTF concern:
* A type (t) that refers to another
* type through t->type AND its size cannot
* be determined without following the t->type.
*
* ptr does not fall into this bucket
* because its size is always sizeof(void *).
*/
switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_TYPEDEF:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
return true;
}
return false;
}
bool btf_type_is_void(const struct btf_type *t)
{
return t == &btf_void;
}
static bool btf_type_is_fwd(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
}
static bool btf_type_nosize(const struct btf_type *t)
{
return btf_type_is_void(t) || btf_type_is_fwd(t) ||
btf_type_is_func(t) || btf_type_is_func_proto(t);
}
static bool btf_type_nosize_or_null(const struct btf_type *t)
{
return !t || btf_type_nosize(t);
}
bpf: introduce bpf_spin_lock Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let bpf program serialize access to other variables. Example: struct hash_elem { int cnt; struct bpf_spin_lock lock; }; struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key); if (val) { bpf_spin_lock(&val->lock); val->cnt++; bpf_spin_unlock(&val->lock); } Restrictions and safety checks: - bpf_spin_lock is only allowed inside HASH and ARRAY maps. - BTF description of the map is mandatory for safety analysis. - bpf program can take one bpf_spin_lock at a time, since two or more can cause dead locks. - only one 'struct bpf_spin_lock' is allowed per map element. It drastically simplifies implementation yet allows bpf program to use any number of bpf_spin_locks. - when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed. - bpf program must bpf_spin_unlock() before return. - bpf program can access 'struct bpf_spin_lock' only via bpf_spin_lock()/bpf_spin_unlock() helpers. - load/store into 'struct bpf_spin_lock lock;' field is not allowed. - to use bpf_spin_lock() helper the BTF description of map value must be a struct and have 'struct bpf_spin_lock anyname;' field at the top level. Nested lock inside another struct is not allowed. - syscall map_lookup doesn't copy bpf_spin_lock field to user space. - syscall map_update and program map_update do not update bpf_spin_lock field. - bpf_spin_lock cannot be on the stack or inside networking packet. bpf_spin_lock can only be inside HASH or ARRAY map value. - bpf_spin_lock is available to root only and to all program types. - bpf_spin_lock is not allowed in inner maps of map-in-map. - ld_abs is not allowed inside spin_lock-ed region. - tracing progs and socket filter progs cannot use bpf_spin_lock due to insufficient preemption checks Implementation details: - cgroup-bpf class of programs can nest with xdp/tc programs. Hence bpf_spin_lock is equivalent to spin_lock_irqsave. Other solutions to avoid nested bpf_spin_lock are possible. Like making sure that all networking progs run with softirq disabled. spin_lock_irqsave is the simplest and doesn't add overhead to the programs that don't use it. - arch_spinlock_t is used when its implemented as queued_spin_lock - archs can force their own arch_spinlock_t - on architectures where queued_spin_lock is not available and sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used. - presence of bpf_spin_lock inside map value could have been indicated via extra flag during map_create, but specifying it via BTF is cleaner. It provides introspection for map key/value and reduces user mistakes. Next steps: - allow bpf_spin_lock in other map types (like cgroup local storage) - introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper to request kernel to grab bpf_spin_lock before rewriting the value. That will serialize access to map elements. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31 15:40:04 -08:00
static bool __btf_type_is_struct(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
}
static bool btf_type_is_array(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
static bool btf_type_is_datasec(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
}
u32 btf_nr_types(const struct btf *btf)
{
u32 total = 0;
while (btf) {
total += btf->nr_types;
btf = btf->base_btf;
}
return total;
}
bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS This patch allows the kernel's struct ops (i.e. func ptr) to be implemented in BPF. The first use case in this series is the "struct tcp_congestion_ops" which will be introduced in a latter patch. This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS. The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular func ptr of a kernel struct. The attr->attach_btf_id is the btf id of a kernel struct. The attr->expected_attach_type is the member "index" of that kernel struct. The first member of a struct starts with member index 0. That will avoid ambiguity when a kernel struct has multiple func ptrs with the same func signature. For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written to implement the "init" func ptr of the "struct tcp_congestion_ops". The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops" of the _running_ kernel. The attr->expected_attach_type is 3. The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved by arch_prepare_bpf_trampoline that will be done in the next patch when introducing BPF_MAP_TYPE_STRUCT_OPS. "struct bpf_struct_ops" is introduced as a common interface for the kernel struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel struct will need to implement an instance of the "struct bpf_struct_ops". The supporting kernel struct also needs to implement a bpf_verifier_ops. During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right bpf_verifier_ops by searching the attr->attach_btf_id. A new "btf_struct_access" is also added to the bpf_verifier_ops such that the supporting kernel struct can optionally provide its own specific check on accessing the func arg (e.g. provide limited write access). After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called to initialize some values (e.g. the btf id of the supporting kernel struct) and it can only be done once the btf_vmlinux is available. The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog if the return type of the prog->aux->attach_func_proto is "void". Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
2020-01-08 16:35:03 -08:00
s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
{
const struct btf_type *t;
const char *tname;
u32 i, total;
bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS This patch allows the kernel's struct ops (i.e. func ptr) to be implemented in BPF. The first use case in this series is the "struct tcp_congestion_ops" which will be introduced in a latter patch. This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS. The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular func ptr of a kernel struct. The attr->attach_btf_id is the btf id of a kernel struct. The attr->expected_attach_type is the member "index" of that kernel struct. The first member of a struct starts with member index 0. That will avoid ambiguity when a kernel struct has multiple func ptrs with the same func signature. For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written to implement the "init" func ptr of the "struct tcp_congestion_ops". The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops" of the _running_ kernel. The attr->expected_attach_type is 3. The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved by arch_prepare_bpf_trampoline that will be done in the next patch when introducing BPF_MAP_TYPE_STRUCT_OPS. "struct bpf_struct_ops" is introduced as a common interface for the kernel struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel struct will need to implement an instance of the "struct bpf_struct_ops". The supporting kernel struct also needs to implement a bpf_verifier_ops. During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right bpf_verifier_ops by searching the attr->attach_btf_id. A new "btf_struct_access" is also added to the bpf_verifier_ops such that the supporting kernel struct can optionally provide its own specific check on accessing the func arg (e.g. provide limited write access). After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called to initialize some values (e.g. the btf id of the supporting kernel struct) and it can only be done once the btf_vmlinux is available. The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog if the return type of the prog->aux->attach_func_proto is "void". Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
2020-01-08 16:35:03 -08:00
total = btf_nr_types(btf);
for (i = 1; i < total; i++) {
t = btf_type_by_id(btf, i);
bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS This patch allows the kernel's struct ops (i.e. func ptr) to be implemented in BPF. The first use case in this series is the "struct tcp_congestion_ops" which will be introduced in a latter patch. This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS. The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular func ptr of a kernel struct. The attr->attach_btf_id is the btf id of a kernel struct. The attr->expected_attach_type is the member "index" of that kernel struct. The first member of a struct starts with member index 0. That will avoid ambiguity when a kernel struct has multiple func ptrs with the same func signature. For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written to implement the "init" func ptr of the "struct tcp_congestion_ops". The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops" of the _running_ kernel. The attr->expected_attach_type is 3. The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved by arch_prepare_bpf_trampoline that will be done in the next patch when introducing BPF_MAP_TYPE_STRUCT_OPS. "struct bpf_struct_ops" is introduced as a common interface for the kernel struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel struct will need to implement an instance of the "struct bpf_struct_ops". The supporting kernel struct also needs to implement a bpf_verifier_ops. During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right bpf_verifier_ops by searching the attr->attach_btf_id. A new "btf_struct_access" is also added to the bpf_verifier_ops such that the supporting kernel struct can optionally provide its own specific check on accessing the func arg (e.g. provide limited write access). After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called to initialize some values (e.g. the btf id of the supporting kernel struct) and it can only be done once the btf_vmlinux is available. The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog if the return type of the prog->aux->attach_func_proto is "void". Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
2020-01-08 16:35:03 -08:00
if (BTF_INFO_KIND(t->info) != kind)
continue;
tname = btf_name_by_offset(btf, t->name_off);
if (!strcmp(tname, name))
return i;
}
return -ENOENT;
}
const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
u32 id, u32 *res_id)
{
const struct btf_type *t = btf_type_by_id(btf, id);
while (btf_type_is_modifier(t)) {
id = t->type;
t = btf_type_by_id(btf, t->type);
}
if (res_id)
*res_id = id;
return t;
}
const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
u32 id, u32 *res_id)
{
const struct btf_type *t;
t = btf_type_skip_modifiers(btf, id, NULL);
if (!btf_type_is_ptr(t))
return NULL;
return btf_type_skip_modifiers(btf, t->type, res_id);
}
const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
u32 id, u32 *res_id)
{
const struct btf_type *ptype;
ptype = btf_type_resolve_ptr(btf, id, res_id);
if (ptype && btf_type_is_func_proto(ptype))
return ptype;
return NULL;
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
/* Types that act only as a source, not sink or intermediate
* type when resolving.
*/
static bool btf_type_is_resolve_source_only(const struct btf_type *t)
{
return btf_type_is_var(t) ||
btf_type_is_datasec(t);
}
/* What types need to be resolved?
*
* btf_type_is_modifier() is an obvious one.
*
* btf_type_is_struct() because its member refers to
* another type (through member->type).
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
*
* btf_type_is_var() because the variable refers to
* another type. btf_type_is_datasec() holds multiple
* btf_type_is_var() types that need resolving.
*
* btf_type_is_array() because its element (array->type)
* refers to another type. Array can be thought of a
* special case of struct while array just has the same
* member-type repeated by array->nelems of times.
*/
static bool btf_type_needs_resolve(const struct btf_type *t)
{
return btf_type_is_modifier(t) ||
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
btf_type_is_ptr(t) ||
btf_type_is_struct(t) ||
btf_type_is_array(t) ||
btf_type_is_var(t) ||
btf_type_is_datasec(t);
}
/* t->size can be used */
static bool btf_type_has_size(const struct btf_type *t)
{
switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_INT:
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
case BTF_KIND_ENUM:
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
case BTF_KIND_DATASEC:
case BTF_KIND_FLOAT:
return true;
}
return false;
}
static const char *btf_int_encoding_str(u8 encoding)
{
if (encoding == 0)
return "(none)";
else if (encoding == BTF_INT_SIGNED)
return "SIGNED";
else if (encoding == BTF_INT_CHAR)
return "CHAR";
else if (encoding == BTF_INT_BOOL)
return "BOOL";
else
return "UNKN";
}
static u32 btf_type_int(const struct btf_type *t)
{
return *(u32 *)(t + 1);
}
static const struct btf_array *btf_type_array(const struct btf_type *t)
{
return (const struct btf_array *)(t + 1);
}
static const struct btf_enum *btf_type_enum(const struct btf_type *t)
{
return (const struct btf_enum *)(t + 1);
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
static const struct btf_var *btf_type_var(const struct btf_type *t)
{
return (const struct btf_var *)(t + 1);
}
static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
{
return kind_ops[BTF_INFO_KIND(t->info)];
}
static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
{
if (!BTF_STR_OFFSET_VALID(offset))
return false;
while (offset < btf->start_str_off)
btf = btf->base_btf;
offset -= btf->start_str_off;
return offset < btf->hdr.str_len;
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
{
if ((first ? !isalpha(c) :
!isalnum(c)) &&
c != '_' &&
((c == '.' && !dot_ok) ||
c != '.'))
return false;
return true;
}
static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
{
while (offset < btf->start_str_off)
btf = btf->base_btf;
offset -= btf->start_str_off;
if (offset < btf->hdr.str_len)
return &btf->strings[offset];
return NULL;
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
{
/* offset must be valid */
const char *src = btf_str_by_offset(btf, offset);
const char *src_limit;
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (!__btf_name_char_ok(*src, true, dot_ok))
return false;
/* set a limit on identifier length */
src_limit = src + KSYM_NAME_LEN;
src++;
while (*src && src < src_limit) {
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (!__btf_name_char_ok(*src, false, dot_ok))
return false;
src++;
}
return !*src;
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
/* Only C-style identifier is permitted. This can be relaxed if
* necessary.
*/
static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
{
return __btf_name_valid(btf, offset, false);
}
static bool btf_name_valid_section(const struct btf *btf, u32 offset)
{
return __btf_name_valid(btf, offset, true);
}
2018-12-13 10:41:46 -08:00
static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
{
const char *name;
if (!offset)
return "(anon)";
name = btf_str_by_offset(btf, offset);
return name ?: "(invalid-name-offset)";
}
2018-12-13 10:41:46 -08:00
const char *btf_name_by_offset(const struct btf *btf, u32 offset)
{
return btf_str_by_offset(btf, offset);
2018-12-13 10:41:46 -08:00
}
bpf: Introduce bpf_func_info This patch added interface to load a program with the following additional information: . prog_btf_fd . func_info, func_info_rec_size and func_info_cnt where func_info will provide function range and type_id corresponding to each function. The func_info_rec_size is introduced in the UAPI to specify struct bpf_func_info size passed from user space. This intends to make bpf_func_info structure growable in the future. If the kernel gets a different bpf_func_info size from userspace, it will try to handle user request with part of bpf_func_info it can understand. In this patch, kernel can understand struct bpf_func_info { __u32 insn_offset; __u32 type_id; }; If user passed a bpf func_info record size of 16 bytes, the kernel can still handle part of records with the above definition. If verifier agrees with function range provided by the user, the bpf_prog ksym for each function will use the func name provided in the type_id, which is supposed to provide better encoding as it is not limited by 16 bytes program name limitation and this is better for bpf program which contains multiple subprograms. The bpf_prog_info interface is also extended to return btf_id, func_info, func_info_rec_size and func_info_cnt to userspace, so userspace can print out the function prototype for each xlated function. The insn_offset in the returned func_info corresponds to the insn offset for xlated functions. With other jit related fields in bpf_prog_info, userspace can also print out function prototypes for each jited function. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-19 15:29:11 -08:00
const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
{
while (type_id < btf->start_id)
btf = btf->base_btf;
type_id -= btf->start_id;
if (type_id >= btf->nr_types)
return NULL;
return btf->types[type_id];
}
/*
* Regular int is not a bit field and it must be either
* u8/u16/u32/u64 or __int128.
*/
static bool btf_type_int_is_regular(const struct btf_type *t)
{
u8 nr_bits, nr_bytes;
u32 int_data;
int_data = btf_type_int(t);
nr_bits = BTF_INT_BITS(int_data);
nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
if (BITS_PER_BYTE_MASKED(nr_bits) ||
BTF_INT_OFFSET(int_data) ||
(nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
nr_bytes != (2 * sizeof(u64)))) {
return false;
}
return true;
}
/*
* Check that given struct member is a regular int with expected
* offset and size.
*/
bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
const struct btf_member *m,
u32 expected_offset, u32 expected_size)
{
const struct btf_type *t;
u32 id, int_data;
u8 nr_bits;
id = m->type;
t = btf_type_id_size(btf, &id, NULL);
if (!t || !btf_type_is_int(t))
return false;
int_data = btf_type_int(t);
nr_bits = BTF_INT_BITS(int_data);
if (btf_type_kflag(s)) {
u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
/* if kflag set, int should be a regular int and
* bit offset should be at byte boundary.
*/
return !bitfield_size &&
BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
}
if (BTF_INT_OFFSET(int_data) ||
BITS_PER_BYTE_MASKED(m->offset) ||
BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
BITS_PER_BYTE_MASKED(nr_bits) ||
BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
return false;
return true;
}
/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
u32 id)
{
const struct btf_type *t = btf_type_by_id(btf, id);
while (btf_type_is_modifier(t) &&
BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
t = btf_type_by_id(btf, t->type);
}
return t;
}
#define BTF_SHOW_MAX_ITER 10
#define BTF_KIND_BIT(kind) (1ULL << kind)
/*
* Populate show->state.name with type name information.
* Format of type name is
*
* [.member_name = ] (type_name)
*/
static const char *btf_show_name(struct btf_show *show)
{
/* BTF_MAX_ITER array suffixes "[]" */
const char *array_suffixes = "[][][][][][][][][][]";
const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
/* BTF_MAX_ITER pointer suffixes "*" */
const char *ptr_suffixes = "**********";
const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
const char *name = NULL, *prefix = "", *parens = "";
const struct btf_member *m = show->state.member;
const struct btf_type *t = show->state.type;
const struct btf_array *array;
u32 id = show->state.type_id;
const char *member = NULL;
bool show_member = false;
u64 kinds = 0;
int i;
show->state.name[0] = '\0';
/*
* Don't show type name if we're showing an array member;
* in that case we show the array type so don't need to repeat
* ourselves for each member.
*/
if (show->state.array_member)
return "";
/* Retrieve member name, if any. */
if (m) {
member = btf_name_by_offset(show->btf, m->name_off);
show_member = strlen(member) > 0;
id = m->type;
}
/*
* Start with type_id, as we have resolved the struct btf_type *
* via btf_modifier_show() past the parent typedef to the child
* struct, int etc it is defined as. In such cases, the type_id
* still represents the starting type while the struct btf_type *
* in our show->state points at the resolved type of the typedef.
*/
t = btf_type_by_id(show->btf, id);
if (!t)
return "";
/*
* The goal here is to build up the right number of pointer and
* array suffixes while ensuring the type name for a typedef
* is represented. Along the way we accumulate a list of
* BTF kinds we have encountered, since these will inform later
* display; for example, pointer types will not require an
* opening "{" for struct, we will just display the pointer value.
*
* We also want to accumulate the right number of pointer or array
* indices in the format string while iterating until we get to
* the typedef/pointee/array member target type.
*
* We start by pointing at the end of pointer and array suffix
* strings; as we accumulate pointers and arrays we move the pointer
* or array string backwards so it will show the expected number of
* '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
* and/or arrays and typedefs are supported as a precaution.
*
* We also want to get typedef name while proceeding to resolve
* type it points to so that we can add parentheses if it is a
* "typedef struct" etc.
*/
for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_TYPEDEF:
if (!name)
name = btf_name_by_offset(show->btf,
t->name_off);
kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
id = t->type;
break;
case BTF_KIND_ARRAY:
kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
parens = "[";
if (!t)
return "";
array = btf_type_array(t);
if (array_suffix > array_suffixes)
array_suffix -= 2;
id = array->type;
break;
case BTF_KIND_PTR:
kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
if (ptr_suffix > ptr_suffixes)
ptr_suffix -= 1;
id = t->type;
break;
default:
id = 0;
break;
}
if (!id)
break;
t = btf_type_skip_qualifiers(show->btf, id);
}
/* We may not be able to represent this type; bail to be safe */
if (i == BTF_SHOW_MAX_ITER)
return "";
if (!name)
name = btf_name_by_offset(show->btf, t->name_off);
switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
"struct" : "union";
/* if it's an array of struct/union, parens is already set */
if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
parens = "{";
break;
case BTF_KIND_ENUM:
prefix = "enum";
break;
default:
break;
}
/* pointer does not require parens */
if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
parens = "";
/* typedef does not require struct/union/enum prefix */
if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
prefix = "";
if (!name)
name = "";
/* Even if we don't want type name info, we want parentheses etc */
if (show->flags & BTF_SHOW_NONAME)
snprintf(show->state.name, sizeof(show->state.name), "%s",
parens);
else
snprintf(show->state.name, sizeof(show->state.name),
"%s%s%s(%s%s%s%s%s%s)%s",
/* first 3 strings comprise ".member = " */
show_member ? "." : "",
show_member ? member : "",
show_member ? " = " : "",
/* ...next is our prefix (struct, enum, etc) */
prefix,
strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
/* ...this is the type name itself */
name,
/* ...suffixed by the appropriate '*', '[]' suffixes */
strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
array_suffix, parens);
return show->state.name;
}
static const char *__btf_show_indent(struct btf_show *show)
{
const char *indents = " ";
const char *indent = &indents[strlen(indents)];
if ((indent - show->state.depth) >= indents)
return indent - show->state.depth;
return indents;
}
static const char *btf_show_indent(struct btf_show *show)
{
return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
}
static const char *btf_show_newline(struct btf_show *show)
{
return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
}
static const char *btf_show_delim(struct btf_show *show)
{
if (show->state.depth == 0)
return "";
if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
return "|";
return ",";
}
__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
{
va_list args;
if (!show->state.depth_check) {
va_start(args, fmt);
show->showfn(show, fmt, args);
va_end(args);
}
}
/* Macros are used here as btf_show_type_value[s]() prepends and appends
* format specifiers to the format specifier passed in; these do the work of
* adding indentation, delimiters etc while the caller simply has to specify
* the type value(s) in the format specifier + value(s).
*/
#define btf_show_type_value(show, fmt, value) \
do { \
if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
show->state.depth == 0) { \
btf_show(show, "%s%s" fmt "%s%s", \
btf_show_indent(show), \
btf_show_name(show), \
value, btf_show_delim(show), \
btf_show_newline(show)); \
if (show->state.depth > show->state.depth_to_show) \
show->state.depth_to_show = show->state.depth; \
} \
} while (0)
#define btf_show_type_values(show, fmt, ...) \
do { \
btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
btf_show_name(show), \
__VA_ARGS__, btf_show_delim(show), \
btf_show_newline(show)); \
if (show->state.depth > show->state.depth_to_show) \
show->state.depth_to_show = show->state.depth; \
} while (0)
/* How much is left to copy to safe buffer after @data? */
static int btf_show_obj_size_left(struct btf_show *show, void *data)
{
return show->obj.head + show->obj.size - data;
}
/* Is object pointed to by @data of @size already copied to our safe buffer? */
static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
{
return data >= show->obj.data &&
(data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
}
/*
* If object pointed to by @data of @size falls within our safe buffer, return
* the equivalent pointer to the same safe data. Assumes
* copy_from_kernel_nofault() has already happened and our safe buffer is
* populated.
*/
static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
{
if (btf_show_obj_is_safe(show, data, size))
return show->obj.safe + (data - show->obj.data);
return NULL;
}
/*
* Return a safe-to-access version of data pointed to by @data.
* We do this by copying the relevant amount of information
* to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
*
* If BTF_SHOW_UNSAFE is specified, just return data as-is; no
* safe copy is needed.
*
* Otherwise we need to determine if we have the required amount
* of data (determined by the @data pointer and the size of the
* largest base type we can encounter (represented by
* BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
* that we will be able to print some of the current object,
* and if more is needed a copy will be triggered.
* Some objects such as structs will not fit into the buffer;
* in such cases additional copies when we iterate over their
* members may be needed.
*
* btf_show_obj_safe() is used to return a safe buffer for
* btf_show_start_type(); this ensures that as we recurse into
* nested types we always have safe data for the given type.
* This approach is somewhat wasteful; it's possible for example
* that when iterating over a large union we'll end up copying the
* same data repeatedly, but the goal is safety not performance.
* We use stack data as opposed to per-CPU buffers because the
* iteration over a type can take some time, and preemption handling
* would greatly complicate use of the safe buffer.
*/
static void *btf_show_obj_safe(struct btf_show *show,
const struct btf_type *t,
void *data)
{
const struct btf_type *rt;
int size_left, size;
void *safe = NULL;
if (show->flags & BTF_SHOW_UNSAFE)
return data;
rt = btf_resolve_size(show->btf, t, &size);
if (IS_ERR(rt)) {
show->state.status = PTR_ERR(rt);
return NULL;
}
/*
* Is this toplevel object? If so, set total object size and
* initialize pointers. Otherwise check if we still fall within
* our safe object data.
*/
if (show->state.depth == 0) {
show->obj.size = size;
show->obj.head = data;
} else {
/*
* If the size of the current object is > our remaining
* safe buffer we _may_ need to do a new copy. However
* consider the case of a nested struct; it's size pushes
* us over the safe buffer limit, but showing any individual
* struct members does not. In such cases, we don't need
* to initiate a fresh copy yet; however we definitely need
* at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
* in our buffer, regardless of the current object size.
* The logic here is that as we resolve types we will
* hit a base type at some point, and we need to be sure
* the next chunk of data is safely available to display
* that type info safely. We cannot rely on the size of
* the current object here because it may be much larger
* than our current buffer (e.g. task_struct is 8k).
* All we want to do here is ensure that we can print the
* next basic type, which we can if either
* - the current type size is within the safe buffer; or
* - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
* the safe buffer.
*/
safe = __btf_show_obj_safe(show, data,
min(size,
BTF_SHOW_OBJ_BASE_TYPE_SIZE));
}
/*
* We need a new copy to our safe object, either because we haven't
* yet copied and are initializing safe data, or because the data
* we want falls outside the boundaries of the safe object.
*/
if (!safe) {
size_left = btf_show_obj_size_left(show, data);
if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
size_left = BTF_SHOW_OBJ_SAFE_SIZE;
show->state.status = copy_from_kernel_nofault(show->obj.safe,
data, size_left);
if (!show->state.status) {
show->obj.data = data;
safe = show->obj.safe;
}
}
return safe;
}
/*
* Set the type we are starting to show and return a safe data pointer
* to be used for showing the associated data.
*/
static void *btf_show_start_type(struct btf_show *show,
const struct btf_type *t,
u32 type_id, void *data)
{
show->state.type = t;
show->state.type_id = type_id;
show->state.name[0] = '\0';
return btf_show_obj_safe(show, t, data);
}
static void btf_show_end_type(struct btf_show *show)
{
show->state.type = NULL;
show->state.type_id = 0;
show->state.name[0] = '\0';
}
static void *btf_show_start_aggr_type(struct btf_show *show,
const struct btf_type *t,
u32 type_id, void *data)
{
void *safe_data = btf_show_start_type(show, t, type_id, data);
if (!safe_data)
return safe_data;
btf_show(show, "%s%s%s", btf_show_indent(show),
btf_show_name(show),
btf_show_newline(show));
show->state.depth++;
return safe_data;
}
static void btf_show_end_aggr_type(struct btf_show *show,
const char *suffix)
{
show->state.depth--;
btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
btf_show_delim(show), btf_show_newline(show));
btf_show_end_type(show);
}
static void btf_show_start_member(struct btf_show *show,
const struct btf_member *m)
{
show->state.member = m;
}
static void btf_show_start_array_member(struct btf_show *show)
{
show->state.array_member = 1;
btf_show_start_member(show, NULL);
}
static void btf_show_end_member(struct btf_show *show)
{
show->state.member = NULL;
}
static void btf_show_end_array_member(struct btf_show *show)
{
show->state.array_member = 0;
btf_show_end_member(show);
}
static void *btf_show_start_array_type(struct btf_show *show,
const struct btf_type *t,
u32 type_id,
u16 array_encoding,
void *data)
{
show->state.array_encoding = array_encoding;
show->state.array_terminated = 0;
return btf_show_start_aggr_type(show, t, type_id, data);
}
static void btf_show_end_array_type(struct btf_show *show)
{
show->state.array_encoding = 0;
show->state.array_terminated = 0;
btf_show_end_aggr_type(show, "]");
}
static void *btf_show_start_struct_type(struct btf_show *show,
const struct btf_type *t,
u32 type_id,
void *data)
{
return btf_show_start_aggr_type(show, t, type_id, data);
}
static void btf_show_end_struct_type(struct btf_show *show)
{
btf_show_end_aggr_type(show, "}");
}
__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
const struct btf_type *t,
bool log_details,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
u8 kind = BTF_INFO_KIND(t->info);
struct btf *btf = env->btf;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
/* btf verifier prints all types it is processing via
* btf_verifier_log_type(..., fmt = NULL).
* Skip those prints for in-kernel BTF verification.
*/
if (log->level == BPF_LOG_KERNEL && !fmt)
return;
__btf_verifier_log(log, "[%u] %s %s%s",
env->log_type_id,
btf_kind_str[kind],
2018-12-13 10:41:46 -08:00
__btf_name_by_offset(btf, t->name_off),
log_details ? " " : "");
if (log_details)
btf_type_ops(t)->log_details(env, t);
if (fmt && *fmt) {
__btf_verifier_log(log, " ");
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__btf_verifier_log(log, "\n");
}
#define btf_verifier_log_type(env, t, ...) \
__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
#define btf_verifier_log_basic(env, t, ...) \
__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
__printf(4, 5)
static void btf_verifier_log_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
struct btf *btf = env->btf;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
if (log->level == BPF_LOG_KERNEL && !fmt)
return;
/* The CHECK_META phase already did a btf dump.
*
* If member is logged again, it must hit an error in
* parsing this member. It is useful to print out which
* struct this member belongs to.
*/
if (env->phase != CHECK_META)
btf_verifier_log_type(env, struct_type, NULL);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(struct_type))
__btf_verifier_log(log,
"\t%s type_id=%u bitfield_size=%u bits_offset=%u",
__btf_name_by_offset(btf, member->name_off),
member->type,
BTF_MEMBER_BITFIELD_SIZE(member->offset),
BTF_MEMBER_BIT_OFFSET(member->offset));
else
__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
__btf_name_by_offset(btf, member->name_off),
member->type, member->offset);
if (fmt && *fmt) {
__btf_verifier_log(log, " ");
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__btf_verifier_log(log, "\n");
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
__printf(4, 5)
static void btf_verifier_log_vsi(struct btf_verifier_env *env,
const struct btf_type *datasec_type,
const struct btf_var_secinfo *vsi,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
if (log->level == BPF_LOG_KERNEL && !fmt)
return;
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (env->phase != CHECK_META)
btf_verifier_log_type(env, datasec_type, NULL);
__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
vsi->type, vsi->offset, vsi->size);
if (fmt && *fmt) {
__btf_verifier_log(log, " ");
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__btf_verifier_log(log, "\n");
}
static void btf_verifier_log_hdr(struct btf_verifier_env *env,
u32 btf_data_size)
{
struct bpf_verifier_log *log = &env->log;
const struct btf *btf = env->btf;
const struct btf_header *hdr;
if (!bpf_verifier_log_needed(log))
return;
if (log->level == BPF_LOG_KERNEL)
return;
hdr = &btf->hdr;
__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
__btf_verifier_log(log, "version: %u\n", hdr->version);
__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
}
static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
{
struct btf *btf = env->btf;
if (btf->types_size == btf->nr_types) {
/* Expand 'types' array */
struct btf_type **new_types;
u32 expand_by, new_size;
if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
btf_verifier_log(env, "Exceeded max num of types");
return -E2BIG;
}
expand_by = max_t(u32, btf->types_size >> 2, 16);
new_size = min_t(u32, BTF_MAX_TYPE,
btf->types_size + expand_by);
treewide: kvzalloc() -> kvcalloc() The kvzalloc() function has a 2-factor argument form, kvcalloc(). This patch replaces cases of: kvzalloc(a * b, gfp) with: kvcalloc(a * b, gfp) as well as handling cases of: kvzalloc(a * b * c, gfp) with: kvzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvcalloc(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(char) * COUNT + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvzalloc + kvcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvzalloc(C1 * C2 * C3, ...) | kvzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvzalloc(sizeof(THING) * C2, ...) | kvzalloc(sizeof(TYPE) * C2, ...) | kvzalloc(C1 * C2 * C3, ...) | kvzalloc(C1 * C2, ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - (E1) * E2 + E1, E2 , ...) | - kvzalloc + kvcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kvzalloc + kvcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:04:48 -07:00
new_types = kvcalloc(new_size, sizeof(*new_types),
GFP_KERNEL | __GFP_NOWARN);
if (!new_types)
return -ENOMEM;
if (btf->nr_types == 0) {
if (!btf->base_btf) {
/* lazily init VOID type */
new_types[0] = &btf_void;
btf->nr_types++;
}
} else {
memcpy(new_types, btf->types,
sizeof(*btf->types) * btf->nr_types);
}
kvfree(btf->types);
btf->types = new_types;
btf->types_size = new_size;
}
btf->types[btf->nr_types++] = t;
return 0;
}
static int btf_alloc_id(struct btf *btf)
{
int id;
idr_preload(GFP_KERNEL);
spin_lock_bh(&btf_idr_lock);
id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
if (id > 0)
btf->id = id;
spin_unlock_bh(&btf_idr_lock);
idr_preload_end();
if (WARN_ON_ONCE(!id))
return -ENOSPC;
return id > 0 ? 0 : id;
}
static void btf_free_id(struct btf *btf)
{
unsigned long flags;
/*
* In map-in-map, calling map_delete_elem() on outer
* map will call bpf_map_put on the inner map.
* It will then eventually call btf_free_id()
* on the inner map. Some of the map_delete_elem()
* implementation may have irq disabled, so
* we need to use the _irqsave() version instead
* of the _bh() version.
*/
spin_lock_irqsave(&btf_idr_lock, flags);
idr_remove(&btf_idr, btf->id);
spin_unlock_irqrestore(&btf_idr_lock, flags);
}
static void btf_free(struct btf *btf)
{
kvfree(btf->types);
kvfree(btf->resolved_sizes);
kvfree(btf->resolved_ids);
kvfree(btf->data);
kfree(btf);
}
static void btf_free_rcu(struct rcu_head *rcu)
{
struct btf *btf = container_of(rcu, struct btf, rcu);
btf_free(btf);
}
void btf_get(struct btf *btf)
{
refcount_inc(&btf->refcnt);
}
void btf_put(struct btf *btf)
{
if (btf && refcount_dec_and_test(&btf->refcnt)) {
btf_free_id(btf);
call_rcu(&btf->rcu, btf_free_rcu);
}
}
static int env_resolve_init(struct btf_verifier_env *env)
{
struct btf *btf = env->btf;
u32 nr_types = btf->nr_types;
u32 *resolved_sizes = NULL;
u32 *resolved_ids = NULL;
u8 *visit_states = NULL;
resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
GFP_KERNEL | __GFP_NOWARN);
if (!resolved_sizes)
goto nomem;
resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
GFP_KERNEL | __GFP_NOWARN);
if (!resolved_ids)
goto nomem;
visit_states = kvcalloc(nr_types, sizeof(*visit_states),
GFP_KERNEL | __GFP_NOWARN);
if (!visit_states)
goto nomem;
btf->resolved_sizes = resolved_sizes;
btf->resolved_ids = resolved_ids;
env->visit_states = visit_states;
return 0;
nomem:
kvfree(resolved_sizes);
kvfree(resolved_ids);
kvfree(visit_states);
return -ENOMEM;
}
static void btf_verifier_env_free(struct btf_verifier_env *env)
{
kvfree(env->visit_states);
kfree(env);
}
static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
const struct btf_type *next_type)
{
switch (env->resolve_mode) {
case RESOLVE_TBD:
/* int, enum or void is a sink */
return !btf_type_needs_resolve(next_type);
case RESOLVE_PTR:
/* int, enum, void, struct, array, func or func_proto is a sink
* for ptr
*/
return !btf_type_is_modifier(next_type) &&
!btf_type_is_ptr(next_type);
case RESOLVE_STRUCT_OR_ARRAY:
/* int, enum, void, ptr, func or func_proto is a sink
* for struct and array
*/
return !btf_type_is_modifier(next_type) &&
!btf_type_is_array(next_type) &&
!btf_type_is_struct(next_type);
default:
BUG();
}
}
static bool env_type_is_resolved(const struct btf_verifier_env *env,
u32 type_id)
{
/* base BTF types should be resolved by now */
if (type_id < env->btf->start_id)
return true;
return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
}
static int env_stack_push(struct btf_verifier_env *env,
const struct btf_type *t, u32 type_id)
{
const struct btf *btf = env->btf;
struct resolve_vertex *v;
if (env->top_stack == MAX_RESOLVE_DEPTH)
return -E2BIG;
if (type_id < btf->start_id
|| env->visit_states[type_id - btf->start_id] != NOT_VISITED)
return -EEXIST;
env->visit_states[type_id - btf->start_id] = VISITED;
v = &env->stack[env->top_stack++];
v->t = t;
v->type_id = type_id;
v->next_member = 0;
if (env->resolve_mode == RESOLVE_TBD) {
if (btf_type_is_ptr(t))
env->resolve_mode = RESOLVE_PTR;
else if (btf_type_is_struct(t) || btf_type_is_array(t))
env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
}
return 0;
}
static void env_stack_set_next_member(struct btf_verifier_env *env,
u16 next_member)
{
env->stack[env->top_stack - 1].next_member = next_member;
}
static void env_stack_pop_resolved(struct btf_verifier_env *env,
u32 resolved_type_id,
u32 resolved_size)
{
u32 type_id = env->stack[--(env->top_stack)].type_id;
struct btf *btf = env->btf;
type_id -= btf->start_id; /* adjust to local type id */
btf->resolved_sizes[type_id] = resolved_size;
btf->resolved_ids[type_id] = resolved_type_id;
env->visit_states[type_id] = RESOLVED;
}
static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
{
return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
}
/* Resolve the size of a passed-in "type"
*
* type: is an array (e.g. u32 array[x][y])
* return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
* *type_size: (x * y * sizeof(u32)). Hence, *type_size always
* corresponds to the return type.
* *elem_type: u32
* *elem_id: id of u32
* *total_nelems: (x * y). Hence, individual elem size is
* (*type_size / *total_nelems)
* *type_id: id of type if it's changed within the function, 0 if not
*
* type: is not an array (e.g. const struct X)
* return type: type "struct X"
* *type_size: sizeof(struct X)
* *elem_type: same as return type ("struct X")
* *elem_id: 0
* *total_nelems: 1
* *type_id: id of type if it's changed within the function, 0 if not
*/
static const struct btf_type *
__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
u32 *type_size, const struct btf_type **elem_type,
u32 *elem_id, u32 *total_nelems, u32 *type_id)
{
const struct btf_type *array_type = NULL;
const struct btf_array *array = NULL;
u32 i, size, nelems = 1, id = 0;
for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
switch (BTF_INFO_KIND(type->info)) {
/* type->size can be used */
case BTF_KIND_INT:
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
case BTF_KIND_ENUM:
case BTF_KIND_FLOAT:
size = type->size;
goto resolved;
case BTF_KIND_PTR:
size = sizeof(void *);
goto resolved;
/* Modifiers */
case BTF_KIND_TYPEDEF:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
id = type->type;
type = btf_type_by_id(btf, type->type);
break;
case BTF_KIND_ARRAY:
if (!array_type)
array_type = type;
array = btf_type_array(type);
if (nelems && array->nelems > U32_MAX / nelems)
return ERR_PTR(-EINVAL);
nelems *= array->nelems;
type = btf_type_by_id(btf, array->type);
break;
/* type without size */
default:
return ERR_PTR(-EINVAL);
}
}
return ERR_PTR(-EINVAL);
resolved:
if (nelems && size > U32_MAX / nelems)
return ERR_PTR(-EINVAL);
*type_size = nelems * size;
bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS The patch introduces BPF_MAP_TYPE_STRUCT_OPS. The map value is a kernel struct with its func ptr implemented in bpf prog. This new map is the interface to register/unregister/introspect a bpf implemented kernel struct. The kernel struct is actually embedded inside another new struct (or called the "value" struct in the code). For example, "struct tcp_congestion_ops" is embbeded in: struct bpf_struct_ops_tcp_congestion_ops { refcount_t refcnt; enum bpf_struct_ops_state state; struct tcp_congestion_ops data; /* <-- kernel subsystem struct here */ } The map value is "struct bpf_struct_ops_tcp_congestion_ops". The "bpftool map dump" will then be able to show the state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g. number of tcp_sock in the tcp_congestion_ops case). This "value" struct is created automatically by a macro. Having a separate "value" struct will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding "void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some initialization works before registering the struct_ops to the kernel subsystem). The libbpf will take care of finding and populating the "struct bpf_struct_ops_XYZ" from "struct XYZ". Register a struct_ops to a kernel subsystem: 1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s) 2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the running kernel. Instead of reusing the attr->btf_value_type_id, btf_vmlinux_value_type_id s added such that attr->btf_fd can still be used as the "user" btf which could store other useful sysadmin/debug info that may be introduced in the furture, e.g. creation-date/compiler-details/map-creator...etc. 3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described in the running kernel btf. Populate the value of this object. The function ptr should be populated with the prog fds. 4. Call BPF_MAP_UPDATE with the object created in (3) as the map value. The key is always "0". During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's args as an array of u64 is generated. BPF_MAP_UPDATE also allows the specific struct_ops to do some final checks in "st_ops->init_member()" (e.g. ensure all mandatory func ptrs are implemented). If everything looks good, it will register this kernel struct to the kernel subsystem. The map will not allow further update from this point. Unregister a struct_ops from the kernel subsystem: BPF_MAP_DELETE with key "0". Introspect a struct_ops: BPF_MAP_LOOKUP_ELEM with key "0". The map value returned will have the prog _id_ populated as the func ptr. The map value state (enum bpf_struct_ops_state) will transit from: INIT (map created) => INUSE (map updated, i.e. reg) => TOBEFREE (map value deleted, i.e. unreg) The kernel subsystem needs to call bpf_struct_ops_get() and bpf_struct_ops_put() to manage the "refcnt" in the "struct bpf_struct_ops_XYZ". This patch uses a separate refcnt for the purose of tracking the subsystem usage. Another approach is to reuse the map->refcnt and then "show" (i.e. during map_lookup) the subsystem's usage by doing map->refcnt - map->usercnt to filter out the map-fd/pinned-map usage. However, that will also tie down the future semantics of map->refcnt and map->usercnt. The very first subsystem's refcnt (during reg()) holds one count to map->refcnt. When the very last subsystem's refcnt is gone, it will also release the map->refcnt. All bpf_prog will be freed when the map->refcnt reaches 0 (i.e. during map_free()). Here is how the bpftool map command will look like: [root@arch-fb-vm1 bpf]# bpftool map show 6: struct_ops name dctcp flags 0x0 key 4B value 256B max_entries 1 memlock 4096B btf_id 6 [root@arch-fb-vm1 bpf]# bpftool map dump id 6 [{ "value": { "refcnt": { "refs": { "counter": 1 } }, "state": 1, "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 2, "init": 24, "release": 0, "ssthresh": 25, "cong_avoid": 30, "set_state": 27, "cwnd_event": 28, "in_ack_event": 26, "undo_cwnd": 29, "pkts_acked": 0, "min_tso_segs": 0, "sndbuf_expand": 0, "cong_control": 0, "get_info": 0, "name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0 ], "owner": 0 } } } ] Misc Notes: * bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup. It does an inplace update on "*value" instead returning a pointer to syscall.c. Otherwise, it needs a separate copy of "zero" value for the BPF_STRUCT_OPS_STATE_INIT to avoid races. * The bpf_struct_ops_map_delete_elem() is also called without preempt_disable() from map_delete_elem(). It is because the "->unreg()" may requires sleepable context, e.g. the "tcp_unregister_congestion_control()". * "const" is added to some of the existing "struct btf_func_model *" function arg to avoid a compiler warning caused by this patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com
2020-01-08 16:35:05 -08:00
if (total_nelems)
*total_nelems = nelems;
if (elem_type)
*elem_type = type;
if (elem_id)
*elem_id = array ? array->type : 0;
if (type_id && id)
*type_id = id;
return array_type ? : type;
}
const struct btf_type *
btf_resolve_size(const struct btf *btf, const struct btf_type *type,
u32 *type_size)
{
return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
}
static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
{
while (type_id < btf->start_id)
btf = btf->base_btf;
return btf->resolved_ids[type_id - btf->start_id];
}
/* The input param "type_id" must point to a needs_resolve type */
static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
u32 *type_id)
{
*type_id = btf_resolved_type_id(btf, *type_id);
return btf_type_by_id(btf, *type_id);
}
static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
{
while (type_id < btf->start_id)
btf = btf->base_btf;
return btf->resolved_sizes[type_id - btf->start_id];
}
const struct btf_type *btf_type_id_size(const struct btf *btf,
u32 *type_id, u32 *ret_size)
{
const struct btf_type *size_type;
u32 size_type_id = *type_id;
u32 size = 0;
size_type = btf_type_by_id(btf, size_type_id);
if (btf_type_nosize_or_null(size_type))
return NULL;
if (btf_type_has_size(size_type)) {
size = size_type->size;
} else if (btf_type_is_array(size_type)) {
size = btf_resolved_type_size(btf, size_type_id);
} else if (btf_type_is_ptr(size_type)) {
size = sizeof(void *);
} else {
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
!btf_type_is_var(size_type)))
return NULL;
size_type_id = btf_resolved_type_id(btf, size_type_id);
size_type = btf_type_by_id(btf, size_type_id);
if (btf_type_nosize_or_null(size_type))
return NULL;
bpf: fix BTF verifier size resolution logic BTF verifier has a size resolution bug which in some circumstances leads to invalid size resolution for, e.g., TYPEDEF modifier. This happens if we have [1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer context ARRAY size won't be resolved (because for pointer it doesn't matter, so it's a sink in pointer context), but it will be permanently remembered as zero for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will be resolved correctly, but TYPEDEF resolved_size won't be updated anymore. This, subsequently, will lead to erroneous map creation failure, if that TYPEDEF is specified as either key or value, as key_size/value_size won't correspond to resolved size of TYPEDEF (kernel will believe it's zero). Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already calculated and stored. This bug manifests itself in rejecting BTF-defined maps that use array typedef as a value type: typedef int array_t[16]; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(value, array_t); /* i.e., array_t *value; */ } test_map SEC(".maps"); The fix consists on not relying on modifier's resolved_size and instead using modifier's resolved_id (type ID for "concrete" type to which modifier eventually resolves) and doing size determination for that resolved type. This allow to preserve existing "early DFS termination" logic for PTR or STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier types. Fixes: eb3f595dab40 ("bpf: btf: Validate type reference") Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-07-12 10:25:55 -07:00
else if (btf_type_has_size(size_type))
size = size_type->size;
else if (btf_type_is_array(size_type))
size = btf_resolved_type_size(btf, size_type_id);
bpf: fix BTF verifier size resolution logic BTF verifier has a size resolution bug which in some circumstances leads to invalid size resolution for, e.g., TYPEDEF modifier. This happens if we have [1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer context ARRAY size won't be resolved (because for pointer it doesn't matter, so it's a sink in pointer context), but it will be permanently remembered as zero for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will be resolved correctly, but TYPEDEF resolved_size won't be updated anymore. This, subsequently, will lead to erroneous map creation failure, if that TYPEDEF is specified as either key or value, as key_size/value_size won't correspond to resolved size of TYPEDEF (kernel will believe it's zero). Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already calculated and stored. This bug manifests itself in rejecting BTF-defined maps that use array typedef as a value type: typedef int array_t[16]; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(value, array_t); /* i.e., array_t *value; */ } test_map SEC(".maps"); The fix consists on not relying on modifier's resolved_size and instead using modifier's resolved_id (type ID for "concrete" type to which modifier eventually resolves) and doing size determination for that resolved type. This allow to preserve existing "early DFS termination" logic for PTR or STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier types. Fixes: eb3f595dab40 ("bpf: btf: Validate type reference") Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-07-12 10:25:55 -07:00
else if (btf_type_is_ptr(size_type))
size = sizeof(void *);
else
return NULL;
}
*type_id = size_type_id;
if (ret_size)
*ret_size = size;
return size_type;
}
static int btf_df_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
btf_verifier_log_basic(env, struct_type,
"Unsupported check_member");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
static int btf_df_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
btf_verifier_log_basic(env, struct_type,
"Unsupported check_kflag_member");
return -EINVAL;
}
/* Used for ptr, array struct/union and float type members.
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
* int, enum and modifier types have their specific callback functions.
*/
static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member bitfield_size");
return -EINVAL;
}
/* bitfield size is 0, so member->offset represents bit offset only.
* It is safe to call non kflag check_member variants.
*/
return btf_type_ops(member_type)->check_member(env, struct_type,
member,
member_type);
}
static int btf_df_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
btf_verifier_log_basic(env, v->t, "Unsupported resolve");
return -EINVAL;
}
static void btf_df_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offsets,
struct btf_show *show)
{
btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
}
static int btf_int_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 int_data = btf_type_int(member_type);
u32 struct_bits_off = member->offset;
u32 struct_size = struct_type->size;
u32 nr_copy_bits;
u32 bytes_offset;
if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
btf_verifier_log_member(env, struct_type, member,
"bits_offset exceeds U32_MAX");
return -EINVAL;
}
struct_bits_off += BTF_INT_OFFSET(int_data);
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
nr_copy_bits = BTF_INT_BITS(int_data) +
BITS_PER_BYTE_MASKED(struct_bits_off);
if (nr_copy_bits > BITS_PER_U128) {
btf_verifier_log_member(env, struct_type, member,
"nr_copy_bits exceeds 128");
return -EINVAL;
}
if (struct_size < bytes_offset ||
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
static int btf_int_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
u32 int_data = btf_type_int(member_type);
u32 struct_size = struct_type->size;
u32 nr_copy_bits;
/* a regular int type is required for the kflag int member */
if (!btf_type_int_is_regular(member_type)) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member base type");
return -EINVAL;
}
/* check sanity of bitfield size */
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
nr_int_data_bits = BTF_INT_BITS(int_data);
if (!nr_bits) {
/* Not a bitfield member, member offset must be at byte
* boundary.
*/
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member offset");
return -EINVAL;
}
nr_bits = nr_int_data_bits;
} else if (nr_bits > nr_int_data_bits) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member bitfield_size");
return -EINVAL;
}
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
if (nr_copy_bits > BITS_PER_U128) {
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
btf_verifier_log_member(env, struct_type, member,
"nr_copy_bits exceeds 128");
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
return -EINVAL;
}
if (struct_size < bytes_offset ||
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_int_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
u32 int_data, nr_bits, meta_needed = sizeof(int_data);
u16 encoding;
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
int_data = btf_type_int(t);
if (int_data & ~BTF_INT_MASK) {
btf_verifier_log_basic(env, t, "Invalid int_data:%x",
int_data);
return -EINVAL;
}
nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
if (nr_bits > BITS_PER_U128) {
btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
BITS_PER_U128);
return -EINVAL;
}
if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
return -EINVAL;
}
/*
* Only one of the encoding bits is allowed and it
* should be sufficient for the pretty print purpose (i.e. decoding).
* Multiple bits can be allowed later if it is found
* to be insufficient.
*/
encoding = BTF_INT_ENCODING(int_data);
if (encoding &&
encoding != BTF_INT_SIGNED &&
encoding != BTF_INT_CHAR &&
encoding != BTF_INT_BOOL) {
btf_verifier_log_type(env, t, "Unsupported encoding");
return -ENOTSUPP;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static void btf_int_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
int int_data = btf_type_int(t);
btf_verifier_log(env,
"size=%u bits_offset=%u nr_bits=%u encoding=%s",
t->size, BTF_INT_OFFSET(int_data),
BTF_INT_BITS(int_data),
btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
}
static void btf_int128_print(struct btf_show *show, void *data)
{
/* data points to a __int128 number.
* Suppose
* int128_num = *(__int128 *)data;
* The below formulas shows what upper_num and lower_num represents:
* upper_num = int128_num >> 64;
* lower_num = int128_num & 0xffffffffFFFFFFFFULL;
*/
u64 upper_num, lower_num;
#ifdef __BIG_ENDIAN_BITFIELD
upper_num = *(u64 *)data;
lower_num = *(u64 *)(data + 8);
#else
upper_num = *(u64 *)(data + 8);
lower_num = *(u64 *)data;
#endif
if (upper_num == 0)
btf_show_type_value(show, "0x%llx", lower_num);
else
btf_show_type_values(show, "0x%llx%016llx", upper_num,
lower_num);
}
static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
u16 right_shift_bits)
{
u64 upper_num, lower_num;
#ifdef __BIG_ENDIAN_BITFIELD
upper_num = print_num[0];
lower_num = print_num[1];
#else
upper_num = print_num[1];
lower_num = print_num[0];
#endif
/* shake out un-needed bits by shift/or operations */
if (left_shift_bits >= 64) {
upper_num = lower_num << (left_shift_bits - 64);
lower_num = 0;
} else {
upper_num = (upper_num << left_shift_bits) |
(lower_num >> (64 - left_shift_bits));
lower_num = lower_num << left_shift_bits;
}
if (right_shift_bits >= 64) {
lower_num = upper_num >> (right_shift_bits - 64);
upper_num = 0;
} else {
lower_num = (lower_num >> right_shift_bits) |
(upper_num << (64 - right_shift_bits));
upper_num = upper_num >> right_shift_bits;
}
#ifdef __BIG_ENDIAN_BITFIELD
print_num[0] = upper_num;
print_num[1] = lower_num;
#else
print_num[0] = lower_num;
print_num[1] = upper_num;
#endif
}
static void btf_bitfield_show(void *data, u8 bits_offset,
u8 nr_bits, struct btf_show *show)
{
u16 left_shift_bits, right_shift_bits;
u8 nr_copy_bytes;
u8 nr_copy_bits;
u64 print_num[2] = {};
nr_copy_bits = nr_bits + bits_offset;
nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
memcpy(print_num, data, nr_copy_bytes);
#ifdef __BIG_ENDIAN_BITFIELD
left_shift_bits = bits_offset;
#else
left_shift_bits = BITS_PER_U128 - nr_copy_bits;
#endif
right_shift_bits = BITS_PER_U128 - nr_bits;
btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
btf_int128_print(show, print_num);
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
static void btf_int_bits_show(const struct btf *btf,
const struct btf_type *t,
void *data, u8 bits_offset,
struct btf_show *show)
{
u32 int_data = btf_type_int(t);
u8 nr_bits = BTF_INT_BITS(int_data);
u8 total_bits_offset;
/*
* bits_offset is at most 7.
* BTF_INT_OFFSET() cannot exceed 128 bits.
*/
total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
btf_bitfield_show(data, bits_offset, nr_bits, show);
}
static void btf_int_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
{
u32 int_data = btf_type_int(t);
u8 encoding = BTF_INT_ENCODING(int_data);
bool sign = encoding & BTF_INT_SIGNED;
u8 nr_bits = BTF_INT_BITS(int_data);
void *safe_data;
safe_data = btf_show_start_type(show, t, type_id, data);
if (!safe_data)
return;
if (bits_offset || BTF_INT_OFFSET(int_data) ||
BITS_PER_BYTE_MASKED(nr_bits)) {
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
goto out;
}
switch (nr_bits) {
case 128:
btf_int128_print(show, safe_data);
break;
case 64:
if (sign)
btf_show_type_value(show, "%lld", *(s64 *)safe_data);
else
btf_show_type_value(show, "%llu", *(u64 *)safe_data);
break;
case 32:
if (sign)
btf_show_type_value(show, "%d", *(s32 *)safe_data);
else
btf_show_type_value(show, "%u", *(u32 *)safe_data);
break;
case 16:
if (sign)
btf_show_type_value(show, "%d", *(s16 *)safe_data);
else
btf_show_type_value(show, "%u", *(u16 *)safe_data);
break;
case 8:
if (show->state.array_encoding == BTF_INT_CHAR) {
/* check for null terminator */
if (show->state.array_terminated)
break;
if (*(char *)data == '\0') {
show->state.array_terminated = 1;
break;
}
if (isprint(*(char *)data)) {
btf_show_type_value(show, "'%c'",
*(char *)safe_data);
break;
}
}
if (sign)
btf_show_type_value(show, "%d", *(s8 *)safe_data);
else
btf_show_type_value(show, "%u", *(u8 *)safe_data);
break;
default:
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
break;
}
out:
btf_show_end_type(show);
}
static const struct btf_kind_operations int_ops = {
.check_meta = btf_int_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_int_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_int_check_kflag_member,
.log_details = btf_int_log,
.show = btf_int_show,
};
static int btf_modifier_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
const struct btf_type *resolved_type;
u32 resolved_type_id = member->type;
struct btf_member resolved_member;
struct btf *btf = env->btf;
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
if (!resolved_type) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member");
return -EINVAL;
}
resolved_member = *member;
resolved_member.type = resolved_type_id;
return btf_type_ops(resolved_type)->check_member(env, struct_type,
&resolved_member,
resolved_type);
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
const struct btf_type *resolved_type;
u32 resolved_type_id = member->type;
struct btf_member resolved_member;
struct btf *btf = env->btf;
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
if (!resolved_type) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member");
return -EINVAL;
}
resolved_member = *member;
resolved_member.type = resolved_type_id;
return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
&resolved_member,
resolved_type);
}
static int btf_ptr_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_size, struct_bits_off, bytes_offset;
struct_size = struct_type->size;
struct_bits_off = member->offset;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
if (struct_size - bytes_offset < sizeof(void *)) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static int btf_ref_type_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (!BTF_TYPE_ID_VALID(t->type)) {
btf_verifier_log_type(env, t, "Invalid type_id");
return -EINVAL;
}
/* typedef type must have a valid name, and other ref types,
* volatile, const, restrict, should have a null name.
*/
if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
if (!t->name_off ||
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
} else {
if (t->name_off) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
}
btf_verifier_log_type(env, t, NULL);
return 0;
}
static int btf_modifier_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_type *t = v->t;
const struct btf_type *next_type;
u32 next_type_id = t->type;
struct btf *btf = env->btf;
next_type = btf_type_by_id(btf, next_type_id);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, next_type) &&
!env_type_is_resolved(env, next_type_id))
return env_stack_push(env, next_type, next_type_id);
/* Figure out the resolved next_type_id with size.
* They will be stored in the current modifier's
* resolved_ids and resolved_sizes such that it can
* save us a few type-following when we use it later (e.g. in
* pretty print).
*/
bpf: fix BTF verifier size resolution logic BTF verifier has a size resolution bug which in some circumstances leads to invalid size resolution for, e.g., TYPEDEF modifier. This happens if we have [1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer context ARRAY size won't be resolved (because for pointer it doesn't matter, so it's a sink in pointer context), but it will be permanently remembered as zero for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will be resolved correctly, but TYPEDEF resolved_size won't be updated anymore. This, subsequently, will lead to erroneous map creation failure, if that TYPEDEF is specified as either key or value, as key_size/value_size won't correspond to resolved size of TYPEDEF (kernel will believe it's zero). Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already calculated and stored. This bug manifests itself in rejecting BTF-defined maps that use array typedef as a value type: typedef int array_t[16]; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(value, array_t); /* i.e., array_t *value; */ } test_map SEC(".maps"); The fix consists on not relying on modifier's resolved_size and instead using modifier's resolved_id (type ID for "concrete" type to which modifier eventually resolves) and doing size determination for that resolved type. This allow to preserve existing "early DFS termination" logic for PTR or STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier types. Fixes: eb3f595dab40 ("bpf: btf: Validate type reference") Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-07-12 10:25:55 -07:00
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
if (env_type_is_resolved(env, next_type_id))
next_type = btf_type_id_resolve(btf, &next_type_id);
/* "typedef void new_void", "const void"...etc */
if (!btf_type_is_void(next_type) &&
!btf_type_is_fwd(next_type) &&
!btf_type_is_func_proto(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
}
bpf: fix BTF verifier size resolution logic BTF verifier has a size resolution bug which in some circumstances leads to invalid size resolution for, e.g., TYPEDEF modifier. This happens if we have [1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer context ARRAY size won't be resolved (because for pointer it doesn't matter, so it's a sink in pointer context), but it will be permanently remembered as zero for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will be resolved correctly, but TYPEDEF resolved_size won't be updated anymore. This, subsequently, will lead to erroneous map creation failure, if that TYPEDEF is specified as either key or value, as key_size/value_size won't correspond to resolved size of TYPEDEF (kernel will believe it's zero). Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already calculated and stored. This bug manifests itself in rejecting BTF-defined maps that use array typedef as a value type: typedef int array_t[16]; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(value, array_t); /* i.e., array_t *value; */ } test_map SEC(".maps"); The fix consists on not relying on modifier's resolved_size and instead using modifier's resolved_id (type ID for "concrete" type to which modifier eventually resolves) and doing size determination for that resolved type. This allow to preserve existing "early DFS termination" logic for PTR or STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier types. Fixes: eb3f595dab40 ("bpf: btf: Validate type reference") Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-07-12 10:25:55 -07:00
env_stack_pop_resolved(env, next_type_id, 0);
return 0;
}
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
static int btf_var_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_type *next_type;
const struct btf_type *t = v->t;
u32 next_type_id = t->type;
struct btf *btf = env->btf;
next_type = btf_type_by_id(btf, next_type_id);
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, next_type) &&
!env_type_is_resolved(env, next_type_id))
return env_stack_push(env, next_type, next_type_id);
if (btf_type_is_modifier(next_type)) {
const struct btf_type *resolved_type;
u32 resolved_type_id;
resolved_type_id = next_type_id;
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
if (btf_type_is_ptr(resolved_type) &&
!env_type_is_resolve_sink(env, resolved_type) &&
!env_type_is_resolved(env, resolved_type_id))
return env_stack_push(env, resolved_type,
resolved_type_id);
}
/* We must resolve to something concrete at this point, no
* forward types or similar that would resolve to size of
* zero is allowed.
*/
bpf: fix BTF verifier size resolution logic BTF verifier has a size resolution bug which in some circumstances leads to invalid size resolution for, e.g., TYPEDEF modifier. This happens if we have [1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer context ARRAY size won't be resolved (because for pointer it doesn't matter, so it's a sink in pointer context), but it will be permanently remembered as zero for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will be resolved correctly, but TYPEDEF resolved_size won't be updated anymore. This, subsequently, will lead to erroneous map creation failure, if that TYPEDEF is specified as either key or value, as key_size/value_size won't correspond to resolved size of TYPEDEF (kernel will believe it's zero). Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already calculated and stored. This bug manifests itself in rejecting BTF-defined maps that use array typedef as a value type: typedef int array_t[16]; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(value, array_t); /* i.e., array_t *value; */ } test_map SEC(".maps"); The fix consists on not relying on modifier's resolved_size and instead using modifier's resolved_id (type ID for "concrete" type to which modifier eventually resolves) and doing size determination for that resolved type. This allow to preserve existing "early DFS termination" logic for PTR or STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier types. Fixes: eb3f595dab40 ("bpf: btf: Validate type reference") Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-07-12 10:25:55 -07:00
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
bpf: fix BTF verifier size resolution logic BTF verifier has a size resolution bug which in some circumstances leads to invalid size resolution for, e.g., TYPEDEF modifier. This happens if we have [1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer context ARRAY size won't be resolved (because for pointer it doesn't matter, so it's a sink in pointer context), but it will be permanently remembered as zero for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will be resolved correctly, but TYPEDEF resolved_size won't be updated anymore. This, subsequently, will lead to erroneous map creation failure, if that TYPEDEF is specified as either key or value, as key_size/value_size won't correspond to resolved size of TYPEDEF (kernel will believe it's zero). Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already calculated and stored. This bug manifests itself in rejecting BTF-defined maps that use array typedef as a value type: typedef int array_t[16]; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(value, array_t); /* i.e., array_t *value; */ } test_map SEC(".maps"); The fix consists on not relying on modifier's resolved_size and instead using modifier's resolved_id (type ID for "concrete" type to which modifier eventually resolves) and doing size determination for that resolved type. This allow to preserve existing "early DFS termination" logic for PTR or STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier types. Fixes: eb3f595dab40 ("bpf: btf: Validate type reference") Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-07-12 10:25:55 -07:00
env_stack_pop_resolved(env, next_type_id, 0);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
return 0;
}
static int btf_ptr_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_type *next_type;
const struct btf_type *t = v->t;
u32 next_type_id = t->type;
struct btf *btf = env->btf;
next_type = btf_type_by_id(btf, next_type_id);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, next_type) &&
!env_type_is_resolved(env, next_type_id))
return env_stack_push(env, next_type, next_type_id);
/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
* the modifier may have stopped resolving when it was resolved
* to a ptr (last-resolved-ptr).
*
* We now need to continue from the last-resolved-ptr to
* ensure the last-resolved-ptr will not referring back to
* the currenct ptr (t).
*/
if (btf_type_is_modifier(next_type)) {
const struct btf_type *resolved_type;
u32 resolved_type_id;
resolved_type_id = next_type_id;
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
if (btf_type_is_ptr(resolved_type) &&
!env_type_is_resolve_sink(env, resolved_type) &&
!env_type_is_resolved(env, resolved_type_id))
return env_stack_push(env, resolved_type,
resolved_type_id);
}
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
if (env_type_is_resolved(env, next_type_id))
next_type = btf_type_id_resolve(btf, &next_type_id);
if (!btf_type_is_void(next_type) &&
!btf_type_is_fwd(next_type) &&
!btf_type_is_func_proto(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
}
env_stack_pop_resolved(env, next_type_id, 0);
return 0;
}
static void btf_modifier_show(const struct btf *btf,
const struct btf_type *t,
u32 type_id, void *data,
u8 bits_offset, struct btf_show *show)
{
bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS The patch introduces BPF_MAP_TYPE_STRUCT_OPS. The map value is a kernel struct with its func ptr implemented in bpf prog. This new map is the interface to register/unregister/introspect a bpf implemented kernel struct. The kernel struct is actually embedded inside another new struct (or called the "value" struct in the code). For example, "struct tcp_congestion_ops" is embbeded in: struct bpf_struct_ops_tcp_congestion_ops { refcount_t refcnt; enum bpf_struct_ops_state state; struct tcp_congestion_ops data; /* <-- kernel subsystem struct here */ } The map value is "struct bpf_struct_ops_tcp_congestion_ops". The "bpftool map dump" will then be able to show the state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g. number of tcp_sock in the tcp_congestion_ops case). This "value" struct is created automatically by a macro. Having a separate "value" struct will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding "void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some initialization works before registering the struct_ops to the kernel subsystem). The libbpf will take care of finding and populating the "struct bpf_struct_ops_XYZ" from "struct XYZ". Register a struct_ops to a kernel subsystem: 1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s) 2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the running kernel. Instead of reusing the attr->btf_value_type_id, btf_vmlinux_value_type_id s added such that attr->btf_fd can still be used as the "user" btf which could store other useful sysadmin/debug info that may be introduced in the furture, e.g. creation-date/compiler-details/map-creator...etc. 3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described in the running kernel btf. Populate the value of this object. The function ptr should be populated with the prog fds. 4. Call BPF_MAP_UPDATE with the object created in (3) as the map value. The key is always "0". During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's args as an array of u64 is generated. BPF_MAP_UPDATE also allows the specific struct_ops to do some final checks in "st_ops->init_member()" (e.g. ensure all mandatory func ptrs are implemented). If everything looks good, it will register this kernel struct to the kernel subsystem. The map will not allow further update from this point. Unregister a struct_ops from the kernel subsystem: BPF_MAP_DELETE with key "0". Introspect a struct_ops: BPF_MAP_LOOKUP_ELEM with key "0". The map value returned will have the prog _id_ populated as the func ptr. The map value state (enum bpf_struct_ops_state) will transit from: INIT (map created) => INUSE (map updated, i.e. reg) => TOBEFREE (map value deleted, i.e. unreg) The kernel subsystem needs to call bpf_struct_ops_get() and bpf_struct_ops_put() to manage the "refcnt" in the "struct bpf_struct_ops_XYZ". This patch uses a separate refcnt for the purose of tracking the subsystem usage. Another approach is to reuse the map->refcnt and then "show" (i.e. during map_lookup) the subsystem's usage by doing map->refcnt - map->usercnt to filter out the map-fd/pinned-map usage. However, that will also tie down the future semantics of map->refcnt and map->usercnt. The very first subsystem's refcnt (during reg()) holds one count to map->refcnt. When the very last subsystem's refcnt is gone, it will also release the map->refcnt. All bpf_prog will be freed when the map->refcnt reaches 0 (i.e. during map_free()). Here is how the bpftool map command will look like: [root@arch-fb-vm1 bpf]# bpftool map show 6: struct_ops name dctcp flags 0x0 key 4B value 256B max_entries 1 memlock 4096B btf_id 6 [root@arch-fb-vm1 bpf]# bpftool map dump id 6 [{ "value": { "refcnt": { "refs": { "counter": 1 } }, "state": 1, "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 2, "init": 24, "release": 0, "ssthresh": 25, "cong_avoid": 30, "set_state": 27, "cwnd_event": 28, "in_ack_event": 26, "undo_cwnd": 29, "pkts_acked": 0, "min_tso_segs": 0, "sndbuf_expand": 0, "cong_control": 0, "get_info": 0, "name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0 ], "owner": 0 } } } ] Misc Notes: * bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup. It does an inplace update on "*value" instead returning a pointer to syscall.c. Otherwise, it needs a separate copy of "zero" value for the BPF_STRUCT_OPS_STATE_INIT to avoid races. * The bpf_struct_ops_map_delete_elem() is also called without preempt_disable() from map_delete_elem(). It is because the "->unreg()" may requires sleepable context, e.g. the "tcp_unregister_congestion_control()". * "const" is added to some of the existing "struct btf_func_model *" function arg to avoid a compiler warning caused by this patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com
2020-01-08 16:35:05 -08:00
if (btf->resolved_ids)
t = btf_type_id_resolve(btf, &type_id);
else
t = btf_type_skip_modifiers(btf, type_id, NULL);
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
}
static void btf_var_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
{
t = btf_type_id_resolve(btf, &type_id);
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
}
static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
{
void *safe_data;
safe_data = btf_show_start_type(show, t, type_id, data);
if (!safe_data)
return;
/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
if (show->flags & BTF_SHOW_PTR_RAW)
btf_show_type_value(show, "0x%px", *(void **)safe_data);
else
btf_show_type_value(show, "0x%p", *(void **)safe_data);
btf_show_end_type(show);
}
static void btf_ref_type_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "type_id=%u", t->type);
}
static struct btf_kind_operations modifier_ops = {
.check_meta = btf_ref_type_check_meta,
.resolve = btf_modifier_resolve,
.check_member = btf_modifier_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_modifier_check_kflag_member,
.log_details = btf_ref_type_log,
.show = btf_modifier_show,
};
static struct btf_kind_operations ptr_ops = {
.check_meta = btf_ref_type_check_meta,
.resolve = btf_ptr_resolve,
.check_member = btf_ptr_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_generic_check_kflag_member,
.log_details = btf_ref_type_log,
.show = btf_ptr_show,
};
static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (t->type) {
btf_verifier_log_type(env, t, "type != 0");
return -EINVAL;
}
/* fwd type must have a valid name */
if (!t->name_off ||
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return 0;
}
static void btf_fwd_type_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
}
static struct btf_kind_operations fwd_ops = {
.check_meta = btf_fwd_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_df_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_fwd_type_log,
.show = btf_df_show,
};
static int btf_array_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off = member->offset;
u32 struct_size, bytes_offset;
u32 array_type_id, array_size;
struct btf *btf = env->btf;
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
array_type_id = member->type;
btf_type_id_size(btf, &array_type_id, &array_size);
struct_size = struct_type->size;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (struct_size - bytes_offset < array_size) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_array_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_array *array = btf_type_array(t);
u32 meta_needed = sizeof(*array);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
/* array type should not have a name */
if (t->name_off) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (t->size) {
btf_verifier_log_type(env, t, "size != 0");
return -EINVAL;
}
/* Array elem type and index type cannot be in type void,
* so !array->type and !array->index_type are not allowed.
*/
if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
btf_verifier_log_type(env, t, "Invalid elem");
return -EINVAL;
}
if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
btf_verifier_log_type(env, t, "Invalid index");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static int btf_array_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_array *array = btf_type_array(v->t);
const struct btf_type *elem_type, *index_type;
u32 elem_type_id, index_type_id;
struct btf *btf = env->btf;
u32 elem_size;
/* Check array->index_type */
index_type_id = array->index_type;
index_type = btf_type_by_id(btf, index_type_id);
if (btf_type_nosize_or_null(index_type) ||
btf_type_is_resolve_source_only(index_type)) {
btf_verifier_log_type(env, v->t, "Invalid index");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, index_type) &&
!env_type_is_resolved(env, index_type_id))
return env_stack_push(env, index_type, index_type_id);
index_type = btf_type_id_size(btf, &index_type_id, NULL);
if (!index_type || !btf_type_is_int(index_type) ||
!btf_type_int_is_regular(index_type)) {
btf_verifier_log_type(env, v->t, "Invalid index");
return -EINVAL;
}
/* Check array->type */
elem_type_id = array->type;
elem_type = btf_type_by_id(btf, elem_type_id);
if (btf_type_nosize_or_null(elem_type) ||
btf_type_is_resolve_source_only(elem_type)) {
btf_verifier_log_type(env, v->t,
"Invalid elem");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, elem_type) &&
!env_type_is_resolved(env, elem_type_id))
return env_stack_push(env, elem_type, elem_type_id);
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
if (!elem_type) {
btf_verifier_log_type(env, v->t, "Invalid elem");
return -EINVAL;
}
if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
btf_verifier_log_type(env, v->t, "Invalid array of int");
return -EINVAL;
}
if (array->nelems && elem_size > U32_MAX / array->nelems) {
btf_verifier_log_type(env, v->t,
"Array size overflows U32_MAX");
return -EINVAL;
}
env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
return 0;
}
static void btf_array_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_array *array = btf_type_array(t);
btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
array->type, array->index_type, array->nelems);
}
static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
{
const struct btf_array *array = btf_type_array(t);
const struct btf_kind_operations *elem_ops;
const struct btf_type *elem_type;
u32 i, elem_size = 0, elem_type_id;
u16 encoding = 0;
elem_type_id = array->type;
elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
if (elem_type && btf_type_has_size(elem_type))
elem_size = elem_type->size;
if (elem_type && btf_type_is_int(elem_type)) {
u32 int_type = btf_type_int(elem_type);
encoding = BTF_INT_ENCODING(int_type);
/*
* BTF_INT_CHAR encoding never seems to be set for
* char arrays, so if size is 1 and element is
* printable as a char, we'll do that.
*/
if (elem_size == 1)
encoding = BTF_INT_CHAR;
}
if (!btf_show_start_array_type(show, t, type_id, encoding, data))
return;
if (!elem_type)
goto out;
elem_ops = btf_type_ops(elem_type);
for (i = 0; i < array->nelems; i++) {
btf_show_start_array_member(show);
elem_ops->show(btf, elem_type, elem_type_id, data,
bits_offset, show);
data += elem_size;
btf_show_end_array_member(show);
if (show->state.array_terminated)
break;
}
out:
btf_show_end_array_type(show);
}
static void btf_array_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
{
const struct btf_member *m = show->state.member;
/*
* First check if any members would be shown (are non-zero).
* See comments above "struct btf_show" definition for more
* details on how this works at a high-level.
*/
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
if (!show->state.depth_check) {
show->state.depth_check = show->state.depth + 1;
show->state.depth_to_show = 0;
}
__btf_array_show(btf, t, type_id, data, bits_offset, show);
show->state.member = m;
if (show->state.depth_check != show->state.depth + 1)
return;
show->state.depth_check = 0;
if (show->state.depth_to_show <= show->state.depth)
return;
/*
* Reaching here indicates we have recursed and found
* non-zero array member(s).
*/
}
__btf_array_show(btf, t, type_id, data, bits_offset, show);
}
static struct btf_kind_operations array_ops = {
.check_meta = btf_array_check_meta,
.resolve = btf_array_resolve,
.check_member = btf_array_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_generic_check_kflag_member,
.log_details = btf_array_log,
.show = btf_array_show,
};
static int btf_struct_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off = member->offset;
u32 struct_size, bytes_offset;
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
struct_size = struct_type->size;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (struct_size - bytes_offset < member_type->size) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_struct_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
const struct btf_member *member;
u32 meta_needed, last_offset;
struct btf *btf = env->btf;
u32 struct_size = t->size;
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
u32 offset;
u16 i;
meta_needed = btf_type_vlen(t) * sizeof(*member);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
/* struct type either no name or a valid one */
if (t->name_off &&
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
last_offset = 0;
for_each_member(i, t, member) {
if (!btf_name_offset_valid(btf, member->name_off)) {
btf_verifier_log_member(env, t, member,
"Invalid member name_offset:%u",
member->name_off);
return -EINVAL;
}
/* struct member either no name or a valid one */
if (member->name_off &&
!btf_name_valid_identifier(btf, member->name_off)) {
btf_verifier_log_member(env, t, member, "Invalid name");
return -EINVAL;
}
/* A member cannot be in type void */
if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
btf_verifier_log_member(env, t, member,
"Invalid type_id");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
offset = btf_member_bit_offset(t, member);
if (is_union && offset) {
btf_verifier_log_member(env, t, member,
"Invalid member bits_offset");
return -EINVAL;
}
/*
* ">" instead of ">=" because the last member could be
* "char a[0];"
*/
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (last_offset > offset) {
btf_verifier_log_member(env, t, member,
"Invalid member bits_offset");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
btf_verifier_log_member(env, t, member,
"Member bits_offset exceeds its struct size");
return -EINVAL;
}
btf_verifier_log_member(env, t, member, NULL);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
last_offset = offset;
}
return meta_needed;
}
static int btf_struct_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_member *member;
int err;
u16 i;
/* Before continue resolving the next_member,
* ensure the last member is indeed resolved to a
* type with size info.
*/
if (v->next_member) {
const struct btf_type *last_member_type;
const struct btf_member *last_member;
u16 last_member_type_id;
last_member = btf_type_member(v->t) + v->next_member - 1;
last_member_type_id = last_member->type;
if (WARN_ON_ONCE(!env_type_is_resolved(env,
last_member_type_id)))
return -EINVAL;
last_member_type = btf_type_by_id(env->btf,
last_member_type_id);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(v->t))
err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
last_member,
last_member_type);
else
err = btf_type_ops(last_member_type)->check_member(env, v->t,
last_member,
last_member_type);
if (err)
return err;
}
for_each_member_from(i, v->next_member, v->t, member) {
u32 member_type_id = member->type;
const struct btf_type *member_type = btf_type_by_id(env->btf,
member_type_id);
if (btf_type_nosize_or_null(member_type) ||
btf_type_is_resolve_source_only(member_type)) {
btf_verifier_log_member(env, v->t, member,
"Invalid member");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, member_type) &&
!env_type_is_resolved(env, member_type_id)) {
env_stack_set_next_member(env, i + 1);
return env_stack_push(env, member_type, member_type_id);
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(v->t))
err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
member,
member_type);
else
err = btf_type_ops(member_type)->check_member(env, v->t,
member,
member_type);
if (err)
return err;
}
env_stack_pop_resolved(env, 0, 0);
return 0;
}
static void btf_struct_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
}
bpf: introduce bpf_spin_lock Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let bpf program serialize access to other variables. Example: struct hash_elem { int cnt; struct bpf_spin_lock lock; }; struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key); if (val) { bpf_spin_lock(&val->lock); val->cnt++; bpf_spin_unlock(&val->lock); } Restrictions and safety checks: - bpf_spin_lock is only allowed inside HASH and ARRAY maps. - BTF description of the map is mandatory for safety analysis. - bpf program can take one bpf_spin_lock at a time, since two or more can cause dead locks. - only one 'struct bpf_spin_lock' is allowed per map element. It drastically simplifies implementation yet allows bpf program to use any number of bpf_spin_locks. - when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed. - bpf program must bpf_spin_unlock() before return. - bpf program can access 'struct bpf_spin_lock' only via bpf_spin_lock()/bpf_spin_unlock() helpers. - load/store into 'struct bpf_spin_lock lock;' field is not allowed. - to use bpf_spin_lock() helper the BTF description of map value must be a struct and have 'struct bpf_spin_lock anyname;' field at the top level. Nested lock inside another struct is not allowed. - syscall map_lookup doesn't copy bpf_spin_lock field to user space. - syscall map_update and program map_update do not update bpf_spin_lock field. - bpf_spin_lock cannot be on the stack or inside networking packet. bpf_spin_lock can only be inside HASH or ARRAY map value. - bpf_spin_lock is available to root only and to all program types. - bpf_spin_lock is not allowed in inner maps of map-in-map. - ld_abs is not allowed inside spin_lock-ed region. - tracing progs and socket filter progs cannot use bpf_spin_lock due to insufficient preemption checks Implementation details: - cgroup-bpf class of programs can nest with xdp/tc programs. Hence bpf_spin_lock is equivalent to spin_lock_irqsave. Other solutions to avoid nested bpf_spin_lock are possible. Like making sure that all networking progs run with softirq disabled. spin_lock_irqsave is the simplest and doesn't add overhead to the programs that don't use it. - arch_spinlock_t is used when its implemented as queued_spin_lock - archs can force their own arch_spinlock_t - on architectures where queued_spin_lock is not available and sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used. - presence of bpf_spin_lock inside map value could have been indicated via extra flag during map_create, but specifying it via BTF is cleaner. It provides introspection for map key/value and reduces user mistakes. Next steps: - allow bpf_spin_lock in other map types (like cgroup local storage) - introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper to request kernel to grab bpf_spin_lock before rewriting the value. That will serialize access to map elements. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31 15:40:04 -08:00
/* find 'struct bpf_spin_lock' in map value.
* return >= 0 offset if found
* and < 0 in case of error
*/
int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
{
const struct btf_member *member;
u32 i, off = -ENOENT;
if (!__btf_type_is_struct(t))
return -EINVAL;
for_each_member(i, t, member) {
const struct btf_type *member_type = btf_type_by_id(btf,
member->type);
if (!__btf_type_is_struct(member_type))
continue;
if (member_type->size != sizeof(struct bpf_spin_lock))
continue;
if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
"bpf_spin_lock"))
continue;
if (off != -ENOENT)
/* only one 'struct bpf_spin_lock' is allowed */
return -E2BIG;
off = btf_member_bit_offset(t, member);
if (off % 8)
/* valid C code cannot generate such BTF */
return -EINVAL;
off /= 8;
if (off % __alignof__(struct bpf_spin_lock))
/* valid struct bpf_spin_lock will be 4 byte aligned */
return -EINVAL;
}
return off;
}
static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
{
const struct btf_member *member;
void *safe_data;
u32 i;
safe_data = btf_show_start_struct_type(show, t, type_id, data);
if (!safe_data)
return;
for_each_member(i, t, member) {
const struct btf_type *member_type = btf_type_by_id(btf,
member->type);
const struct btf_kind_operations *ops;
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
u32 member_offset, bitfield_size;
u32 bytes_offset;
u8 bits8_offset;
btf_show_start_member(show, member);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
member_offset = btf_member_bit_offset(t, member);
bitfield_size = btf_member_bitfield_size(t, member);
bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (bitfield_size) {
safe_data = btf_show_start_type(show, member_type,
member->type,
data + bytes_offset);
if (safe_data)
btf_bitfield_show(safe_data,
bits8_offset,
bitfield_size, show);
btf_show_end_type(show);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
} else {
ops = btf_type_ops(member_type);
ops->show(btf, member_type, member->type,
data + bytes_offset, bits8_offset, show);
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
}
btf_show_end_member(show);
}
btf_show_end_struct_type(show);
}
static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
{
const struct btf_member *m = show->state.member;
/*
* First check if any members would be shown (are non-zero).
* See comments above "struct btf_show" definition for more
* details on how this works at a high-level.
*/
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
if (!show->state.depth_check) {
show->state.depth_check = show->state.depth + 1;
show->state.depth_to_show = 0;
}
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
/* Restore saved member data here */
show->state.member = m;
if (show->state.depth_check != show->state.depth + 1)
return;
show->state.depth_check = 0;
if (show->state.depth_to_show <= show->state.depth)
return;
/*
* Reaching here indicates we have recursed and found
* non-zero child values.
*/
}
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
}
static struct btf_kind_operations struct_ops = {
.check_meta = btf_struct_check_meta,
.resolve = btf_struct_resolve,
.check_member = btf_struct_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_generic_check_kflag_member,
.log_details = btf_struct_log,
.show = btf_struct_show,
};
static int btf_enum_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off = member->offset;
u32 struct_size, bytes_offset;
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
struct_size = struct_type->size;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (struct_size - bytes_offset < member_type->size) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off, nr_bits, bytes_end, struct_size;
u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
if (!nr_bits) {
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
}
nr_bits = int_bitsize;
} else if (nr_bits > int_bitsize) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member bitfield_size");
return -EINVAL;
}
struct_size = struct_type->size;
bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
if (struct_size < bytes_end) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_enum_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_enum *enums = btf_type_enum(t);
struct btf *btf = env->btf;
u16 i, nr_enums;
u32 meta_needed;
nr_enums = btf_type_vlen(t);
meta_needed = nr_enums * sizeof(*enums);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (t->size > 8 || !is_power_of_2(t->size)) {
btf_verifier_log_type(env, t, "Unexpected size");
return -EINVAL;
}
/* enum type either no name or a valid one */
if (t->name_off &&
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
for (i = 0; i < nr_enums; i++) {
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
btf_verifier_log(env, "\tInvalid name_offset:%u",
enums[i].name_off);
return -EINVAL;
}
/* enum member must have a valid name */
if (!enums[i].name_off ||
!btf_name_valid_identifier(btf, enums[i].name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
if (env->log.level == BPF_LOG_KERNEL)
continue;
btf_verifier_log(env, "\t%s val=%d\n",
2018-12-13 10:41:46 -08:00
__btf_name_by_offset(btf, enums[i].name_off),
enums[i].val);
}
return meta_needed;
}
static void btf_enum_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
}
static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct btf_show *show)
{
const struct btf_enum *enums = btf_type_enum(t);
u32 i, nr_enums = btf_type_vlen(t);
void *safe_data;
int v;
safe_data = btf_show_start_type(show, t, type_id, data);
if (!safe_data)
return;
v = *(int *)safe_data;
for (i = 0; i < nr_enums; i++) {
if (v != enums[i].val)
continue;
btf_show_type_value(show, "%s",
__btf_name_by_offset(btf,
enums[i].name_off));
btf_show_end_type(show);
return;
}
btf_show_type_value(show, "%d", v);
btf_show_end_type(show);
}
static struct btf_kind_operations enum_ops = {
.check_meta = btf_enum_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_enum_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_enum_check_kflag_member,
.log_details = btf_enum_log,
.show = btf_enum_show,
};
static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (t->name_off) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static void btf_func_proto_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_param *args = (const struct btf_param *)(t + 1);
u16 nr_args = btf_type_vlen(t), i;
btf_verifier_log(env, "return=%u args=(", t->type);
if (!nr_args) {
btf_verifier_log(env, "void");
goto done;
}
if (nr_args == 1 && !args[0].type) {
/* Only one vararg */
btf_verifier_log(env, "vararg");
goto done;
}
btf_verifier_log(env, "%u %s", args[0].type,
2018-12-13 10:41:46 -08:00
__btf_name_by_offset(env->btf,
args[0].name_off));
for (i = 1; i < nr_args - 1; i++)
btf_verifier_log(env, ", %u %s", args[i].type,
2018-12-13 10:41:46 -08:00
__btf_name_by_offset(env->btf,
args[i].name_off));
if (nr_args > 1) {
const struct btf_param *last_arg = &args[nr_args - 1];
if (last_arg->type)
btf_verifier_log(env, ", %u %s", last_arg->type,
2018-12-13 10:41:46 -08:00
__btf_name_by_offset(env->btf,
last_arg->name_off));
else
btf_verifier_log(env, ", vararg");
}
done:
btf_verifier_log(env, ")");
}
static struct btf_kind_operations func_proto_ops = {
.check_meta = btf_func_proto_check_meta,
.resolve = btf_df_resolve,
/*
* BTF_KIND_FUNC_PROTO cannot be directly referred by
* a struct's member.
*
* It should be a function pointer instead.
* (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
*
* Hence, there is no btf_func_check_member().
*/
.check_member = btf_df_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_func_proto_log,
.show = btf_df_show,
};
static s32 btf_func_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
if (!t->name_off ||
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
btf_verifier_log_type(env, t, "Invalid func linkage");
return -EINVAL;
}
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return 0;
}
static struct btf_kind_operations func_ops = {
.check_meta = btf_func_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_df_check_member,
bpf: btf: fix struct/union/fwd types with kind_flag This patch fixed two issues with BTF. One is related to struct/union bitfield encoding and the other is related to forward type. Issue #1 and solution: ====================== Current btf encoding of bitfield follows what pahole generates. For each bitfield, pahole will duplicate the type chain and put the bitfield size at the final int or enum type. Since the BTF enum type cannot encode bit size, pahole workarounds the issue by generating an int type whenever the enum bit size is not 32. For example, -bash-4.4$ cat t.c typedef int ___int; enum A { A1, A2, A3 }; struct t { int a[5]; ___int b:4; volatile enum A c:4; } g; -bash-4.4$ gcc -c -O2 -g t.c The current kernel supports the following BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t size=24 vlen=3 a type_id=5 bits_offset=0 b type_id=9 bits_offset=160 c type_id=11 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 [8] INT int size=1 bit_offset=0 nr_bits=4 encoding=(none) [9] TYPEDEF ___int type_id=8 [10] INT (anon) size=1 bit_offset=0 nr_bits=4 encoding=SIGNED [11] VOLATILE (anon) type_id=10 Two issues are in the above: . by changing enum type to int, we lost the original type information and this will not be ideal later when we try to convert BTF to a header file. . the type duplication for bitfields will cause BTF bloat. Duplicated types cannot be deduplicated later if the bitfield size is different. To fix this issue, this patch implemented a compatible change for BTF struct type encoding: . the bit 31 of struct_type->info, previously reserved, now is used to indicate whether bitfield_size is encoded in btf_member or not. . if bit 31 of struct_type->info is set, btf_member->offset will encode like: bit 0 - 23: bit offset bit 24 - 31: bitfield size if bit 31 is not set, the old behavior is preserved: bit 0 - 31: bit offset So if the struct contains a bit field, the maximum bit offset will be reduced to (2^24 - 1) instead of MAX_UINT. The maximum bitfield size will be 256 which is enough for today as maximum bitfield in compiler can be 128 where int128 type is supported. This kernel patch intends to support the new BTF encoding: $ pahole -JV t.o [1] TYPEDEF ___int type_id=2 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [3] ENUM A size=4 vlen=3 A1 val=0 A2 val=1 A3 val=2 [4] STRUCT t kind_flag=1 size=24 vlen=3 a type_id=5 bitfield_size=0 bits_offset=0 b type_id=1 bitfield_size=4 bits_offset=160 c type_id=7 bitfield_size=4 bits_offset=164 [5] ARRAY (anon) type_id=2 index_type_id=2 nr_elems=5 [6] INT sizetype size=8 bit_offset=0 nr_bits=64 encoding=(none) [7] VOLATILE (anon) type_id=3 Issue #2 and solution: ====================== Current forward type in BTF does not specify whether the original type is struct or union. This will not work for type pretty print and BTF-to-header-file conversion as struct/union must be specified. $ cat tt.c struct t; union u; int foo(struct t *t, union u *u) { return 0; } $ gcc -c -g -O2 tt.c $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t type_id=0 [3] PTR (anon) type_id=2 [4] FWD u type_id=0 [5] PTR (anon) type_id=4 To fix this issue, similar to issue #1, type->info bit 31 is used. If the bit is set, it is union type. Otherwise, it is a struct type. $ pahole -JV tt.o [1] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED [2] FWD t kind_flag=0 type_id=0 [3] PTR (anon) kind_flag=0 type_id=2 [4] FWD u kind_flag=1 type_id=0 [5] PTR (anon) kind_flag=0 type_id=4 Pahole/LLVM change: =================== The new kind_flag functionality has been implemented in pahole and llvm: https://github.com/yonghong-song/pahole/tree/bitfield https://github.com/yonghong-song/llvm/tree/bitfield Note that pahole hasn't implemented func/func_proto kind and .BTF.ext. So to print function signature with bpftool, the llvm compiler should be used. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-12-15 22:13:51 -08:00
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_ref_type_log,
.show = btf_df_show,
};
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
static s32 btf_var_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_var *var;
u32 meta_needed = sizeof(*var);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (!t->name_off ||
!__btf_name_valid(env->btf, t->name_off, true)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
/* A var cannot be in type void */
if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
btf_verifier_log_type(env, t, "Invalid type_id");
return -EINVAL;
}
var = btf_type_var(t);
if (var->linkage != BTF_VAR_STATIC &&
var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
btf_verifier_log_type(env, t, "Linkage not supported");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
{
const struct btf_var *var = btf_type_var(t);
btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
}
static const struct btf_kind_operations var_ops = {
.check_meta = btf_var_check_meta,
.resolve = btf_var_resolve,
.check_member = btf_df_check_member,
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_var_log,
.show = btf_var_show,
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
};
static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_var_secinfo *vsi;
u64 last_vsi_end_off = 0, sum = 0;
u32 i, meta_needed;
meta_needed = btf_type_vlen(t) * sizeof(*vsi);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (!t->size) {
btf_verifier_log_type(env, t, "size == 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (!t->name_off ||
!btf_name_valid_section(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
for_each_vsi(i, t, vsi) {
/* A var cannot be in type void */
if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid type_id");
return -EINVAL;
}
if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid offset");
return -EINVAL;
}
if (!vsi->size || vsi->size > t->size) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid size");
return -EINVAL;
}
last_vsi_end_off = vsi->offset + vsi->size;
if (last_vsi_end_off > t->size) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid offset+size");
return -EINVAL;
}
btf_verifier_log_vsi(env, t, vsi, NULL);
sum += vsi->size;
}
if (t->size < sum) {
btf_verifier_log_type(env, t, "Invalid btf_info size");
return -EINVAL;
}
return meta_needed;
}
static int btf_datasec_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_var_secinfo *vsi;
struct btf *btf = env->btf;
u16 i;
for_each_vsi_from(i, v->next_member, v->t, vsi) {
u32 var_type_id = vsi->type, type_id, type_size = 0;
const struct btf_type *var_type = btf_type_by_id(env->btf,
var_type_id);
if (!var_type || !btf_type_is_var(var_type)) {
btf_verifier_log_vsi(env, v->t, vsi,
"Not a VAR kind member");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, var_type) &&
!env_type_is_resolved(env, var_type_id)) {
env_stack_set_next_member(env, i + 1);
return env_stack_push(env, var_type, var_type_id);
}
type_id = var_type->type;
if (!btf_type_id_size(btf, &type_id, &type_size)) {
btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
return -EINVAL;
}
if (vsi->size < type_size) {
btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
return -EINVAL;
}
}
env_stack_pop_resolved(env, 0, 0);
return 0;
}
static void btf_datasec_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
}
static void btf_datasec_show(const struct btf *btf,
const struct btf_type *t, u32 type_id,
void *data, u8 bits_offset,
struct btf_show *show)
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
{
const struct btf_var_secinfo *vsi;
const struct btf_type *var;
u32 i;
if (!btf_show_start_type(show, t, type_id, data))
return;
btf_show_type_value(show, "section (\"%s\") = {",
__btf_name_by_offset(btf, t->name_off));
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
for_each_vsi(i, t, vsi) {
var = btf_type_by_id(btf, vsi->type);
if (i)
btf_show(show, ",");
btf_type_ops(var)->show(btf, var, vsi->type,
data + vsi->offset, bits_offset, show);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
}
btf_show_end_type(show);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
}
static const struct btf_kind_operations datasec_ops = {
.check_meta = btf_datasec_check_meta,
.resolve = btf_datasec_resolve,
.check_member = btf_df_check_member,
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_datasec_log,
.show = btf_datasec_show,
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
};
static s32 btf_float_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
t->size != 16) {
btf_verifier_log_type(env, t, "Invalid type_size");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return 0;
}
static int btf_float_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u64 start_offset_bytes;
u64 end_offset_bytes;
u64 misalign_bits;
u64 align_bytes;
u64 align_bits;
/* Different architectures have different alignment requirements, so
* here we check only for the reasonable minimum. This way we ensure
* that types after CO-RE can pass the kernel BTF verifier.
*/
align_bytes = min_t(u64, sizeof(void *), member_type->size);
align_bits = align_bytes * BITS_PER_BYTE;
div64_u64_rem(member->offset, align_bits, &misalign_bits);
if (misalign_bits) {
btf_verifier_log_member(env, struct_type, member,
"Member is not properly aligned");
return -EINVAL;
}
start_offset_bytes = member->offset / BITS_PER_BYTE;
end_offset_bytes = start_offset_bytes + member_type->size;
if (end_offset_bytes > struct_type->size) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static void btf_float_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "size=%u", t->size);
}
static const struct btf_kind_operations float_ops = {
.check_meta = btf_float_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_float_check_member,
.check_kflag_member = btf_generic_check_kflag_member,
.log_details = btf_float_log,
.show = btf_df_show,
};
static int btf_func_proto_check(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_type *ret_type;
const struct btf_param *args;
const struct btf *btf;
u16 nr_args, i;
int err;
btf = env->btf;
args = (const struct btf_param *)(t + 1);
nr_args = btf_type_vlen(t);
/* Check func return type which could be "void" (t->type == 0) */
if (t->type) {
u32 ret_type_id = t->type;
ret_type = btf_type_by_id(btf, ret_type_id);
if (!ret_type) {
btf_verifier_log_type(env, t, "Invalid return type");
return -EINVAL;
}
if (btf_type_needs_resolve(ret_type) &&
!env_type_is_resolved(env, ret_type_id)) {
err = btf_resolve(env, ret_type, ret_type_id);
if (err)
return err;
}
/* Ensure the return type is a type that has a size */
if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
btf_verifier_log_type(env, t, "Invalid return type");
return -EINVAL;
}
}
if (!nr_args)
return 0;
/* Last func arg type_id could be 0 if it is a vararg */
if (!args[nr_args - 1].type) {
if (args[nr_args - 1].name_off) {
btf_verifier_log_type(env, t, "Invalid arg#%u",
nr_args);
return -EINVAL;
}
nr_args--;
}
err = 0;
for (i = 0; i < nr_args; i++) {
const struct btf_type *arg_type;
u32 arg_type_id;
arg_type_id = args[i].type;
arg_type = btf_type_by_id(btf, arg_type_id);
if (!arg_type) {
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
err = -EINVAL;
break;
}
if (args[i].name_off &&
(!btf_name_offset_valid(btf, args[i].name_off) ||
!btf_name_valid_identifier(btf, args[i].name_off))) {
btf_verifier_log_type(env, t,
"Invalid arg#%u", i + 1);
err = -EINVAL;
break;
}
if (btf_type_needs_resolve(arg_type) &&
!env_type_is_resolved(env, arg_type_id)) {
err = btf_resolve(env, arg_type, arg_type_id);
if (err)
break;
}
if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
err = -EINVAL;
break;
}
}
return err;
}
static int btf_func_check(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_type *proto_type;
const struct btf_param *args;
const struct btf *btf;
u16 nr_args, i;
btf = env->btf;
proto_type = btf_type_by_id(btf, t->type);
if (!proto_type || !btf_type_is_func_proto(proto_type)) {
btf_verifier_log_type(env, t, "Invalid type_id");
return -EINVAL;
}
args = (const struct btf_param *)(proto_type + 1);
nr_args = btf_type_vlen(proto_type);
for (i = 0; i < nr_args; i++) {
if (!args[i].name_off && args[i].type) {
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
return -EINVAL;
}
}
return 0;
}
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
[BTF_KIND_INT] = &int_ops,
[BTF_KIND_PTR] = &ptr_ops,
[BTF_KIND_ARRAY] = &array_ops,
[BTF_KIND_STRUCT] = &struct_ops,
[BTF_KIND_UNION] = &struct_ops,
[BTF_KIND_ENUM] = &enum_ops,
[BTF_KIND_FWD] = &fwd_ops,
[BTF_KIND_TYPEDEF] = &modifier_ops,
[BTF_KIND_VOLATILE] = &modifier_ops,
[BTF_KIND_CONST] = &modifier_ops,
[BTF_KIND_RESTRICT] = &modifier_ops,
[BTF_KIND_FUNC] = &func_ops,
[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
[BTF_KIND_VAR] = &var_ops,
[BTF_KIND_DATASEC] = &datasec_ops,
[BTF_KIND_FLOAT] = &float_ops,
};
static s32 btf_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
u32 saved_meta_left = meta_left;
s32 var_meta_size;
if (meta_left < sizeof(*t)) {
btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
env->log_type_id, meta_left, sizeof(*t));
return -EINVAL;
}
meta_left -= sizeof(*t);
if (t->info & ~BTF_INFO_MASK) {
btf_verifier_log(env, "[%u] Invalid btf_info:%x",
env->log_type_id, t->info);
return -EINVAL;
}
if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
btf_verifier_log(env, "[%u] Invalid kind:%u",
env->log_type_id, BTF_INFO_KIND(t->info));
return -EINVAL;
}
if (!btf_name_offset_valid(env->btf, t->name_off)) {
btf_verifier_log(env, "[%u] Invalid name_offset:%u",
env->log_type_id, t->name_off);
return -EINVAL;
}
var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
if (var_meta_size < 0)
return var_meta_size;
meta_left -= var_meta_size;
return saved_meta_left - meta_left;
}
static int btf_check_all_metas(struct btf_verifier_env *env)
{
struct btf *btf = env->btf;
struct btf_header *hdr;
void *cur, *end;
hdr = &btf->hdr;
cur = btf->nohdr_data + hdr->type_off;
end = cur + hdr->type_len;
env->log_type_id = btf->base_btf ? btf->start_id : 1;
while (cur < end) {
struct btf_type *t = cur;
s32 meta_size;
meta_size = btf_check_meta(env, t, end - cur);
if (meta_size < 0)
return meta_size;
btf_add_type(env, t);
cur += meta_size;
env->log_type_id++;
}
return 0;
}
static bool btf_resolve_valid(struct btf_verifier_env *env,
const struct btf_type *t,
u32 type_id)
{
struct btf *btf = env->btf;
if (!env_type_is_resolved(env, type_id))
return false;
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (btf_type_is_struct(t) || btf_type_is_datasec(t))
return !btf_resolved_type_id(btf, type_id) &&
!btf_resolved_type_size(btf, type_id);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
btf_type_is_var(t)) {
t = btf_type_id_resolve(btf, &type_id);
bpf: kernel side support for BTF Var and DataSec This work adds kernel-side verification, logging and seq_show dumping of BTF Var and DataSec kinds which are emitted with latest LLVM. The following constraints apply: BTF Var must have: - Its kind_flag is 0 - Its vlen is 0 - Must point to a valid type - Type must not resolve to a forward type - Size of underlying type must be > 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. in case of static variables inside functions) - Cannot be a member of a struct/union - Linkage so far can either only be static or global/allocated BTF DataSec must have: - Its kind_flag is 0 - Its vlen cannot be 0 - Its size cannot be 0 - Must have a valid name - Can only be a source type, not sink or intermediate one - Name may include dots (e.g. to represent .bss, .data, .rodata etc) - Cannot be a member of a struct/union - Inner btf_var_secinfo array with {type,offset,size} triple must be sorted by offset in ascending order - Type must always point to BTF Var - BTF resolved size of Var must be <= size provided by triple - DataSec size must be >= sum of triple sizes (thus holes are allowed) btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve() are on a high level quite similar but each come with slight, subtle differences. They could potentially be a bit refactored in future which hasn't been done here to ease review. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 23:20:09 +02:00
return t &&
!btf_type_is_modifier(t) &&
!btf_type_is_var(t) &&
!btf_type_is_datasec(t);
}
if (btf_type_is_array(t)) {
const struct btf_array *array = btf_type_array(t);
const struct btf_type *elem_type;
u32 elem_type_id = array->type;
u32 elem_size;
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
return elem_type && !btf_type_is_modifier(elem_type) &&
(array->nelems * elem_size ==
btf_resolved_type_size(btf, type_id));
}
return false;
}
static int btf_resolve(struct btf_verifier_env *env,
const struct btf_type *t, u32 type_id)
{
u32 save_log_type_id = env->log_type_id;
const struct resolve_vertex *v;
int err = 0;
env->resolve_mode = RESOLVE_TBD;
env_stack_push(env, t, type_id);
while (!err && (v = env_stack_peak(env))) {
env->log_type_id = v->type_id;
err = btf_type_ops(v->t)->resolve(env, v);
}
env->log_type_id = type_id;
if (err == -E2BIG) {
btf_verifier_log_type(env, t,
"Exceeded max resolving depth:%u",
MAX_RESOLVE_DEPTH);
} else if (err == -EEXIST) {
btf_verifier_log_type(env, t, "Loop detected");
}
/* Final sanity check */
if (!err && !btf_resolve_valid(env, t, type_id)) {
btf_verifier_log_type(env, t, "Invalid resolve state");
err = -EINVAL;
}
env->log_type_id = save_log_type_id;
return err;
}
static int btf_check_all_types(struct btf_verifier_env *env)
{
struct btf *btf = env->btf;
const struct btf_type *t;
u32 type_id, i;
int err;
err = env_resolve_init(env);
if (err)
return err;
env->phase++;
for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
type_id = btf->start_id + i;
t = btf_type_by_id(btf, type_id);
env->log_type_id = type_id;
if (btf_type_needs_resolve(t) &&
!env_type_is_resolved(env, type_id)) {
err = btf_resolve(env, t, type_id);
if (err)
return err;
}
if (btf_type_is_func_proto(t)) {
err = btf_func_proto_check(env, t);
if (err)
return err;
}
if (btf_type_is_func(t)) {
err = btf_func_check(env, t);
if (err)
return err;
}
}
return 0;
}
static int btf_parse_type_sec(struct btf_verifier_env *env)
{
const struct btf_header *hdr = &env->btf->hdr;
int err;
/* Type section must align to 4 bytes */
if (hdr->type_off & (sizeof(u32) - 1)) {
btf_verifier_log(env, "Unaligned type_off");
return -EINVAL;
}
if (!env->btf->base_btf && !hdr->type_len) {
btf_verifier_log(env, "No type found");
return -EINVAL;
}
err = btf_check_all_metas(env);
if (err)
return err;
return btf_check_all_types(env);
}
static int btf_parse_str_sec(struct btf_verifier_env *env)
{
const struct btf_header *hdr;
struct btf *btf = env->btf;
const char *start, *end;
hdr = &btf->hdr;
start = btf->nohdr_data + hdr->str_off;
end = start + hdr->str_len;
if (end != btf->data + btf->data_size) {
btf_verifier_log(env, "String section is not at the end");
return -EINVAL;
}
btf->strings = start;
if (btf->base_btf && !hdr->str_len)
return 0;
if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
btf_verifier_log(env, "Invalid string section");
return -EINVAL;
}
if (!btf->base_btf && start[0]) {
btf_verifier_log(env, "Invalid string section");
return -EINVAL;
}
return 0;
}
static const size_t btf_sec_info_offset[] = {
offsetof(struct btf_header, type_off),
offsetof(struct btf_header, str_off),
};
static int btf_sec_info_cmp(const void *a, const void *b)
{
const struct btf_sec_info *x = a;
const struct btf_sec_info *y = b;
return (int)(x->off - y->off) ? : (int)(x->len - y->len);
}
static int btf_check_sec_info(struct btf_verifier_env *env,
u32 btf_data_size)
{
struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
u32 total, expected_total, i;
const struct btf_header *hdr;
const struct btf *btf;
btf = env->btf;
hdr = &btf->hdr;
/* Populate the secs from hdr */
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
secs[i] = *(struct btf_sec_info *)((void *)hdr +
btf_sec_info_offset[i]);
sort(secs, ARRAY_SIZE(btf_sec_info_offset),
sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
/* Check for gaps and overlap among sections */
total = 0;
expected_total = btf_data_size - hdr->hdr_len;
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
if (expected_total < secs[i].off) {
btf_verifier_log(env, "Invalid section offset");
return -EINVAL;
}
if (total < secs[i].off) {
/* gap */
btf_verifier_log(env, "Unsupported section found");
return -EINVAL;
}
if (total > secs[i].off) {
btf_verifier_log(env, "Section overlap found");
return -EINVAL;
}
if (expected_total - total < secs[i].len) {
btf_verifier_log(env,
"Total section length too long");
return -EINVAL;
}
total += secs[i].len;
}
/* There is data other than hdr and known sections */
if (expected_total != total) {
btf_verifier_log(env, "Unsupported section found");
return -EINVAL;
}
return 0;
}
static int btf_parse_hdr(struct btf_verifier_env *env)
{
u32 hdr_len, hdr_copy, btf_data_size;
const struct btf_header *hdr;
struct btf *btf;
int err;
btf = env->btf;
btf_data_size = btf->data_size;
if (btf_data_size <
offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
btf_verifier_log(env, "hdr_len not found");
return -EINVAL;
}
hdr = btf->data;
hdr_len = hdr->hdr_len;
if (btf_data_size < hdr_len) {
btf_verifier_log(env, "btf_header not found");
return -EINVAL;
}
/* Ensure the unsupported header fields are zero */
if (hdr_len > sizeof(btf->hdr)) {
u8 *expected_zero = btf->data + sizeof(btf->hdr);
u8 *end = btf->data + hdr_len;
for (; expected_zero < end; expected_zero++) {
if (*expected_zero) {
btf_verifier_log(env, "Unsupported btf_header");
return -E2BIG;
}
}
}
hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
memcpy(&btf->hdr, btf->data, hdr_copy);
hdr = &btf->hdr;
btf_verifier_log_hdr(env, btf_data_size);
if (hdr->magic != BTF_MAGIC) {
btf_verifier_log(env, "Invalid magic");
return -EINVAL;
}
if (hdr->version != BTF_VERSION) {
btf_verifier_log(env, "Unsupported version");
return -ENOTSUPP;
}
if (hdr->flags) {
btf_verifier_log(env, "Unsupported flags");
return -ENOTSUPP;
}
if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
btf_verifier_log(env, "No data");
return -EINVAL;
}
err = btf_check_sec_info(env, btf_data_size);
if (err)
return err;
return 0;
}
static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
u32 log_level, char __user *log_ubuf, u32 log_size)
{
struct btf_verifier_env *env = NULL;
struct bpf_verifier_log *log;
struct btf *btf = NULL;
u8 *data;
int err;
if (btf_data_size > BTF_MAX_SIZE)
return ERR_PTR(-E2BIG);
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
if (!env)
return ERR_PTR(-ENOMEM);
log = &env->log;
if (log_level || log_ubuf || log_size) {
/* user requested verbose verifier output
* and supplied buffer to store the verification trace
*/
log->level = log_level;
log->ubuf = log_ubuf;
log->len_total = log_size;
/* log attributes have to be sane */
if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
!log->level || !log->ubuf) {
err = -EINVAL;
goto errout;
}
}
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
if (!btf) {
err = -ENOMEM;
goto errout;
}
env->btf = btf;
data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
if (!data) {
err = -ENOMEM;
goto errout;
}
btf->data = data;
btf->data_size = btf_data_size;
if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
err = -EFAULT;
goto errout;
}
err = btf_parse_hdr(env);
if (err)
goto errout;
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
err = btf_parse_str_sec(env);
if (err)
goto errout;
err = btf_parse_type_sec(env);
if (err)
goto errout;
if (log->level && bpf_verifier_log_full(log)) {
err = -ENOSPC;
goto errout;
}
btf_verifier_env_free(env);
refcount_set(&btf->refcnt, 1);
return btf;
errout:
btf_verifier_env_free(env);
if (btf)
btf_free(btf);
return ERR_PTR(err);
}
bpf: Support llvm-objcopy for vmlinux BTF Simplify gen_btf logic to make it work with llvm-objcopy. The existing 'file format' and 'architecture' parsing logic is brittle and does not work with llvm-objcopy/llvm-objdump. 'file format' output of llvm-objdump>=11 will match GNU objdump, but 'architecture' (bfdarch) may not. .BTF in .tmp_vmlinux.btf is non-SHF_ALLOC. Add the SHF_ALLOC flag because it is part of vmlinux image used for introspection. C code can reference the section via linker script defined __start_BTF and __stop_BTF. This fixes a small problem that previous .BTF had the SHF_WRITE flag (objcopy -I binary -O elf* synthesized .data). Additionally, `objcopy -I binary` synthesized symbols _binary__btf_vmlinux_bin_start and _binary__btf_vmlinux_bin_stop (not used elsewhere) are replaced with more commonplace __start_BTF and __stop_BTF. Add 2>/dev/null because GNU objcopy (but not llvm-objcopy) warns "empty loadable segment detected at vaddr=0xffffffff81000000, is this intentional?" We use a dd command to change the e_type field in the ELF header from ET_EXEC to ET_REL so that lld will accept .btf.vmlinux.bin.o. Accepting ET_EXEC as an input file is an extremely rare GNU ld feature that lld does not intend to support, because this is error-prone. The output section description .BTF in include/asm-generic/vmlinux.lds.h avoids potential subtle orphan section placement issues and suppresses --orphan-handling=warn warnings. Fixes: df786c9b9476 ("bpf: Force .BTF section start to zero when dumping from vmlinux") Fixes: cb0cc635c7a9 ("powerpc: Include .BTF section") Reported-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Fangrui Song <maskray@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Stanislav Fomichev <sdf@google.com> Tested-by: Andrii Nakryiko <andriin@fb.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Link: https://github.com/ClangBuiltLinux/linux/issues/871 Link: https://lore.kernel.org/bpf/20200318222746.173648-1-maskray@google.com
2020-03-18 15:27:46 -07:00
extern char __weak __start_BTF[];
extern char __weak __stop_BTF[];
extern struct btf *btf_vmlinux;
#define BPF_MAP_TYPE(_id, _ops)
#define BPF_LINK_TYPE(_id, _name)
static union {
struct bpf_ctx_convert {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
prog_ctx_type _id##_prog; \
kern_ctx_type _id##_kern;
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
} *__t;
/* 't' is written once under lock. Read many times. */
const struct btf_type *t;
} bpf_ctx_convert;
enum {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
__ctx_convert##_id,
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
__ctx_convert_unused, /* to avoid empty enum in extreme .config */
};
static u8 bpf_ctx_convert_map[] = {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
[_id] = __ctx_convert##_id,
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
0, /* avoid empty array */
};
#undef BPF_MAP_TYPE
#undef BPF_LINK_TYPE
static const struct btf_member *
btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
const struct btf_type *t, enum bpf_prog_type prog_type,
int arg)
{
const struct btf_type *conv_struct;
const struct btf_type *ctx_struct;
const struct btf_member *ctx_type;
const char *tname, *ctx_tname;
conv_struct = bpf_ctx_convert.t;
if (!conv_struct) {
bpf_log(log, "btf_vmlinux is malformed\n");
return NULL;
}
t = btf_type_by_id(btf, t->type);
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_struct(t)) {
/* Only pointer to struct is supported for now.
* That means that BPF_PROG_TYPE_TRACEPOINT with BTF
* is not supported yet.
* BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
*/
return NULL;
}
tname = btf_name_by_offset(btf, t->name_off);
if (!tname) {
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
return NULL;
}
/* prog_type is valid bpf program type. No need for bounds check. */
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
* Like 'struct __sk_buff'
*/
ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
if (!ctx_struct)
/* should not happen */
return NULL;
ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
if (!ctx_tname) {
/* should not happen */
bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
return NULL;
}
/* only compare that prog's ctx type name is the same as
* kernel expects. No need to compare field by field.
* It's ok for bpf prog to do:
* struct __sk_buff {};
* int socket_filter_bpf_prog(struct __sk_buff *skb)
* { // no fields of skb are ever used }
*/
if (strcmp(ctx_tname, tname))
return NULL;
return ctx_type;
}
bpf: Support access to bpf map fields There are multiple use-cases when it's convenient to have access to bpf map fields, both `struct bpf_map` and map type specific struct-s such as `struct bpf_array`, `struct bpf_htab`, etc. For example while working with sock arrays it can be necessary to calculate the key based on map->max_entries (some_hash % max_entries). Currently this is solved by communicating max_entries via "out-of-band" channel, e.g. via additional map with known key to get info about target map. That works, but is not very convenient and error-prone while working with many maps. In other cases necessary data is dynamic (i.e. unknown at loading time) and it's impossible to get it at all. For example while working with a hash table it can be convenient to know how much capacity is already used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case). At the same time kernel knows this info and can provide it to bpf program. Fill this gap by adding support to access bpf map fields from bpf program for both `struct bpf_map` and map type specific fields. Support is implemented via btf_struct_access() so that a user can define their own `struct bpf_map` or map type specific struct in their program with only necessary fields and preserve_access_index attribute, cast a map to this struct and use a field. For example: struct bpf_map { __u32 max_entries; } __attribute__((preserve_access_index)); struct bpf_array { struct bpf_map map; __u32 elem_size; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, 4); __type(key, __u32); __type(value, __u32); } m_array SEC(".maps"); SEC("cgroup_skb/egress") int cg_skb(void *ctx) { struct bpf_array *array = (struct bpf_array *)&m_array; struct bpf_map *map = (struct bpf_map *)&m_array; /* .. use map->max_entries or array->map.max_entries .. */ } Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of corresponding struct. Only reading from map fields is supported. For btf_struct_access() to work there should be a way to know btf id of a struct that corresponds to a map type. To get btf id there should be a way to get a stringified name of map-specific struct, such as "bpf_array", "bpf_htab", etc for a map type. Two new fields are added to `struct bpf_map_ops` to handle it: * .map_btf_name keeps a btf name of a struct returned by map_alloc(); * .map_btf_id is used to cache btf id of that struct. To make btf ids calculation cheaper they're calculated once while preparing btf_vmlinux and cached same way as it's done for btf_id field of `struct bpf_func_proto` While calculating btf ids, struct names are NOT checked for collision. Collisions will be checked as a part of the work to prepare btf ids used in verifier in compile time that should land soon. The only known collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs net/core/sock_map.c) was fixed earlier. Both new fields .map_btf_name and .map_btf_id must be set for a map type for the feature to work. If neither is set for a map type, verifier will return ENOTSUPP on a try to access map_ptr of corresponding type. If just one of them set, it's verifier misconfiguration. Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be supported separately. The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by perfmon_capable() so that unpriv programs won't have access to bpf map fields. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com
2020-06-19 14:11:43 -07:00
static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
#define BPF_LINK_TYPE(_id, _name)
#define BPF_MAP_TYPE(_id, _ops) \
[_id] = &_ops,
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_LINK_TYPE
#undef BPF_MAP_TYPE
};
static int btf_vmlinux_map_ids_init(const struct btf *btf,
struct bpf_verifier_log *log)
{
const struct bpf_map_ops *ops;
int i, btf_id;
for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
ops = btf_vmlinux_map_ops[i];
if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
continue;
if (!ops->map_btf_name || !ops->map_btf_id) {
bpf_log(log, "map type %d is misconfigured\n", i);
return -EINVAL;
}
btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
BTF_KIND_STRUCT);
if (btf_id < 0)
return btf_id;
*ops->map_btf_id = btf_id;
}
return 0;
}
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
struct btf *btf,
const struct btf_type *t,
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
enum bpf_prog_type prog_type,
int arg)
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
{
const struct btf_member *prog_ctx_type, *kern_ctx_type;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
if (!prog_ctx_type)
return -ENOENT;
kern_ctx_type = prog_ctx_type + 1;
return kern_ctx_type->type;
}
BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct, bpf_ctx_convert)
struct btf *btf_parse_vmlinux(void)
{
struct btf_verifier_env *env = NULL;
struct bpf_verifier_log *log;
struct btf *btf = NULL;
int err;
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
if (!env)
return ERR_PTR(-ENOMEM);
log = &env->log;
log->level = BPF_LOG_KERNEL;
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
if (!btf) {
err = -ENOMEM;
goto errout;
}
env->btf = btf;
bpf: Support llvm-objcopy for vmlinux BTF Simplify gen_btf logic to make it work with llvm-objcopy. The existing 'file format' and 'architecture' parsing logic is brittle and does not work with llvm-objcopy/llvm-objdump. 'file format' output of llvm-objdump>=11 will match GNU objdump, but 'architecture' (bfdarch) may not. .BTF in .tmp_vmlinux.btf is non-SHF_ALLOC. Add the SHF_ALLOC flag because it is part of vmlinux image used for introspection. C code can reference the section via linker script defined __start_BTF and __stop_BTF. This fixes a small problem that previous .BTF had the SHF_WRITE flag (objcopy -I binary -O elf* synthesized .data). Additionally, `objcopy -I binary` synthesized symbols _binary__btf_vmlinux_bin_start and _binary__btf_vmlinux_bin_stop (not used elsewhere) are replaced with more commonplace __start_BTF and __stop_BTF. Add 2>/dev/null because GNU objcopy (but not llvm-objcopy) warns "empty loadable segment detected at vaddr=0xffffffff81000000, is this intentional?" We use a dd command to change the e_type field in the ELF header from ET_EXEC to ET_REL so that lld will accept .btf.vmlinux.bin.o. Accepting ET_EXEC as an input file is an extremely rare GNU ld feature that lld does not intend to support, because this is error-prone. The output section description .BTF in include/asm-generic/vmlinux.lds.h avoids potential subtle orphan section placement issues and suppresses --orphan-handling=warn warnings. Fixes: df786c9b9476 ("bpf: Force .BTF section start to zero when dumping from vmlinux") Fixes: cb0cc635c7a9 ("powerpc: Include .BTF section") Reported-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Fangrui Song <maskray@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Stanislav Fomichev <sdf@google.com> Tested-by: Andrii Nakryiko <andriin@fb.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Link: https://github.com/ClangBuiltLinux/linux/issues/871 Link: https://lore.kernel.org/bpf/20200318222746.173648-1-maskray@google.com
2020-03-18 15:27:46 -07:00
btf->data = __start_BTF;
btf->data_size = __stop_BTF - __start_BTF;
btf->kernel_btf = true;
snprintf(btf->name, sizeof(btf->name), "vmlinux");
err = btf_parse_hdr(env);
if (err)
goto errout;
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
err = btf_parse_str_sec(env);
if (err)
goto errout;
err = btf_check_all_metas(env);
if (err)
goto errout;
/* btf_parse_vmlinux() runs under bpf_verifier_lock */
bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
bpf: Support access to bpf map fields There are multiple use-cases when it's convenient to have access to bpf map fields, both `struct bpf_map` and map type specific struct-s such as `struct bpf_array`, `struct bpf_htab`, etc. For example while working with sock arrays it can be necessary to calculate the key based on map->max_entries (some_hash % max_entries). Currently this is solved by communicating max_entries via "out-of-band" channel, e.g. via additional map with known key to get info about target map. That works, but is not very convenient and error-prone while working with many maps. In other cases necessary data is dynamic (i.e. unknown at loading time) and it's impossible to get it at all. For example while working with a hash table it can be convenient to know how much capacity is already used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case). At the same time kernel knows this info and can provide it to bpf program. Fill this gap by adding support to access bpf map fields from bpf program for both `struct bpf_map` and map type specific fields. Support is implemented via btf_struct_access() so that a user can define their own `struct bpf_map` or map type specific struct in their program with only necessary fields and preserve_access_index attribute, cast a map to this struct and use a field. For example: struct bpf_map { __u32 max_entries; } __attribute__((preserve_access_index)); struct bpf_array { struct bpf_map map; __u32 elem_size; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, 4); __type(key, __u32); __type(value, __u32); } m_array SEC(".maps"); SEC("cgroup_skb/egress") int cg_skb(void *ctx) { struct bpf_array *array = (struct bpf_array *)&m_array; struct bpf_map *map = (struct bpf_map *)&m_array; /* .. use map->max_entries or array->map.max_entries .. */ } Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of corresponding struct. Only reading from map fields is supported. For btf_struct_access() to work there should be a way to know btf id of a struct that corresponds to a map type. To get btf id there should be a way to get a stringified name of map-specific struct, such as "bpf_array", "bpf_htab", etc for a map type. Two new fields are added to `struct bpf_map_ops` to handle it: * .map_btf_name keeps a btf name of a struct returned by map_alloc(); * .map_btf_id is used to cache btf id of that struct. To make btf ids calculation cheaper they're calculated once while preparing btf_vmlinux and cached same way as it's done for btf_id field of `struct bpf_func_proto` While calculating btf ids, struct names are NOT checked for collision. Collisions will be checked as a part of the work to prepare btf ids used in verifier in compile time that should land soon. The only known collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs net/core/sock_map.c) was fixed earlier. Both new fields .map_btf_name and .map_btf_id must be set for a map type for the feature to work. If neither is set for a map type, verifier will return ENOTSUPP on a try to access map_ptr of corresponding type. If just one of them set, it's verifier misconfiguration. Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be supported separately. The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by perfmon_capable() so that unpriv programs won't have access to bpf map fields. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com
2020-06-19 14:11:43 -07:00
/* find bpf map structs for map_ptr access checking */
err = btf_vmlinux_map_ids_init(btf, log);
if (err < 0)
goto errout;
bpf_struct_ops_init(btf, log);
bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS This patch allows the kernel's struct ops (i.e. func ptr) to be implemented in BPF. The first use case in this series is the "struct tcp_congestion_ops" which will be introduced in a latter patch. This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS. The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular func ptr of a kernel struct. The attr->attach_btf_id is the btf id of a kernel struct. The attr->expected_attach_type is the member "index" of that kernel struct. The first member of a struct starts with member index 0. That will avoid ambiguity when a kernel struct has multiple func ptrs with the same func signature. For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written to implement the "init" func ptr of the "struct tcp_congestion_ops". The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops" of the _running_ kernel. The attr->expected_attach_type is 3. The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved by arch_prepare_bpf_trampoline that will be done in the next patch when introducing BPF_MAP_TYPE_STRUCT_OPS. "struct bpf_struct_ops" is introduced as a common interface for the kernel struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel struct will need to implement an instance of the "struct bpf_struct_ops". The supporting kernel struct also needs to implement a bpf_verifier_ops. During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right bpf_verifier_ops by searching the attr->attach_btf_id. A new "btf_struct_access" is also added to the bpf_verifier_ops such that the supporting kernel struct can optionally provide its own specific check on accessing the func arg (e.g. provide limited write access). After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called to initialize some values (e.g. the btf id of the supporting kernel struct) and it can only be done once the btf_vmlinux is available. The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog if the return type of the prog->aux->attach_func_proto is "void". Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
2020-01-08 16:35:03 -08:00
refcount_set(&btf->refcnt, 1);
err = btf_alloc_id(btf);
if (err)
goto errout;
btf_verifier_env_free(env);
return btf;
errout:
btf_verifier_env_free(env);
if (btf) {
kvfree(btf->types);
kfree(btf);
}
return ERR_PTR(err);
}
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
{
struct btf_verifier_env *env = NULL;
struct bpf_verifier_log *log;
struct btf *btf = NULL, *base_btf;
int err;
base_btf = bpf_get_btf_vmlinux();
if (IS_ERR(base_btf))
return base_btf;
if (!base_btf)
return ERR_PTR(-EINVAL);
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
if (!env)
return ERR_PTR(-ENOMEM);
log = &env->log;
log->level = BPF_LOG_KERNEL;
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
if (!btf) {
err = -ENOMEM;
goto errout;
}
env->btf = btf;
btf->base_btf = base_btf;
btf->start_id = base_btf->nr_types;
btf->start_str_off = base_btf->hdr.str_len;
btf->kernel_btf = true;
snprintf(btf->name, sizeof(btf->name), "%s", module_name);
btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
if (!btf->data) {
err = -ENOMEM;
goto errout;
}
memcpy(btf->data, data, data_size);
btf->data_size = data_size;
err = btf_parse_hdr(env);
if (err)
goto errout;
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
err = btf_parse_str_sec(env);
if (err)
goto errout;
err = btf_check_all_metas(env);
if (err)
goto errout;
btf_verifier_env_free(env);
refcount_set(&btf->refcnt, 1);
return btf;
errout:
btf_verifier_env_free(env);
if (btf) {
kvfree(btf->data);
kvfree(btf->types);
kfree(btf);
}
return ERR_PTR(err);
}
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
{
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
if (tgt_prog)
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
return tgt_prog->aux->btf;
else
return prog->aux->attach_btf;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
}
static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
{
/* t comes in already as a pointer */
t = btf_type_by_id(btf, t->type);
/* allow const */
if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
t = btf_type_by_id(btf, t->type);
/* char, signed char, unsigned char */
return btf_type_is_int(t) && t->size == 1;
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
const struct btf_type *t = prog->aux->attach_func_proto;
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
struct btf *btf = bpf_prog_get_target_btf(prog);
const char *tname = prog->aux->attach_func_name;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
struct bpf_verifier_log *log = info->log;
const struct btf_param *args;
u32 nr_args, arg;
int i, ret;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
if (off % 8) {
bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
tname, off);
return false;
}
arg = off / 8;
args = (const struct btf_param *)(t + 1);
/* if (t == NULL) Fall back to default BPF prog with
* MAX_BPF_FUNC_REG_ARGS u64 arguments.
*/
nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
if (prog->aux->attach_btf_trace) {
/* skip first 'void *__data' argument in btf_trace_##name typedef */
args++;
nr_args--;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
if (arg > nr_args) {
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
tname, arg + 1);
return false;
}
if (arg == nr_args) {
switch (prog->expected_attach_type) {
case BPF_LSM_MAC:
case BPF_TRACE_FEXIT:
/* When LSM programs are attached to void LSM hooks
* they use FEXIT trampolines and when attached to
* int LSM hooks, they use MODIFY_RETURN trampolines.
*
* While the LSM programs are BPF_MODIFY_RETURN-like
* the check:
*
* if (ret_type != 'int')
* return -EINVAL;
*
* is _not_ done here. This is still safe as LSM hooks
* have only void and int return types.
*/
if (!t)
return true;
t = btf_type_by_id(btf, t->type);
break;
case BPF_MODIFY_RETURN:
/* For now the BPF_MODIFY_RETURN can only be attached to
* functions that return an int.
*/
if (!t)
return false;
t = btf_type_skip_modifiers(btf, t->type, NULL);
if (!btf_type_is_small_int(t)) {
bpf_log(log,
"ret type %s not allowed for fmod_ret\n",
btf_kind_str[BTF_INFO_KIND(t->info)]);
return false;
}
break;
default:
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
tname, arg + 1);
return false;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
} else {
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
if (!t)
/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
return true;
t = btf_type_by_id(btf, args[arg].type);
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* skip modifiers */
while (btf_type_is_modifier(t))
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
t = btf_type_by_id(btf, t->type);
if (btf_type_is_small_int(t) || btf_type_is_enum(t))
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* accessing a scalar */
return true;
if (!btf_type_is_ptr(t)) {
bpf_log(log,
"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
tname, arg,
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
__btf_name_by_offset(btf, t->name_off),
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
btf_kind_str[BTF_INFO_KIND(t->info)]);
return false;
}
/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
if (ctx_arg_info->offset == off &&
(ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
info->reg_type = ctx_arg_info->reg_type;
return true;
}
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
if (t->type == 0)
/* This is a pointer to void.
* It is the same as scalar from the verifier safety pov.
* No further pointer walking is allowed.
*/
return true;
if (is_string_ptr(btf, t))
return true;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* this is a pointer to another type */
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
if (ctx_arg_info->offset == off) {
info->reg_type = ctx_arg_info->reg_type;
info->btf = btf_vmlinux;
info->btf_id = ctx_arg_info->btf_id;
return true;
}
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
info->reg_type = PTR_TO_BTF_ID;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
if (tgt_prog) {
bpf: Fix context type resolving for extension programs Eelco reported we can't properly access arguments if the tracing program is attached to extension program. Having following program: SEC("classifier/test_pkt_md_access") int test_pkt_md_access(struct __sk_buff *skb) with its extension: SEC("freplace/test_pkt_md_access") int test_pkt_md_access_new(struct __sk_buff *skb) and tracing that extension with: SEC("fentry/test_pkt_md_access_new") int BPF_PROG(fentry, struct sk_buff *skb) It's not possible to access skb argument in the fentry program, with following error from verifier: ; int BPF_PROG(fentry, struct sk_buff *skb) 0: (79) r1 = *(u64 *)(r1 +0) invalid bpf_context access off=0 size=8 The problem is that btf_ctx_access gets the context type for the traced program, which is in this case the extension. But when we trace extension program, we want to get the context type of the program that the extension is attached to, so we can access the argument properly in the trace program. This version of the patch is tweaked slightly from Jiri's original one, since the refactoring in the previous patches means we have to get the target prog type from the new variable in prog->aux instead of directly from the target prog. Reported-by: Eelco Chaudron <echaudro@redhat.com> Suggested-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/160138355278.48470.17057040257274725638.stgit@toke.dk
2020-09-29 14:45:52 +02:00
enum bpf_prog_type tgt_type;
if (tgt_prog->type == BPF_PROG_TYPE_EXT)
tgt_type = tgt_prog->aux->saved_dst_prog_type;
else
tgt_type = tgt_prog->type;
ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
if (ret > 0) {
info->btf = btf_vmlinux;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
info->btf_id = ret;
return true;
} else {
return false;
}
}
info->btf = btf;
info->btf_id = t->type;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
t = btf_type_by_id(btf, t->type);
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* skip modifiers */
while (btf_type_is_modifier(t)) {
info->btf_id = t->type;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
t = btf_type_by_id(btf, t->type);
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
if (!btf_type_is_struct(t)) {
bpf_log(log,
"func '%s' arg%d type %s is not a struct\n",
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
return false;
}
bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
__btf_name_by_offset(btf, t->name_off));
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
return true;
}
enum bpf_struct_walk_result {
/* < 0 error */
WALK_SCALAR = 0,
WALK_PTR,
WALK_STRUCT,
};
static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
const struct btf_type *t, int off, int size,
u32 *next_btf_id)
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
{
u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
const struct btf_type *mtype, *elem_type = NULL;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
const struct btf_member *member;
const char *tname, *mname;
u32 vlen, elem_id, mid;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
again:
tname = __btf_name_by_offset(btf, t->name_off);
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
if (!btf_type_is_struct(t)) {
bpf_log(log, "Type '%s' is not a struct\n", tname);
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
return -EINVAL;
}
vlen = btf_type_vlen(t);
if (off + size > t->size) {
/* If the last element is a variable size array, we may
* need to relax the rule.
*/
struct btf_array *array_elem;
if (vlen == 0)
goto error;
member = btf_type_member(t) + vlen - 1;
mtype = btf_type_skip_modifiers(btf, member->type,
NULL);
if (!btf_type_is_array(mtype))
goto error;
array_elem = (struct btf_array *)(mtype + 1);
if (array_elem->nelems != 0)
goto error;
moff = btf_member_bit_offset(t, member) / 8;
if (off < moff)
goto error;
/* Only allow structure for now, can be relaxed for
* other types later.
*/
t = btf_type_skip_modifiers(btf, array_elem->type,
NULL);
if (!btf_type_is_struct(t))
goto error;
off = (off - moff) % t->size;
goto again;
error:
bpf_log(log, "access beyond struct %s at off %u size %u\n",
tname, off, size);
return -EACCES;
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
for_each_member(i, t, member) {
/* offset of the field in bytes */
moff = btf_member_bit_offset(t, member) / 8;
if (off + size <= moff)
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* won't find anything, field is already too far */
break;
if (btf_member_bitfield_size(t, member)) {
u32 end_bit = btf_member_bit_offset(t, member) +
btf_member_bitfield_size(t, member);
/* off <= moff instead of off == moff because clang
* does not generate a BTF member for anonymous
* bitfield like the ":16" here:
* struct {
* int :16;
* int x:8;
* };
*/
if (off <= moff &&
BITS_ROUNDUP_BYTES(end_bit) <= off + size)
return WALK_SCALAR;
/* off may be accessing a following member
*
* or
*
* Doing partial access at either end of this
* bitfield. Continue on this case also to
* treat it as not accessing this bitfield
* and eventually error out as field not
* found to keep it simple.
* It could be relaxed if there was a legit
* partial access case later.
*/
continue;
}
/* In case of "off" is pointing to holes of a struct */
if (off < moff)
break;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* type of the field */
mid = member->type;
mtype = btf_type_by_id(btf, member->type);
mname = __btf_name_by_offset(btf, member->name_off);
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
mtype = __btf_resolve_size(btf, mtype, &msize,
&elem_type, &elem_id, &total_nelems,
&mid);
if (IS_ERR(mtype)) {
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
bpf_log(log, "field %s doesn't have size\n", mname);
return -EFAULT;
}
mtrue_end = moff + msize;
if (off >= mtrue_end)
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* no overlap with member, keep iterating */
continue;
if (btf_type_is_array(mtype)) {
u32 elem_idx;
/* __btf_resolve_size() above helps to
* linearize a multi-dimensional array.
*
* The logic here is treating an array
* in a struct as the following way:
*
* struct outer {
* struct inner array[2][2];
* };
*
* looks like:
*
* struct outer {
* struct inner array_elem0;
* struct inner array_elem1;
* struct inner array_elem2;
* struct inner array_elem3;
* };
*
* When accessing outer->array[1][0], it moves
* moff to "array_elem2", set mtype to
* "struct inner", and msize also becomes
* sizeof(struct inner). Then most of the
* remaining logic will fall through without
* caring the current member is an array or
* not.
*
* Unlike mtype/msize/moff, mtrue_end does not
* change. The naming difference ("_true") tells
* that it is not always corresponding to
* the current mtype/msize/moff.
* It is the true end of the current
* member (i.e. array in this case). That
* will allow an int array to be accessed like
* a scratch space,
* i.e. allow access beyond the size of
* the array's element as long as it is
* within the mtrue_end boundary.
*/
/* skip empty array */
if (moff == mtrue_end)
continue;
msize /= total_nelems;
elem_idx = (off - moff) / msize;
moff += elem_idx * msize;
mtype = elem_type;
mid = elem_id;
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* the 'off' we're looking for is either equal to start
* of this field or inside of this struct
*/
if (btf_type_is_struct(mtype)) {
/* our field must be inside that union or struct */
t = mtype;
/* return if the offset matches the member offset */
if (off == moff) {
*next_btf_id = mid;
return WALK_STRUCT;
}
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
/* adjust offset we're looking for */
off -= moff;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
goto again;
}
if (btf_type_is_ptr(mtype)) {
const struct btf_type *stype;
u32 id;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
if (msize != size || off != moff) {
bpf_log(log,
"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
mname, moff, tname, off, size);
return -EACCES;
}
stype = btf_type_skip_modifiers(btf, mtype->type, &id);
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
if (btf_type_is_struct(stype)) {
*next_btf_id = id;
return WALK_PTR;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
}
}
/* Allow more flexible access within an int as long as
* it is within mtrue_end.
* Since mtrue_end could be the end of an array,
* that also allows using an array of int as a scratch
* space. e.g. skb->cb[].
*/
if (off + size > mtrue_end) {
bpf_log(log,
"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
mname, mtrue_end, tname, off, size);
return -EACCES;
}
return WALK_SCALAR;
bpf: Implement accurate raw_tp context access via BTF libbpf analyzes bpf C program, searches in-kernel BTF for given type name and stores it into expected_attach_type. The kernel verifier expects this btf_id to point to something like: typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc); which represents signature of raw_tracepoint "kfree_skb". Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb' and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint. In first case it passes btf_id of 'struct sk_buff *' back to the verifier core and 'void *' in second case. Then the verifier tracks PTR_TO_BTF_ID as any other pointer type. Like PTR_TO_SOCKET points to 'struct bpf_sock', PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on. PTR_TO_BTF_ID points to in-kernel structs. If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF then PTR_TO_BTF_ID#1234 points to one of in kernel skbs. When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32) the btf_struct_access() checks which field of 'struct sk_buff' is at offset 32. Checks that size of access matches type definition of the field and continues to track the dereferenced type. If that field was a pointer to 'struct net_device' the r2's type will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device' in vmlinux's BTF. Such verifier analysis prevents "cheating" in BPF C program. The program cannot cast arbitrary pointer to 'struct sk_buff *' and access it. C compiler would allow type cast, of course, but the verifier will notice type mismatch based on BPF assembly and in-kernel BTF. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-15 20:25:00 -07:00
}
bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
return -EINVAL;
}
int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
const struct btf_type *t, int off, int size,
enum bpf_access_type atype __maybe_unused,
u32 *next_btf_id)
{
int err;
u32 id;
do {
err = btf_struct_walk(log, btf, t, off, size, &id);
switch (err) {
case WALK_PTR:
/* If we found the pointer or scalar on t+off,
* we're done.
*/
*next_btf_id = id;
return PTR_TO_BTF_ID;
case WALK_SCALAR:
return SCALAR_VALUE;
case WALK_STRUCT:
/* We found nested struct, so continue the search
* by diving in it. At this point the offset is
* aligned with the new type, so set it to 0.
*/
t = btf_type_by_id(btf, id);
off = 0;
break;
default:
/* It's either error or unknown return value..
* scream and leave.
*/
if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
return -EINVAL;
return err;
}
} while (t);
return -EINVAL;
}
/* Check that two BTF types, each specified as an BTF object + id, are exactly
* the same. Trivial ID check is not enough due to module BTFs, because we can
* end up with two different module BTFs, but IDs point to the common type in
* vmlinux BTF.
*/
static bool btf_types_are_same(const struct btf *btf1, u32 id1,
const struct btf *btf2, u32 id2)
{
if (id1 != id2)
return false;
if (btf1 == btf2)
return true;
return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
}
bool btf_struct_ids_match(struct bpf_verifier_log *log,
const struct btf *btf, u32 id, int off,
const struct btf *need_btf, u32 need_type_id)
{
const struct btf_type *type;
int err;
/* Are we already done? */
if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
return true;
again:
type = btf_type_by_id(btf, id);
if (!type)
return false;
err = btf_struct_walk(log, btf, type, off, 1, &id);
if (err != WALK_STRUCT)
return false;
/* We found nested struct object. If it matches
* the requested ID, we're done. Otherwise let's
* continue the search with offset 0 in the new
* type.
*/
if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
off = 0;
goto again;
}
return true;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
static int __get_type_size(struct btf *btf, u32 btf_id,
const struct btf_type **bad_type)
{
const struct btf_type *t;
if (!btf_id)
/* void */
return 0;
t = btf_type_by_id(btf, btf_id);
while (t && btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (!t) {
*bad_type = btf_type_by_id(btf, 0);
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
return -EINVAL;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
if (btf_type_is_ptr(t))
/* kernel size of pointer. Not BPF's size of pointer*/
return sizeof(void *);
if (btf_type_is_int(t) || btf_type_is_enum(t))
return t->size;
*bad_type = t;
return -EINVAL;
}
int btf_distill_func_proto(struct bpf_verifier_log *log,
struct btf *btf,
const struct btf_type *func,
const char *tname,
struct btf_func_model *m)
{
const struct btf_param *args;
const struct btf_type *t;
u32 i, nargs;
int ret;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
if (!func) {
/* BTF function prototype doesn't match the verifier types.
* Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
*/
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
m->arg_size[i] = 8;
m->ret_size = 8;
m->nr_args = MAX_BPF_FUNC_REG_ARGS;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-14 10:57:17 -08:00
return 0;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
args = (const struct btf_param *)(func + 1);
nargs = btf_type_vlen(func);
if (nargs >= MAX_BPF_FUNC_ARGS) {
bpf_log(log,
"The function %s has %d arguments. Too many.\n",
tname, nargs);
return -EINVAL;
}
ret = __get_type_size(btf, func->type, &t);
if (ret < 0) {
bpf_log(log,
"The function %s return type %s is unsupported.\n",
tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
return -EINVAL;
}
m->ret_size = ret;
for (i = 0; i < nargs; i++) {
if (i == nargs - 1 && args[i].type == 0) {
bpf_log(log,
"The function %s with variable args is unsupported.\n",
tname);
return -EINVAL;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
ret = __get_type_size(btf, args[i].type, &t);
if (ret < 0) {
bpf_log(log,
"The function %s arg%d type %s is unsupported.\n",
tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
return -EINVAL;
}
if (ret == 0) {
bpf_log(log,
"The function %s has malformed void argument.\n",
tname);
return -EINVAL;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-14 10:57:04 -08:00
m->arg_size[i] = ret;
}
m->nr_args = nargs;
return 0;
}
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
/* Compare BTFs of two functions assuming only scalars and pointers to context.
* t1 points to BTF_KIND_FUNC in btf1
* t2 points to BTF_KIND_FUNC in btf2
* Returns:
* EINVAL - function prototype mismatch
* EFAULT - verifier bug
* 0 - 99% match. The last 1% is validated by the verifier.
*/
static int btf_check_func_type_match(struct bpf_verifier_log *log,
struct btf *btf1, const struct btf_type *t1,
struct btf *btf2, const struct btf_type *t2)
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
{
const struct btf_param *args1, *args2;
const char *fn1, *fn2, *s1, *s2;
u32 nargs1, nargs2, i;
fn1 = btf_name_by_offset(btf1, t1->name_off);
fn2 = btf_name_by_offset(btf2, t2->name_off);
if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
bpf_log(log, "%s() is not a global function\n", fn1);
return -EINVAL;
}
if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
bpf_log(log, "%s() is not a global function\n", fn2);
return -EINVAL;
}
t1 = btf_type_by_id(btf1, t1->type);
if (!t1 || !btf_type_is_func_proto(t1))
return -EFAULT;
t2 = btf_type_by_id(btf2, t2->type);
if (!t2 || !btf_type_is_func_proto(t2))
return -EFAULT;
args1 = (const struct btf_param *)(t1 + 1);
nargs1 = btf_type_vlen(t1);
args2 = (const struct btf_param *)(t2 + 1);
nargs2 = btf_type_vlen(t2);
if (nargs1 != nargs2) {
bpf_log(log, "%s() has %d args while %s() has %d args\n",
fn1, nargs1, fn2, nargs2);
return -EINVAL;
}
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
if (t1->info != t2->info) {
bpf_log(log,
"Return type %s of %s() doesn't match type %s of %s()\n",
btf_type_str(t1), fn1,
btf_type_str(t2), fn2);
return -EINVAL;
}
for (i = 0; i < nargs1; i++) {
t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
if (t1->info != t2->info) {
bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
i, fn1, btf_type_str(t1),
fn2, btf_type_str(t2));
return -EINVAL;
}
if (btf_type_has_size(t1) && t1->size != t2->size) {
bpf_log(log,
"arg%d in %s() has size %d while %s() has %d\n",
i, fn1, t1->size,
fn2, t2->size);
return -EINVAL;
}
/* global functions are validated with scalars and pointers
* to context only. And only global functions can be replaced.
* Hence type check only those types.
*/
if (btf_type_is_int(t1) || btf_type_is_enum(t1))
continue;
if (!btf_type_is_ptr(t1)) {
bpf_log(log,
"arg%d in %s() has unrecognized type\n",
i, fn1);
return -EINVAL;
}
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
if (!btf_type_is_struct(t1)) {
bpf_log(log,
"arg%d in %s() is not a pointer to context\n",
i, fn1);
return -EINVAL;
}
if (!btf_type_is_struct(t2)) {
bpf_log(log,
"arg%d in %s() is not a pointer to context\n",
i, fn2);
return -EINVAL;
}
/* This is an optional check to make program writing easier.
* Compare names of structs and report an error to the user.
* btf_prepare_func_args() already checked that t2 struct
* is a context type. btf_prepare_func_args() will check
* later that t1 struct is a context type as well.
*/
s1 = btf_name_by_offset(btf1, t1->name_off);
s2 = btf_name_by_offset(btf2, t2->name_off);
if (strcmp(s1, s2)) {
bpf_log(log,
"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
i, fn1, s1, fn2, s2);
return -EINVAL;
}
}
return 0;
}
/* Compare BTFs of given program with BTF of target program */
int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
struct btf *btf2, const struct btf_type *t2)
{
struct btf *btf1 = prog->aux->btf;
const struct btf_type *t1;
u32 btf_id = 0;
if (!prog->aux->func_info) {
bpf_log(log, "Program extension requires BTF\n");
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
return -EINVAL;
}
btf_id = prog->aux->func_info[0].type_id;
if (!btf_id)
return -EFAULT;
t1 = btf_type_by_id(btf1, btf_id);
if (!t1 || !btf_type_is_func(t1))
return -EFAULT;
return btf_check_func_type_match(log, btf1, t1, btf2, t2);
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
}
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
#ifdef CONFIG_NET
[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
#endif
};
static int btf_check_func_arg_match(struct bpf_verifier_env *env,
const struct btf *btf, u32 func_id,
struct bpf_reg_state *regs,
bool ptr_to_mem_ok)
{
struct bpf_verifier_log *log = &env->log;
const char *func_name, *ref_tname;
bpf: Support pointers in global func args Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-13 00:56:41 +04:00
const struct btf_type *t, *ref_t;
const struct btf_param *args;
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
u32 i, nargs, ref_id;
t = btf_type_by_id(btf, func_id);
if (!t || !btf_type_is_func(t)) {
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
/* These checks were already done by the verifier while loading
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
* struct bpf_func_info or in add_kfunc_call().
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
*/
bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
func_id);
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
return -EFAULT;
}
func_name = btf_name_by_offset(btf, t->name_off);
t = btf_type_by_id(btf, t->type);
if (!t || !btf_type_is_func_proto(t)) {
bpf_log(log, "Invalid BTF of func %s\n", func_name);
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
return -EFAULT;
}
args = (const struct btf_param *)(t + 1);
nargs = btf_type_vlen(t);
if (nargs > MAX_BPF_FUNC_REG_ARGS) {
bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
MAX_BPF_FUNC_REG_ARGS);
return -EINVAL;
}
bpf: Support pointers in global func args Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-13 00:56:41 +04:00
/* check that BTF function arguments match actual types that the
* verifier sees.
*/
for (i = 0; i < nargs; i++) {
u32 regno = i + 1;
struct bpf_reg_state *reg = &regs[regno];
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
if (btf_type_is_scalar(t)) {
if (reg->type == SCALAR_VALUE)
continue;
bpf_log(log, "R%d is not a scalar\n", regno);
return -EINVAL;
}
if (!btf_type_is_ptr(t)) {
bpf_log(log, "Unrecognized arg#%d type %s\n",
i, btf_type_str(t));
return -EINVAL;
}
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
ref_tname = btf_name_by_offset(btf, ref_t->name_off);
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
if (btf_is_kernel(btf)) {
const struct btf_type *reg_ref_t;
const struct btf *reg_btf;
const char *reg_ref_tname;
u32 reg_ref_id;
if (!btf_type_is_struct(ref_t)) {
bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
func_name, i, btf_type_str(ref_t),
ref_tname);
return -EINVAL;
}
if (reg->type == PTR_TO_BTF_ID) {
reg_btf = reg->btf;
reg_ref_id = reg->btf_id;
} else if (reg2btf_ids[reg->type]) {
reg_btf = btf_vmlinux;
reg_ref_id = *reg2btf_ids[reg->type];
} else {
bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
func_name, i,
btf_type_str(ref_t), ref_tname, regno);
return -EINVAL;
}
reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
&reg_ref_id);
reg_ref_tname = btf_name_by_offset(reg_btf,
reg_ref_t->name_off);
if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
reg->off, btf, ref_id)) {
bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
func_name, i,
btf_type_str(ref_t), ref_tname,
regno, btf_type_str(reg_ref_t),
reg_ref_tname);
return -EINVAL;
}
} else if (btf_get_prog_ctx_type(log, btf, t,
env->prog->type, i)) {
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
/* If function expects ctx type in BTF check that caller
* is passing PTR_TO_CTX.
*/
if (reg->type != PTR_TO_CTX) {
bpf_log(log,
"arg#%d expected pointer to ctx, but got %s\n",
i, btf_type_str(t));
return -EINVAL;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
}
if (check_ctx_reg(env, reg, regno))
return -EINVAL;
} else if (ptr_to_mem_ok) {
const struct btf_type *resolve_ret;
u32 type_size;
bpf: Support pointers in global func args Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-13 00:56:41 +04:00
resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
if (IS_ERR(resolve_ret)) {
bpf: Support pointers in global func args Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-13 00:56:41 +04:00
bpf_log(log,
"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
i, btf_type_str(ref_t), ref_tname,
PTR_ERR(resolve_ret));
return -EINVAL;
bpf: Support pointers in global func args Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-13 00:56:41 +04:00
}
if (check_mem_reg(env, reg, regno, type_size))
return -EINVAL;
} else {
return -EINVAL;
}
}
return 0;
}
/* Compare BTF of a function with given bpf_reg_state.
* Returns:
* EFAULT - there is a verifier bug. Abort verification.
* EINVAL - there is a type mismatch or BTF is not available.
* 0 - BTF matches with what bpf_reg_state expects.
* Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
*/
int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
struct bpf_reg_state *regs)
{
struct bpf_prog *prog = env->prog;
struct btf *btf = prog->aux->btf;
bool is_global;
u32 btf_id;
int err;
if (!prog->aux->func_info)
return -EINVAL;
btf_id = prog->aux->func_info[subprog].type_id;
if (!btf_id)
return -EFAULT;
if (prog->aux->func_info_aux[subprog].unreliable)
return -EINVAL;
is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
/* Compiler optimizations can remove arguments from static functions
* or mismatched type can be passed into a global function.
* In such cases mark the function as unreliable from BTF point of view.
*/
if (err)
prog->aux->func_info_aux[subprog].unreliable = true;
return err;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
}
bpf: Support bpf program calling kernel function This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-24 18:51:42 -07:00
int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
const struct btf *btf, u32 func_id,
struct bpf_reg_state *regs)
{
return btf_check_func_arg_match(env, btf, func_id, regs, false);
}
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
/* Convert BTF of a function into bpf_reg_state if possible
* Returns:
* EFAULT - there is a verifier bug. Abort verification.
* EINVAL - cannot convert BTF.
* 0 - Successfully converted BTF into bpf_reg_state
* (either PTR_TO_CTX or SCALAR_VALUE).
*/
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
struct bpf_reg_state *regs)
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
{
struct bpf_verifier_log *log = &env->log;
struct bpf_prog *prog = env->prog;
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
enum bpf_prog_type prog_type = prog->type;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
struct btf *btf = prog->aux->btf;
const struct btf_param *args;
bpf: Support pointers in global func args Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-13 00:56:41 +04:00
const struct btf_type *t, *ref_t;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
u32 i, nargs, btf_id;
const char *tname;
if (!prog->aux->func_info ||
prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
bpf_log(log, "Verifier bug\n");
return -EFAULT;
}
btf_id = prog->aux->func_info[subprog].type_id;
if (!btf_id) {
bpf_log(log, "Global functions need valid BTF\n");
return -EFAULT;
}
t = btf_type_by_id(btf, btf_id);
if (!t || !btf_type_is_func(t)) {
/* These checks were already done by the verifier while loading
* struct bpf_func_info
*/
bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
subprog);
return -EFAULT;
}
tname = btf_name_by_offset(btf, t->name_off);
if (log->level & BPF_LOG_LEVEL)
bpf_log(log, "Validating %s() func#%d...\n",
tname, subprog);
if (prog->aux->func_info_aux[subprog].unreliable) {
bpf_log(log, "Verifier bug in function %s()\n", tname);
return -EFAULT;
}
bpf: Introduce dynamic program extensions Introduce dynamic program extensions. The users can load additional BPF functions and replace global functions in previously loaded BPF programs while these programs are executing. Global functions are verified individually by the verifier based on their types only. Hence the global function in the new program which types match older function can safely replace that corresponding function. This new function/program is called 'an extension' of old program. At load time the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function to be replaced. The BPF program type is derived from the target program into extension program. Technically bpf_verifier_ops is copied from target program. The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops. The extension program can call the same bpf helper functions as target program. Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program types. The verifier allows only one level of replacement. Meaning that the extension program cannot recursively extend an extension. That also means that the maximum stack size is increasing from 512 to 1024 bytes and maximum function nesting level from 8 to 16. The programs don't always consume that much. The stack usage is determined by the number of on-stack variables used by the program. The verifier could have enforced 512 limit for combined original plus extension program, but it makes for difficult user experience. The main use case for extensions is to provide generic mechanism to plug external programs into policy program or function call chaining. BPF trampoline is used to track both fentry/fexit and program extensions because both are using the same nop slot at the beginning of every BPF function. Attaching fentry/fexit to a function that was replaced is not allowed. The opposite is true as well. Replacing a function that currently being analyzed with fentry/fexit is not allowed. The executable page allocated by BPF trampoline is not used by program extensions. This inefficiency will be optimized in future patches. Function by function verification of global function supports scalars and pointer to context only. Hence program extensions are supported for such class of global functions only. In the future the verifier will be extended with support to pointers to structures, arrays with sizes, etc. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-20 16:53:46 -08:00
if (prog_type == BPF_PROG_TYPE_EXT)
prog_type = prog->aux->dst_prog->type;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
t = btf_type_by_id(btf, t->type);
if (!t || !btf_type_is_func_proto(t)) {
bpf_log(log, "Invalid type of function %s()\n", tname);
return -EFAULT;
}
args = (const struct btf_param *)(t + 1);
nargs = btf_type_vlen(t);
if (nargs > MAX_BPF_FUNC_REG_ARGS) {
bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
tname, nargs, MAX_BPF_FUNC_REG_ARGS);
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
return -EINVAL;
}
/* check that function returns int */
t = btf_type_by_id(btf, t->type);
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
bpf_log(log,
"Global function %s() doesn't return scalar. Only those are supported.\n",
tname);
return -EINVAL;
}
/* Convert BTF function arguments into verifier types.
* Only PTR_TO_CTX and SCALAR are supported atm.
*/
for (i = 0; i < nargs; i++) {
struct bpf_reg_state *reg = &regs[i + 1];
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
t = btf_type_by_id(btf, args[i].type);
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (btf_type_is_int(t) || btf_type_is_enum(t)) {
reg->type = SCALAR_VALUE;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
continue;
}
bpf: Support pointers in global func args Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-13 00:56:41 +04:00
if (btf_type_is_ptr(t)) {
if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
reg->type = PTR_TO_CTX;
continue;
}
t = btf_type_skip_modifiers(btf, t->type, NULL);
ref_t = btf_resolve_size(btf, t, &reg->mem_size);
if (IS_ERR(ref_t)) {
bpf_log(log,
"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
PTR_ERR(ref_t));
return -EINVAL;
}
reg->type = PTR_TO_MEM_OR_NULL;
reg->id = ++env->id_gen;
bpf: Introduce function-by-function verification New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-09 22:41:20 -08:00
continue;
}
bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
return -EINVAL;
}
return 0;
}
static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
struct btf_show *show)
{
const struct btf_type *t = btf_type_by_id(btf, type_id);
show->btf = btf;
memset(&show->state, 0, sizeof(show->state));
memset(&show->obj, 0, sizeof(show->obj));
btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
}
static void btf_seq_show(struct btf_show *show, const char *fmt,
va_list args)
{
seq_vprintf((struct seq_file *)show->target, fmt, args);
}
int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
void *obj, struct seq_file *m, u64 flags)
{
struct btf_show sseq;
sseq.target = m;
sseq.showfn = btf_seq_show;
sseq.flags = flags;
btf_type_show(btf, type_id, obj, &sseq);
return sseq.state.status;
}
void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
struct seq_file *m)
{
(void) btf_type_seq_show_flags(btf, type_id, obj, m,
BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
}
struct btf_show_snprintf {
struct btf_show show;
int len_left; /* space left in string */
int len; /* length we would have written */
};
static void btf_snprintf_show(struct btf_show *show, const char *fmt,
va_list args)
{
struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
int len;
len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
if (len < 0) {
ssnprintf->len_left = 0;
ssnprintf->len = len;
} else if (len > ssnprintf->len_left) {
/* no space, drive on to get length we would have written */
ssnprintf->len_left = 0;
ssnprintf->len += len;
} else {
ssnprintf->len_left -= len;
ssnprintf->len += len;
show->target += len;
}
}
int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
char *buf, int len, u64 flags)
{
struct btf_show_snprintf ssnprintf;
ssnprintf.show.target = buf;
ssnprintf.show.flags = flags;
ssnprintf.show.showfn = btf_snprintf_show;
ssnprintf.len_left = len;
ssnprintf.len = 0;
btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
/* If we encontered an error, return it. */
if (ssnprintf.show.state.status)
return ssnprintf.show.state.status;
/* Otherwise return length we would have written */
return ssnprintf.len;
}
#ifdef CONFIG_PROC_FS
static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
{
const struct btf *btf = filp->private_data;
seq_printf(m, "btf_id:\t%u\n", btf->id);
}
#endif
static int btf_release(struct inode *inode, struct file *filp)
{
btf_put(filp->private_data);
return 0;
}
const struct file_operations btf_fops = {
#ifdef CONFIG_PROC_FS
.show_fdinfo = bpf_btf_show_fdinfo,
#endif
.release = btf_release,
};
static int __btf_new_fd(struct btf *btf)
{
return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
}
int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
{
struct btf *btf;
int ret;
btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
attr->btf_size, attr->btf_log_level,
u64_to_user_ptr(attr->btf_log_buf),
attr->btf_log_size);
if (IS_ERR(btf))
return PTR_ERR(btf);
ret = btf_alloc_id(btf);
if (ret) {
btf_free(btf);
return ret;
}
/*
* The BTF ID is published to the userspace.
* All BTF free must go through call_rcu() from
* now on (i.e. free by calling btf_put()).
*/
ret = __btf_new_fd(btf);
if (ret < 0)
btf_put(btf);
return ret;
}
struct btf *btf_get_by_fd(int fd)
{
struct btf *btf;
struct fd f;
f = fdget(fd);
if (!f.file)
return ERR_PTR(-EBADF);
if (f.file->f_op != &btf_fops) {
fdput(f);
return ERR_PTR(-EINVAL);
}
btf = f.file->private_data;
refcount_inc(&btf->refcnt);
fdput(f);
return btf;
}
int btf_get_info_by_fd(const struct btf *btf,
const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
struct bpf_btf_info __user *uinfo;
struct bpf_btf_info info;
u32 info_copy, btf_copy;
void __user *ubtf;
char __user *uname;
u32 uinfo_len, uname_len, name_len;
int ret = 0;
uinfo = u64_to_user_ptr(attr->info.info);
uinfo_len = attr->info.info_len;
info_copy = min_t(u32, uinfo_len, sizeof(info));
memset(&info, 0, sizeof(info));
if (copy_from_user(&info, uinfo, info_copy))
return -EFAULT;
info.id = btf->id;
ubtf = u64_to_user_ptr(info.btf);
btf_copy = min_t(u32, btf->data_size, info.btf_size);
if (copy_to_user(ubtf, btf->data, btf_copy))
return -EFAULT;
info.btf_size = btf->data_size;
info.kernel_btf = btf->kernel_btf;
uname = u64_to_user_ptr(info.name);
uname_len = info.name_len;
if (!uname ^ !uname_len)
return -EINVAL;
name_len = strlen(btf->name);
info.name_len = name_len;
if (uname) {
if (uname_len >= name_len + 1) {
if (copy_to_user(uname, btf->name, name_len + 1))
return -EFAULT;
} else {
char zero = '\0';
if (copy_to_user(uname, btf->name, uname_len - 1))
return -EFAULT;
if (put_user(zero, uname + uname_len - 1))
return -EFAULT;
/* let user-space know about too short buffer */
ret = -ENOSPC;
}
}
if (copy_to_user(uinfo, &info, info_copy) ||
put_user(info_copy, &uattr->info.info_len))
return -EFAULT;
return ret;
}
int btf_get_fd_by_id(u32 id)
{
struct btf *btf;
int fd;
rcu_read_lock();
btf = idr_find(&btf_idr, id);
if (!btf || !refcount_inc_not_zero(&btf->refcnt))
btf = ERR_PTR(-ENOENT);
rcu_read_unlock();
if (IS_ERR(btf))
return PTR_ERR(btf);
fd = __btf_new_fd(btf);
if (fd < 0)
btf_put(btf);
return fd;
}
u32 btf_obj_id(const struct btf *btf)
{
return btf->id;
}
bool btf_is_kernel(const struct btf *btf)
{
return btf->kernel_btf;
}
bool btf_is_module(const struct btf *btf)
{
return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
}
static int btf_id_cmp_func(const void *a, const void *b)
{
const int *pa = a, *pb = b;
return *pa - *pb;
}
bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
{
return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
}
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
struct btf_module {
struct list_head list;
struct module *module;
struct btf *btf;
struct bin_attribute *sysfs_attr;
};
static LIST_HEAD(btf_modules);
static DEFINE_MUTEX(btf_module_mutex);
static ssize_t
btf_module_read(struct file *file, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t len)
{
const struct btf *btf = bin_attr->private;
memcpy(buf, btf->data + off, len);
return len;
}
static int btf_module_notify(struct notifier_block *nb, unsigned long op,
void *module)
{
struct btf_module *btf_mod, *tmp;
struct module *mod = module;
struct btf *btf;
int err = 0;
if (mod->btf_data_size == 0 ||
(op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
goto out;
switch (op) {
case MODULE_STATE_COMING:
btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
if (!btf_mod) {
err = -ENOMEM;
goto out;
}
btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
if (IS_ERR(btf)) {
pr_warn("failed to validate module [%s] BTF: %ld\n",
mod->name, PTR_ERR(btf));
kfree(btf_mod);
err = PTR_ERR(btf);
goto out;
}
err = btf_alloc_id(btf);
if (err) {
btf_free(btf);
kfree(btf_mod);
goto out;
}
mutex_lock(&btf_module_mutex);
btf_mod->module = module;
btf_mod->btf = btf;
list_add(&btf_mod->list, &btf_modules);
mutex_unlock(&btf_module_mutex);
if (IS_ENABLED(CONFIG_SYSFS)) {
struct bin_attribute *attr;
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
goto out;
sysfs_bin_attr_init(attr);
attr->attr.name = btf->name;
attr->attr.mode = 0444;
attr->size = btf->data_size;
attr->private = btf;
attr->read = btf_module_read;
err = sysfs_create_bin_file(btf_kobj, attr);
if (err) {
pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
mod->name, err);
kfree(attr);
err = 0;
goto out;
}
btf_mod->sysfs_attr = attr;
}
break;
case MODULE_STATE_GOING:
mutex_lock(&btf_module_mutex);
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
if (btf_mod->module != module)
continue;
list_del(&btf_mod->list);
if (btf_mod->sysfs_attr)
sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
btf_put(btf_mod->btf);
kfree(btf_mod->sysfs_attr);
kfree(btf_mod);
break;
}
mutex_unlock(&btf_module_mutex);
break;
}
out:
return notifier_from_errno(err);
}
static struct notifier_block btf_module_nb = {
.notifier_call = btf_module_notify,
};
static int __init btf_module_init(void)
{
register_module_notifier(&btf_module_nb);
return 0;
}
fs_initcall(btf_module_init);
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
struct module *btf_try_get_module(const struct btf *btf)
{
struct module *res = NULL;
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
struct btf_module *btf_mod, *tmp;
mutex_lock(&btf_module_mutex);
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
if (btf_mod->btf != btf)
continue;
if (try_module_get(btf_mod->module))
res = btf_mod->module;
break;
}
mutex_unlock(&btf_module_mutex);
#endif
return res;
}
BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
{
struct btf *btf;
long ret;
if (flags)
return -EINVAL;
if (name_sz <= 1 || name[name_sz - 1])
return -EINVAL;
btf = bpf_get_btf_vmlinux();
if (IS_ERR(btf))
return PTR_ERR(btf);
ret = btf_find_by_name_kind(btf, name, kind);
/* ret is never zero, since btf_find_by_name_kind returns
* positive btf_id or negative error.
*/
if (ret < 0) {
struct btf *mod_btf;
int id;
/* If name is not found in vmlinux's BTF then search in module's BTFs */
spin_lock_bh(&btf_idr_lock);
idr_for_each_entry(&btf_idr, mod_btf, id) {
if (!btf_is_module(mod_btf))
continue;
/* linear search could be slow hence unlock/lock
* the IDR to avoiding holding it for too long
*/
btf_get(mod_btf);
spin_unlock_bh(&btf_idr_lock);
ret = btf_find_by_name_kind(mod_btf, name, kind);
if (ret > 0) {
int btf_obj_fd;
btf_obj_fd = __btf_new_fd(mod_btf);
if (btf_obj_fd < 0) {
btf_put(mod_btf);
return btf_obj_fd;
}
return ret | (((u64)btf_obj_fd) << 32);
}
spin_lock_bh(&btf_idr_lock);
btf_put(mod_btf);
}
spin_unlock_bh(&btf_idr_lock);
}
return ret;
}
const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
.func = bpf_btf_find_by_name_kind,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_ANYTHING,
};